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We review several parallel tempering schemes and examine their main ingredients for accuracy and efficiency.
The present study covers two selection methods of temperatures and several choices for the exchange of replicas,
including a recent novel all-pair exchange method. We compare the resulting schemes and measure specific heat
errors and efficiency using the two-dimensional (2D) Ising model. Our tests suggest that an earlier proposal
for using numbers of local moves related to the canonical correlation times is one of the key ingredients for
increasing efficiency, and protocols using cluster algorithms are found to be very effective. Some of the protocols
are also tested for efficiency and ground state production in 3D spin-glass models where we find that a simple
nearest-neighbor approach using a local n-fold-way algorithm is the most effective. Finally, we present evidence
that the asymptotic limits of the ground state energy for the isotropic case and for an anisotropic case of the 3D
spin-glass model are very close and may even coincide.
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I. INTRODUCTION

Monte Carlo (MC) sampling has dramatically increased
our understanding of the behavior of statistical mechanics
systems [1,2]. Importance sampling, that is, the Metropolis
et al. [3] method and its variants [1,2] were, for many years,
the main tools in condensed matter physics, particularly for the
study of critical phenomena in Ising models. However, in many
complex systems, effective potentials have a complicated
rugged landscape with many minima and maxima which
become more pronounced with increasing system size. Thus,
any reasonable MC sampling has to overcome energy barriers
and cross from one basin to another in the state space in order
to obtain a representative set of configurations.

In order to overcome such problems, occurring mainly in
the study of first-order phase transitions, spin glasses, and
biomolecules, generalized ensembles have been developed
with the two main categories known as the entropic sampling
method and the parallel tempering sampling method [1]. Par-
allel tempering (PT), or replica exchange ensembles [4–9], are
very effective alternatives for the study of spin glasses [10–30],
protein folding [31], and biomolecules [32–34].

PT involves a mixture of MC moves at the individual
temperatures (local moves) with exchange attempts between
different replicas (swap moves). Local moves depend on the
implemented local algorithm, that is on the algorithm used
at the individual temperatures. Thus, a local move may be a
spin-flip attempt (Metropolis algorithm), or a spin flip to a
new state (n-fold-way algorithm) or a cluster flip to a new
state (Wolff algorithm). An obvious question is how often
we should perform the swap moves, or how many local
moves should intervene between swap moves. The number of
swap moves required to transfer any replica from the highest
(lowest) temperature to the lowest (highest), and vice versa,
defines the round-trip time and is one of the possible global
measures characterizing the efficiency of a PT protocol. It
is a measure indicating difficulties in the flow (bottleneck
effects) as a replica moves from the high to low temperature
and vice versa. Schemes minimizing the round-trip time are
expected to improve the general sampling efficiency of the
PT protocols, facilitating equilibration and transitions between
multiple minima in spin glasses.

There are many different ways to construct such a PT
protocol and the available freedom in choosing specific details
makes their comparison a challenging job [35–39]. Our
motivation in the present comparative study is to shed light
on aspects that appear to be still unresolved. We attempt
this by combining several features and testing the behavior
of the resulting PT protocols. We consider two methods
for the selection of temperature sequences and test their
performance by varying the numbers of local moves used at
each temperature. One of these methods is the simple constant
acceptance exchange (CAE) method [8,9,34,40]. Using this
selection method, Bittner et al. [40] have shown that if the
numbers of local moves are related to the canonical correlation
times, the resulting PT protocol appears to optimize the round-
trip time of replicas. The calculation of correlation times needs
additional costly preliminary runs, but the idea is of theoretical
interest, and in some cases an inferred moderate approximation
may be better than using an arbitrary not-too-small and
not-too-big empirical mixture of local and swap moves.

The second method, for the selection of temperatures, was
introduced by Sabo et al. [41]. This method requires a constant
increase in entropy between successive temperatures. This
constant entropy increase (CEI) approach is also supposed to
optimize the performance of PT ensembles. The two methods
of selection produce temperature sequences that are more
concentrated in the temperature range where the specific heat
has a maximum, with the CEI method producing a more
dense set close to the maximum point. In systems with sharp
specific heat peaks, the difference between the corresponding
protocols may be considerable and one would like to know
their relative efficiency and how this may be influenced by
other features of the protocols. We will confirm that the
proposal of Bittner et al. [40] for using numbers of local moves
related to the canonical correlation times is the key ingredient
for both selection methods. Thus, using appropriate cluster
algorithms for the local moves one obtains very effective
protocols optimizing the round-trip time.

