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Oscillatory athermal quasistatic deformation of a model glass
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We report computer simulations of oscillatory athermal quasistatic shear deformation of dense amorphous
samples of a three-dimensional model glass former. A dynamical transition is observed as the amplitude of the
deformation is varied: For large values of the amplitude the system exhibits diffusive behavior and loss of memory
of the initial conditions, whereas localization is observed for small amplitudes. Our results suggest that the same
kind of transition found in driven colloidal systems is present in the case of amorphous solids (e.g., metallic
glasses). The onset of the transition is shown to be related to the onset of energy dissipation. Shear banding is
observed for large system sizes, without, however, affecting qualitative aspects of the transition.
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Understanding the behavior of materials under mechanical
deformation is of primary importance for many contexts.
While the deformation behavior of crystals is theoretically
well understood, no universally accepted framework exists
to rationalize the behavior of mechanically driven amorphous
systems, although significant progress has been made in recent
years in developing a detailed understanding of how an amor-
phous solid responds to external stresses [1–4]. Considerable
recent activity has been spurred by an interest in the mechanical
behavior of metallic glasses, soft glassy materials, foams, and
granular packings and has involved theoretical, computational,
and experimental investigations [2,5–9]. Particular interest is
understandably focused on the manner in which the response
of an amorphous solid changes from a nearly elastic response
at small applied stress to a state in which it will flow (or break)
for large applied stress.

Many computational investigations have employed the
approach of studying the zero-temperature behavior of amor-
phous solids under quasistatic conditions [using an athermal
quasistatic (AQS) procedure; see, e.g., [10]]. In this procedure,
systems are kept in local energy minimum configurations or
inherent structures [11,12] while varying the strain. In previous
work on model systems (binary mixture liquid with Lennard-
Jones interactions) it has been shown that upon monotonically
increasing the applied shear strain, the inherent structures
evolve towards energies corresponding to the limit of high
temperatures [13]. This and related phenomena are referred
to as rejuvenation, in contrast to the well studied process of
aging whereby (typically) a glassy material descends to deeper
energy configurations as a function of the waiting time over
which it relaxes at a given temperature. In contrast, when
a cycle of strain is applied up to a maximum value that is
then reversed [14], both ageing and rejuvenation are observed,
with small amplitudes found to reduce the energy of samples
(“overage” them), while larger-amplitude strains tend more
often to increase the energy (thus “rejuvenating” the samples).
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Initial conditions of the samples in such cases matter: Samples
with lower initial potential energy are rejuvenated more easily
than those with higher energy [14].

It has been observed that the nature of rearrangements
of colloidal particles in a suspension subjected to cyclic
shear deformation depends on the amplitude of strain. For
small amplitudes the particles become quiescent after a short
transient, whereas for larger amplitudes a finite fraction of the
colloidal particles move irreversibly. This observation has been
made for low packing fractions [15,16] and for dense colloidal
suspensions [17,18]. The latter is close to the present study,
while the former is a radically different situation. It has been
argued that such a nonequilibrium transition from a quiescent
to an active state belongs to the universality class of conserved
directed percolation [19].

In this Rapid Communication we report results of computer
simulations for a three-dimensional binary Lennard-Jones
model, wherein we subject samples to a large number of shear
strain cycles (rather than to a single cycle as reported in [14]).
For large enough amplitudes, our systems exhibit diffusive
behavior and reach steady states that are independent of their
initial conditions, characterized by a diffusion coefficient and
an average energy that depend on the maximum strain only.
For low amplitudes of the strain, different samples reach
instead nondiffusive states, retaining a memory of their initial
conditions. Our results thus indicate that sheared amorphous
solids undergo the same type of quiescent to active transition
as driven colloidal suspensions at moderate density [16],
suggesting that the diffusion behavior observed in driven
colloidal suspensions could occur in completely different
cases, such as in fatigue experiments on metallic glasses
[6,20,21]. In addition, we find that the critical amplitude γc

coincides with a dramatic change in the amount of energy
dissipated per deformation cycle (the area of the hysteresis
curve), occurring close to but slightly below the yield strain γy

of undeformed samples. Finally, we show that large systems
subjected to deformation above the critical value present
shear banding, but this leaves the dynamical transition picture
unaffected.