There is also great freedom in the choice of the exchange
of replicas, although most protocols use adjacent exchange
attempts. Even in the case of adjacent exchange moves,
the performance of PT is influenced by further details, such as
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the numbers of local moves used between exchange attempts
and the ordering or mixing of the exchange attempts. Nonadja-
cent exchange attempts can be incorporated in the PT schemes
in a way that fully maintains detailed balance. However, remote
exchanges have in general very small acceptance rates, and
such schemes may well waste time in unsuccessful attempts,
without any statistically significant increase in the sampling
efficiency of the protocols. Such methods of nonadjacent
exchange moves have also been tried in constructing PT
protocols [42] and will also be included in our tests in this
paper. An alternative procedure for overcoming the problem
of low acceptance rates for remote exchanges has been recently
adopted, by enforcing exchange of nonadjacent replicas using
kinetic MC methods [43,44]. The novel all-pair exchange
(APE) method of Brenner et al. [44] is such a case. This
method maintains detailed balance, at least in determining the
probabilities of generating exchange moves (between adjacent
or nonadjacent replicas). We will consider this method as a
representative of kinetic MC methods and contrast its accuracy
and efficiency with the nearest neighbor (NN) PT protocols.
In particular, the combination of the APE method with a
Wolff (W) cluster algorithm [1,45] or an n-fold-way algorithm
will be examined. This last algorithm is called also in the
literature the BKL algorithm [1,46–48], after Bortz, Kalos, and
Lebowitz [46] who invented it. Other names are the continuous
time MC or the kinetic MC algorithm (see the discussion in
Sec. II B). The recent infinite swapping method [49], will
not be considered in this paper. This technique utilizes a
symmetrization strategy, using all possible (M!) temperature
(replica) permutations. The application and the performance
of this method to the problem of finding true ground states of
the three-dimensional (3D) spin-glass model is in our future
interests. Our numerical tests are carried out for the square
Ising model with linear size L = 50 and N = L × L lattice
sites, and involve accurate measurements for the specific heat
errors and the efficiency of the PT protocols. Furthermore,
detailed tests are carried out for efficiency and ground state
production in 3D spin-glass models, where we find efficient
low-temperature choices using, as a local algorithm, the
n-fold-way algorithm.

The rest of the paper is laid out as follows: In Sec. II A we
give a brief description of two basic methods for selecting the
temperature sequences for PT sampling. The tested NN and
APE exchange schemes are detailed in Sec. II B and the rest of
the PT protocol details are defined in the elementary PT step
in Sec. II C. In Sec. III we define measures for the specific heat
errors and the efficiency and we present several tests of the PT
protocols on the 2D Ising model. Finally, in Sec. IV we test
the performance of some of the PT protocols for ground state
production on 3D spin-glass models. In Sec. IV A we discuss
the problem of ground states for the 3D Edwards-Anderson
bimodal (EAB) model [10,12], while in Sec. IV B we consider
a variant of this, with spatially uniaxial anisotropic exchange
interactions and study the finite-size behavior of its ground
state energy. Our conclusions are summarized in Sec. V.

II. PARALLEL TEMPERING SCHEMES

A. Selecting temperature sequences

In constructing an accurate and efficient PT protocol, the
optimum selection of temperatures is still an open problem.

There is a rather large number of ideas that have been proposed
in the last decade to resolve this question [40–44,50–53].
According to the approach followed by Katzgraber et al. [53],
optimal temperatures correspond to a maximum rate of round
trips between low and high temperatures in temperature
space and can be obtained using a recursive readjustment
of temperatures. This feedback-optimized update scheme, is
a sophisticated and appealing method, but because of its
complexity, other simpler methods have been more often
implemented in comparative studies and applications of PT.

Among these simpler methods, the CAE method, when
used with appropriate number of sweeps between replica
exchanges, has been illustrated to produce a similar approach
that optimize the round-trip time [40]. To obtain the tem-
peratures corresponding to a CAE rate r we follow here
Ref. [40]. Starting from a chosen lowest temperature, adjacent
temperatures are determined by calculating the acceptance
exchange rate from

R(1 ↔ 2) =
∑
E1,E2

PT1 (E1)PT2 (E2)p(E1,T1 ↔ E2,T2), (1)

where PTi
(Ei) is the energy probability density function for

replica i at temperature Ti and

p(E1,T1 ↔ E2,T2) = min[1, exp(�β�E)] (2)

is the PT probability to accept a proposed exchange of
two replicas, with �β = 1/T2 − 1/T1 and �E = E2 − E1.
Demanding that R(1 ↔ 2) = r for all adjacent replicas, we
obtain the temperatures of the required CAE sequence (from
the above equations), provided that the energy probability
density functions (PDFs) are known, or can be reasonably
well approximated by some preliminary MC runs.