We simulate a binary Lennard-Jones mixture with para-
meters and an interaction cutoff as in [14], using LAMMPS
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[22]. Cubic samples with N = 500,4000,32 000 particles
are equilibrated at two different reduced temperatures (T =
1.0,0.466) at reduced density 1.2. The higher temperature
corresponds to the onset of slow dynamics whereas the lower
temperature, close to the lowest temperatures studied for this
system, corresponds to a supercooled state [23]. Configura-
tions sampled from the equilibrium trajectory are subjected to
energy minimization, using the conjugate-gradient algorithm,
to obtain sets of inherent structures typical of the liquid at
temperature T . The inherent structure energies sampled by the
liquid are lower for the lower temperatures [14].

Each such inherent structure is then subjected to two
operations. First, particle positions are transformed affinely
(in this case, we transform the x coordinates according to
r ′
x = rx + dγ ry while keeping ry and rz the same), so that the

shear strain γ of the samples is incremented by a small amount
dγ , and Lees-Edwards boundary conditions [24] are updated
accordingly, thus changing the original energy landscape
(so that the initial configuration is no longer a minimum).
Subsequently, energy minimization is performed using the
conjugate gradient algorithm to obtain the inherent structure
in the new energy landscape. These two operations represent
an AQS step [10]. If AQS steps are iterated, the sample can be
sheared to arbitrary values of strain. The dynamics under such
a protocol can be assumed to mimic real shear deformation
experiments when the temperature of the system is low enough
to be neglected (hence the name athermal) and shear rates are
low enough (quasistatic) to let the system relax fully before
further deformation takes place [10]. In what follows, the shear
strain γ is changed in steps of dγ (=10−3, 2 × 10−4, and
2 × 10−4, respectively, for N = 500, 4000, and 32 000) from
0 to a maximum value γmax and then to −γmax and back to 0.
This operation is the elementary cycle of our dynamics. For
practical purposes we define the accumulated strain γacc as the
sum of the elementary absolute strains applied at all steps:
γacc = ∑

i |dγi |. The accumulated strain plays the role of time
in our analysis. At the end of each cycle, particle positions
in configurations with γ = 0 (zero-strain configurations) are
stored, so that the mean square displacement with respect to
the initial configuration (γacc = 0) can be measured. Energy
and all the components of the stress tensor are also recorded
at every AQS step [but, except in Fig. 3(b), we report only the
zero-strain values at the end of each cycle]. About 40, 10, 2
samples are subjected to the protocol above respectively for the
systems with N = 500, 4000, 32000, so the quantities above
can be averaged.

The average potential energy of the minima visited is
presented in Fig. 1(a) as a function of the number of cycles.
The behavior of the potential energy depends on the value
of γmax. For low values of γmax, after a short transient, the
energy curves reach a value that depends on the initial T . For
high enough values of γmax, the energy converges to the same
γmax-dependent value for both initial values of T and remains
steady. We expect this result to hold for other temperatures as
well. Whether overaging or rejuvenation will occur, therefore,
depends on whether the initial energy of the undeformed
inherent structure is lower or higher than the steady state
energy. At intermediate values of γmax, the convergence of
the energy to the asymptotic values requires more cycles than
at the extreme γmax values. To characterize this slow relaxation,
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FIG. 1. (Color online) (a) Potential energy per particle E for
zero-strain configurations, for different values of γmax [0.07 (©),
0.08 (�), 0.09 (♦), 0.1 (�), 0.12 (�), and 0.14 (�)], averaged over
different runs with samples of N = 4000 particles at T = 0.466
(closed symbols) and 1.0 (open symbols). The fits are obtained using
a stretched exponential model. For the highest values of γmax, E

fluctuates around a plateau after an initial transient, whose value
increases with γmax and is not dependent on the starting energy
(curves with closed and open symbols of the same color and symbol
merge), whereas for lower γmax the memory of initial conditions is
retained. For intermediate values our simulations are not long enough
to determine which of the two behaviors eventually holds. (b) Values
of characteristic strain γ̃acc (akin to relaxation time) obtained from
stretched exponential fits of the energy relaxation like those in (a). The
relaxation strain increases as one approaches the transition between
the arrested and diffusive regimes. The lines through the data are
guides to the eye. Vertical lines indicate critical strain amplitudes γc

described in Fig. 3(a).