Although the exact density of states (DOS) and the energy
PDF for the square Ising model with linear size L = 50
is known [54], we have used this information only for
the exact determination of specific heat errors and not for
defining the CAE temperature sequence. Instead, we apply
a simple histogram method [1,45] to find the energy PDFs
at any temperature, using a preliminary (Metropolis or PT)
run in an appropriate set of temperatures in the range of
interest. Applying then a recursive scheme we calculate the
CAE sequence, and by repeating a Metropolis run at these
temperatures we estimate their canonical correlation times [1].
This practice can be applied to a general system for which the
DOS is not known, possibly using in the first preliminary run
(especially in a spin-glass system) a PT protocol in an ad hoc
reasonable set of temperatures.

The second method of selection of the PT temperature
sequence, requires a constant increase in entropy between
successive temperatures [41]. To describe this method we
follow Sabo et al. [41] and denote the M temperatures of the
CEI sequence by (Tm; m = 1, . . . ,M) and the total increase in
entropy from T1 to TM by �S. Then the adjacent temperatures
are determined successively, starting from the given T1, from∫ Tm+1

Tm

dT
Cu(T )

T
= �S

(M − 1)
, (3)

where the specific heat at any temperature can be calculated
from the above mentioned preliminary (Metropolis or PT) run
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TABLE I. Temperature sequences for PT methods, canonical
correlation times in units of lattice sweeps, and acceptance rates.
The two cases shown are the constant acceptance rate (columns 1,
2, and 3) and the constant entropy increase (columns 3, 4, and 5)
methods, as applied in a temperature range close to the critical point
of the L = 50 square Ising model.

CAE CEI

T τ r T τ r

1.9200 3.0 0.499 1.9200 3.0 0.361
1.9669 3.0 0.500 1.9825 3.0 0.403
2.0121 3.0 0.501 2.0375 3.6 0.428
2.0557 3.9 0.499 2.0875 4.0 0.452
2.0975 4.0 0.498 2.1325 4.8 0.480
2.1377 5.0 0.501 2.1725 6.2 0.509
2.1757 6.4 0.500 2.2075 10.0 0.551
2.2115 9.5 0.501 2.2375 13.7 0.594
2.2446 19.5 0.501 2.2625 25.6 0.607
2.2751 32.6 0.501 2.2850 39.0 0.617
2.3050 33.1 0.500 2.3075 31.3 0.601
2.3374 19.1 0.500 2.3325 20.3 0.572
2.3746 9.8 0.500 2.3625 11.2 0.531
2.4167 6.3 0.500 2.4000 7.3 0.519
2.4631 5.0 0.500 2.4425 5.6 0.489
2.5134 4.1 0.500 2.4925 4.5 0.447
2.5680 4.0 0.500 2.5525 4.0 0.434
2.6268 3.8 0.500 2.6200 3.9 0.410
2.6903 3.0 2.6975 3.0

and a simple histogram method [1,45]. Repeating a Metropolis
run at these temperatures we also estimate the corresponding
canonical correlation times.

In Table I we display, for the CAE and CEI selection
methods, the corresponding temperature sequences, their
canonical correlation times, and the acceptance rates between
adjacent replicas. As usual, to fix the temperature scale we set
(the exchange interaction of the Ising model) J/kB = 1. The
canonical correlation times were estimated from the discrete
form of the energy autocorrelation function, following the
method described in Ref. [1], and are measured in units
of lattice sweeps (N Metropolis attempts). The temperature
range used is approximately centered around the pseudocritical
temperatures of the specific heat and magnetic susceptibility of
the L = 50 square Ising model, and includes the exact critical
point. Both methods produce temperature sequences that are
more concentrated in the temperature range where the specific
heat has a maximum, with the CEI method producing a more
dense set close to the maximum point, as can be seen from this
table.