we fit the transient behavior of the energy data in Fig. 1(a) with
a stretched exponential, from which a characteristic relaxation
strain γ̃acc is extracted. As can be seen from Fig. 1(b), the values
of γ̃acc become high for intermediate γmax and show behavior
consistent with a divergence at a critical strain, similarly to
what is observed in driven colloidal suspensions [16]. In order
to understand the nature of particle motions that lead to the
energy relaxation (or lack thereof), we calculate the mean
square displacements (MSDs) from the initial configurations,
averaged over the samples. The MSD curves shown in Fig. 2
indicate that for small values of γmax the MSD curves saturate
after an initial transient, whereas for large γmax the particle
displacements are diffusive, i.e., the MSD depends linearly on
the accumulated strain beyond some value of γacc. In the case
where a steady state is reached, the diffusivity can be extracted
by a linear fit of the MSD calculated from an initial point in
the steady state. In terms of the accumulated strain relative to
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FIG. 2. (Color online) Mean square displacement for configura-
tions, for different γmax, averaged over different runs with N = 4000
particles at T = 0.466,1.0. Symbols are the same as in Fig. 1(a).
Note the transition between an arrested and diffusive regime as γmax

is increased.

such a point γ ∗
acc the MSD is given by

MSD = Dγ ∗
acc. (1)

At intermediate values of γmax, the system reaches neither an
immobile nor a diffusive steady state within the number of
cycles we perform. The energy in Fig. 1(a) and the MSD data
in Fig. 2, taken together, suggest that, in this regime, the system
undergoes a transition from arrested (or quiescent) to diffusive
behavior across a critical γmax, near which the relaxation of
the system becomes very sluggish.

In Fig. 3(a) the values of D obtained for all the system sizes
are plotted against γmax. For low γmax, D is zero and starts to
increase rapidly around a critical value γc, which depends on
the system size [Fig. 3(a)]. The values of D for γmax > γc in
Fig. 3(a) are reasonably well described by a law of the form
(as in [16])

D = A(γmax − γc)β. (2)

The relevant fit values are mentioned in the caption of Fig. 3(a).
Although better analysis is needed to be sure of the values of
the exponent β and critical strain γc, the data shown are clearly
consistent with a transition from a regime with zero diffusivity
to one with finite diffusivity. Systems move diffusively in the
large-strain regime whereas, in the low-strain regime, they
become localized in configuration space. To test the robustness
of the observation of a finite γc, we plot γc against different
inverse system sizes 1/N in the inset of Fig. 3(a). This plot
indicates that γc will be finite for N → ∞.

Interestingly, the transition to the diffusive regime also
coincides with the onset of energy dissipation in the system, as
can be deduced by considering the stress-strain curves in the
steady state, which are shown in the inset of Fig. 3(b). For small
γmax these curves do not enclose any significant area, indicating
nearly elastic behavior (although involving small-scale plastic
events even for small strain [3]). For large strain, however,
the curves begin to clearly show hysteresis. As shown in
Fig. 3(b), the γmax values beyond which dissipation becomes
finite agree with the critical strain γc for the corresponding
system sizes. Therefore, the transition from a localized to
a diffusive regime corresponds also to a transition from an
almost nondissipative to a dissipative regime. It is interesting