We point out here that, for the CAE selection, we start
from a given lower temperature T1 = 1.9200 and proceed to
find higher temperatures, until a desired limit, with a given
constant acceptance rate. For the construction of Table I, which
is used in our tests presented in Sec. III, we have used r =
0.5 and the resulting higher temperature is TM = 2.6903 with
M = 19. Our choice here for the CAE rate (r = 0.5) follows
Ref. [40], and is somewhat arbitrary. One could also use the
value r = 0.3874 recommended in Ref. [55]. However, our
test were repeated (on a lattice with linear size L = 20) using

other values of the CAE rate, producing similar behavior. We
discuss this point again in Sec. III, where we observe that the
CAE and CEI selections of temperatures show comparable
performance. Since we wish to compare the CAE and CEI
schemes, we apply the CEI procedure starting from the same
T1 = 1.9200, set its final temperature TM = 2.6975, and use
the same number of replicas M = 19. The small difference
between the two higher temperatures is due to the histogram
data kept for the specific heat in the preliminary run, since both
sequences were obtained in one unified algorithm.

Thus, the two schemes are defined approximately in the
same temperature range with the same number of replicas, a
practice that facilitates their comparison. The weaknesses or
merits of the two selection methods may also be related to
the choice of lower and higher temperatures and the value of
the constant acceptance rate r , and thus will depend on the
total number of replicas M . In general, all the details of the
protocols may influence the round-trip time or the efficiency
of the PT schemes. An interesting recent example is that of
the PT cluster algorithm based on the CAE selection method
presented by Bittner and Janke [56]. In their implementation,
it was possible to study the critical range of the 2D and 3D
Ising models with a rather small number of replicas. In the case
of the 3D Ising model, it was argued that a PT scheme using
only M = 4 replicas, for lattice sizes L = 4–80, was adequate
to cover the critical range. Finally, these authors used in their
study a more generous approach with M = 7–21 replicas, for
lattice sizes L = 4–80.

B. Nearest neighbor and all-pair exchange schemes

Mixing local MC attempts at individual temperatures
(local attempts) with exchange attempts between different
replicas (swap attempts) is the essential procedure in PT. It
is this feature that enables an ergodic walk in temperature
space, transferring information between the highest and lowest
temperatures. We provide in this section short descriptions of
alternatives for the ordering of swap attempts, first for the NN
exchange protocols and then for PT protocols using all-pair
exchange methods. The rest of the details of an elementary PT
step are described in the next section.

In a NN exchange protocol only adjacent exchange attempts
are proposed. There are M − 1 different NN proposals which
may be uniquely denoted by the lowest temperature index
i = 1, . . . ,M − 1. Following Brenner et al. [44], we denote
the replica configuration before a swap attempt by A =
{x1,x2, . . . ,xi,xi+1, . . . ,xM}, where xi is the replica at the tem-
perature Ti . Then, a NN exchange is denoted by A → B, where
B = {x1,x2, . . . ,xi+1,xi, . . . ,xM}. The acceptance- rejection
rule of an exchange attempt corresponds to an acceptance rate
Pacc(A → B), which is usually given by the Metropolis form
of the swap attempt p(xi ↔ xi+1), as specified in Eq. (2).
Since the generation of the various NN exchange attempts
(proposals) proceeds with equal probabilities, Pgen(A →
B) = Pgen(B → A) = 1/(M − 1), the swap attempts satisfy
the detailed balance condition P (A)Pgen(A → B)Pacc(A →
B) = P (B)Pgen(B → A)Pacc(B → A). The product proba-
bility distribution P (A) = ρ(x1)ρ(x2) · · · ρ(xM ) is stationary
with respect to the swap attempts. We now specify four choices
[(NN)a , (NN)b, (NN)c, and (NN)d ] for the ordering of the
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NN proposals that will be tested in Sec. III. In (NN)a , a
random permutation (say, j1, . . . ,jM−1) is generated, from
the set i = 1, . . . ,M − 1, and this permutation is used in
an exchange swap cycle of M − 1 proposals. Thus, swap
moves are organized in cycles of M − 1 proposals, and as
explained in the next section, such a swap cycle may be
used in defining the unit of time of an elementary PT step.
In (NN)b, the lowest temperature index (i) is randomly chosen
from the set i = 1, . . . ,M − 1 and thus multiple exchanges
of the same pair are allowed in the swap cycle. In (NN)c, the
sequence of proposals is fully deterministic, consisting of two
swap subcycles, starting from the odd proposals i = 1,3, . . .,
in increasing order, and continuing with the even proposals
i = 2,4, . . . . Finally, in (NN)d , the odd and even subsequences
are randomly permuted before starting the odd and following
with the even swap subcycles.

Next, we consider PT protocols using APE meth-
ods, in which adjacent or nonadjacent replicas may
be exchanged (xi ↔ xj ). In these methods the num-
ber of possible proposals (A → B) is M(M − 1)/2,
A = {x1,x2, . . . ,xi, . . . ,xj , . . . ,xM} and B = {x1,x2, . . . ,

xj , . . . ,xi, . . . ,xM}. In the simplest case, for each proposal a
pair (xi,xj ) is randomly chosen from the set of all M(M − 1)/2
different pairs. Thus, the generation of exchange attempts
proceeds with equal probabilities, Pgen(A → B) = Pgen(B →
A) = 1/[M(M − 1)/2], and if the acceptance-rejection rule
follows the Metropolis form, with an acceptance rate p(xi ↔
xj ), then the swap attempts satisfy the detailed balance
condition. This simple APE method will be included in our
tests and is denoted, in the following, as APEM , whereas the
method of Brenner et al. [44] will be denoted by APEB . As
pointed out in the Introduction, methods attempting remote
exchange moves have been also tried in constructing PT
protocols [42] and will be included in our tests in Sec. III.
Remote exchanges may be thought of as replacing several
adjacent swaps to a single move. However, the APEM method
suffers very small acceptance rates, and no significant increase
in the sampling efficiency of the protocols should be expected.

Finally, we discuss the so-called kinetic MC methods and
present details of the APE methods proposed by Calvo [43]
and Brenner et al. [44]. In statistical physics, particularly in
simulation studies of Ising models, the kinetic MC method
is better known as the n-fold-way algorithm or BKL algo-
rithm [1,46–48]. In describing this algorithm, we shall follow
the original Ref. [46] and borrow from the terminology in
Sec. 2.4 of Ref. [1]. In the traditional MC simulation (for
instance the Metropolis algorithm) we use an acceptance-
rejection rule in every MC attempt, and the system may stay
in the same state for some time �t . In a kinetic MC algorithm,
we force the system to select a new state, but we also introduce
a time step which corresponds to a varying length (stochastic
variable), depending on how long we expect the system to
remain in its current state before moving to a new one in
the traditional MC method [1]. The averaging process for
any observable becomes a time average and the values of
the observable are weighted by the corresponding time steps
(divided, at the end of the measuring process, by the total
time), while the total time variable t is incremented by �t .
The selection of a new state assumes an appropriate set of
probabilities and proceeds as follows: Let the current state of

the system be μ and denote by rj ≡ r(μ → ν) the acceptance
rates (acceptance probabilities) for all possible K transitions
(j = 1,2, . . . ,K) to new states from the current state. Draw
a random number 0 < R � 1 and select the new state ν,
corresponding to transition i, if Zi−1 < RZK � Zi , where
Zm = ∑m

j=1 rj . With the help of the cumulative function
Zm, the new state ν is selected with probability Pi = ri/ZK ,
proportional to the acceptance probability r(μ → ν). The Pj

are the selection probabilities of the kinetic MC algorithm. The
time intervals �t have to be recalculated at each step. They
can be obtained as average lifetimes [47], from the values of
r(μ → ν), and �t ∝ ZK

−1 [1,46–48]. Note also that, in an
equivalent way, the selection of a new state i can proceed
with the condition stated in terms of a cumulative function
Qm obtained from the selection probabilities. In this case, the
condition reads as Qi−1 < R � Qi , where Qm = ∑m

j=1 Pj .
These are the main ingredients of the kinetic MC algorithm.

In some cases, the set of all transitions can be classified into
a small number of n classes (n-fold-way algorithm) and the
method becomes very efficient, but in general the recalculation
of all transition probabilities in each step is the obvious
drawback of the method. In Ref. [46], the n-fold-way algorithm
is described in detail for the square lattice Ising model
[periodic boundary conditions (PBCs)] in a nonzero field,
using the n = 10 different classes, corresponding to the energy
changes under a spin flip. For the zero-field square lattice
(with N sites and PBCs) Ising model, n = 5 classes cover
the spin-flip energy changes �Ej = 8 − 4(j − 1), where the
index numbering the classes is j = 5 − z and z = 4,3,2,1,0 is
the number of nearest neighbor spins having the same sign as
the spin to be flipped [46–48]. In this case, the statistical weight
for the selection of a class is the sum of the acceptance rates
of all spins in the class and takes the form rcl