FIG. 3. (Color online) (a) Values of diffusivity D obtained by
fitting the MSD, for the studied system sizes and temperatures. Super-
imposed on the data are power law fits [Eq. (2)] from which the critical
strain γc values obtained [for N = 500,4000,3200, respectively,
for (T = 0.466, T = 1.0)] are (0.115,0.117), (0.082,0.084), and
(0.070,0.073). The corresponding exponent values β are (0.38,0.36),
(0.75,0.76), and (0.61,0.54). The inset shows γc vs inverse system
size 1/N . Here γc extrapolates to a nonzero value as 1/N → 0. Also
shown are the yield strain values γy (black closed symbols) obtained
from stress-strain curves at T = 0.466 as shown in the inset in (b).
(b) Stress-strain curves (shown in the inset for N = 4000) show
hysteresis with finite enclosed area that increases with γmax at high
strain amplitude γmax. The stress-strain curve obtained under uniform
shear is shown for reference, with the vertical line at the peak marking
the yield strain γy . The areas enclosed by the hysteresis curves are
shown in the main panel as a function of γmax for all the different
system sizes and temperatures studied. The areas, close to zero at
low γmax, become finite above γc (indicated by vertical lines for each
system size).

to ask if the critical strain is related to the yield strain γy

in steady shearing conditions [we identify γy as the strain
corresponding to the maximum stress obtained with our AQS
procedure, as in the inset of Fig. 3(b); for thermal systems
this value will be dependent on the strain rate, but in AQS
deformation γy depends on the initial configuration only].
As shown in the inset of Fig. 3(a), the yield strain is close
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FIG. 4. (Color online) Snapshot of a N = 32 000 configuration
obtained in the steady state for γmax = 0.08. Particles in red are those
that have undergone a scalar displacement greater than 0.6σ when the
sample is subject to a full shear deformation cycle on the xy plane.
The presence of a band is evident.

to but slightly higher than the critical strain (consistently
with [17]), suggesting that the onset of irreversible events
leading to critical behavior occurs at strain values smaller than
the yield strain itself. Although our results for different system
sizes show qualitatively consistent behavior, at the largest size
studied, N = 32 000, a new phenomenon is observed: Systems
under strain display clear indications of shear banding, with
particles that move the most in a single cycle clearly correlated
in position (see Fig. 4). Shear bands are present in all
the samples above the critical strain. However, despite the
emergence of shear banding, the dynamical transition scenario
discussed so far is not affected.

To summarize, we have shown that athermal oscillatory
shear deformation drives, for large enough strains, dense
samples of a model glass into steady states in which they
explore their energy landscape in a manner dictated by
the deformation amplitude γmax. Previous observations of
overaging and rejuvenation via a single cycle of deformation

in a model glass [14] are thus rationalized as initial steps
towards a steady state that is independent of the initial state
of the samples and depending only on γmax. Depending on
whether the amplitude of the deformation is below or above
a critical strain amplitude γc, these driven amorphous solids
can be in an arrested (or localized) state or in a diffusive
state. The relaxation to the steady state becomes very sluggish
for γmax values near the critical value. The transition from a
localized to a diffusive steady state is very reminiscent of that
observed in experiments on driven systems [16–18,25] and
reported recently by other authors [26–28] on systems similar
to ours. We emphasize that the similarity with the low-density
colloidal suspension [16] is particularly remarkable given the
differences in the microscopic origin of the reversibility for
small strain amplitudes. The value of the amplitude γc at which
this transition occurs depends on the system size but appears
to remain finite in the limit of infinitely large systems. We find
that the value of γc is in excellent agreement with the strain
value at which hysteresis develops in the stress-strain curves,
indicating a transition from a quasielastic to an elastoplastic
regime. The critical strain values are close to but slightly lower
than the yield strain. Shear banding occurs for our largest
system sizes (N = 32 000) in diffusing samples. Interestingly
enough, the onset of shear banding at large N does not funda-
mentally affect the picture outlined above: Oscillatory strain,
depending on the strain amplitude, is able to make amorphous
solids trace almost nondissipative, localized orbits in their
configuration space, or diffusive, dissipative trajectories, and
such nonequilibrium transition occurs at a value of the strain
amplitude γc that is close to but does not coincide with the yield
strain.
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