j = NjAj , where
Nj are the current populations of spins (

∑
j Nj = N ) and

Aj = min[1, exp(−β�Ej )] is the corresponding (Metropolis)
acceptance rate of any spin in the class. The class selection
proceeds as outlined above, using the cumulative function
Zm = ∑m

j=1 rcl
j and the average lifetimes are given by �t =

NZn
−1 [47]. The spin to be flipped is then chosen randomly

from the selected class and the spin flip is enforced. This is
a simple and efficient n-fold-way algorithm, a kinetic MC
reorganization of the original Metropolis algorithm [46], with
transitions that follow detailed balance. The method has been
used successfully to simulate thermodynamic equilibrium of
various types of Ising-like models, using, as mentioned earlier,
an appropriate time averaging process. This version of an
n-fold-way algorithm is implemented as a local algorithm in
Sec. III for the square lattice Ising model and in Sec. IV for
the 3D (cubic) spin-glass model (n = 7).

The APE method proposed by Calvo [43] is an attempt to
adjust the above ideas of the kinetic MC to the PT swapping
procedure. Following the terminology of Brenner et al. [44],
let � denote the set of all macrostates (replica configurations)
B = {x1,x2, . . . ,xj , . . . ,xi, . . . ,xM−1,xM} reachable from the
current macrostate A = {x1,x2, . . . ,xi, . . . ,xj , . . . ,xM−1,xM}
by an adjacent or nonadjacent pair exchange (xi ↔ xj ). This
set describes all possible transitions A → B to a new state in
a kinetic MC scheme. Yet Calvo also includes the possibility
of not performing any exchange (event j = 0) to which the
acceptance probability Pacc(A → A) = 1 is attributed [43].

013312-4



COMPARATIVE STUDY OF SELECTED PARALLEL . . . PHYSICAL REVIEW E 88, 013312 (2013)

Thus, the PT swapping procedure of Calvo [43] involves,
besides the K = M(M − 1)/2 transitions to new states of the
form A → B �= A (j = 1,2, . . . ,K), also the event A → A

(j = 0). This is an unconventional use of the kinetic MC
method and the selection probabilities of the events are given
by [43,44]

Pj = Pacc(A → C)/

[
1 +

∑
M∈�

Pacc(A → M)

]
, (4)

where C is A or B. The event i is selected, and is enforced,
from the set of j = 0,1,2, . . . ,K , using the cumulative
function Qm obtained from the selection probabilities. The
condition is Qi−1 < R � Qi , where Qm = ∑m

j=1 Pj . As
pointed out by Calvo [43], the attribution of a residence
time (average lifetime) is inconvenient in PT schemes and
has been replaced in his method by including the rejection
j = 0 event. However, this is not a self-consistent use
of the kinetic MC method for estimating thermodynamic
equilibrium. Therefore, Calvo [43] suggests that the exchange
moves (enforced without the use of time weights) could be
considered as extra moves that are not directly involved in the
averaging process. In a subsequent paper, Brenner et al. [44]
pointed out a further inconsistency of the method. The set
of macrostates � reachable from A is not, in general, the
same as the set of macrostates � reachable from B. Thus, the
generation probability [inverse of the denominator in Eq. (4)]
Pgen(A → B) = [1 + ∑

M∈� Pacc(A → M)]−1 for the transi-
tion A → B, will in general be different from the genera-
tion probability Pgen(B → A) = [1 + ∑

L∈� Pacc(B → L)]−1

for the transition B → A. As a consequence the de-
tailed balance condition P (A)Pgen(A → B)Pacc(A → B) =
P (B)Pgen(B → A)Pacc(B → A) is not met.

In order to overcome this inconsistency, Brenner et al. [44]
proposed a revision of the above method. The generation
probabilities are now replaced by [44]

Pgen(A → B)

= 1

/
max

{∑
M∈�

Pacc(A → M),
∑
L∈�

Pacc(B → L)

}
(5)

and the event generation probabilities satisfy now the desired
relation Pgen(A → B) = Pgen(B → A) [44]. This condition
makes the scheme consistent with detailed balance, in contrast
with the method originally proposed by Calvo [43]. The PT
swapping procedure of Brenner et al. [44] involves explicitly
only the K = M(M − 1)/2 transitions of the form A → B �=
A (i = 1,2, . . . ,K) and the selection probabilities for the
kinetic MC method are given by

Pj = Pacc(A → B)Pgen(A → B), (6)

where Pacc(A → B) is the corresponding PT acceptance rate
p(xi ↔ xj ), as specified in Eq. (2), and Pgen(A → B) is given
by Eq. (5). The selection of the state (macrostate) from the set
of j = 1,2, . . . ,K states proceeds again, using the cumulative
function Qm obtained from the selection probabilities. The
condition is Qi−1 < R � Qi , where Qm = ∑m

j=1 Pj . The
algorithm of Brenner et al. [44] does not include explicitly,
in the set of selection probabilities, the possibility of not
performing any exchange. However, this may happen in the

direction of the less favorable Boltzmann exchange [44], since
Pgen is a maximum and thus in some cases QK = ∑

i Pi < 1.
In such cases, no new state is selected from the condition
Qi−1 < R � Qi , where Qm = ∑m

j=1 Pj if R > QK . But
again, the method proposed by Brenner et al. [44] does not
use any time weights (residence times or average lifetimes) for
the MC averaging process, as is usually done in a kinetic MC
algorithm when it is used for the estimation of thermodynamic
equilibrium properties. This is a common problem of the above
methods, and it may be crucial for the estimation of any
observable in thermodynamic equilibrium. The accuracy of
the resulting PT protocols has not been tested before and it
cannot be guessed beforehand.

We will examine this last APE method in combination with
several local algorithms, including the Metropolis, the n-fold
way, and the cluster Wolff algorithm. As mentioned earlier, we
shall use the notation APEB to refer to the described all-pair
exchange method of Brenner et al. [44] and the notation APEM

for the simple APE method using for the swap probabilities the
acceptance-rejection rule of Metropolis form given in Eq. (2).
The APE method proposed by Calvo [43] will not be included
in the presentation of our tests, and we mention here only that,
as we have verified, this method is slightly inferior to the APE
method of Brenner et al. [44]. A further obvious drawback
of the Brenner et al. [44] method is the costly recalculation
of all generation probabilities in each exchange step for the
application of Eqs. (5) and (6). Note that, before selecting a
particular swap event in the kinetic MC method of Brenner
et al. [44], all proposals A → B are considered and for each
of them both sums in the denominator of Eq. (5) are calculated
from the known acceptance rates. For this reason, the APEB PT
protocol needs considerable more CPU time. This additional
time can be reduced by observing that the APEB protocol does
not create distant exchanges with significant probability. More
details are provided in the discussions of Sec. III.

C. The elementary parallel tempering step
and the local algorithms

We now define a PT step (PTS) as the elementary MC
step used for the recording (measuring or averaging) process
during an independent MC run. A PTS may consist of one or
several swap cycles of M − 1 replica exchange proposals, and
we use this definition also in the case of the APE method, so
that our unit is the same for all protocols to be tested. After
each exchange attempt of the swap cycle, all replicas attempt
a number of local moves (spin flips or cluster moves) at their
respective temperatures. The number of these local moves is
in general chosen to depend on the temperature and is denoted
by n(Ti). The total number of local moves at any temperature
of the PT protocol (T ), in a swap cycle, is Nlocal(T ) = (M −
1)n(T ). The swap cycle is thus the above described mixture of
standard MC and replica exchange attempts. Without loss of
generality, we define the PTS to be just one such swap cycle,
and we differentiate between various protocols by varying the
number of local moves. It is convenient to set also Nlocal(T ) =
f (T )τ (T )N , where N = LD is the number of lattice sites,
τ (T ) are the canonical correlation times, and f (T ) are factors
that facilitate the adaption of the numbers of local moves n(T )
in a style depending on the application and/or the behavior
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of the system. Nlocal(T ) = N corresponds to the usual lattice
sweep.

The above defines our MC unit for the recording pro-
cess. We note that no recording is attempted during a first
disregarded or equilibration part of the simulation, and an
adequate number of PTSs, teq, is used for this part. Then we
use a large number tav of PTSs for the recording or averaging
part of the simulation. For the local standard MC moves,
the Metropolis algorithm, the n-fold-way algorithm, and the
cluster Wolff algorithm will be implemented. Furthermore, a
large number Nr of independent MC runs is used in our tests.
This repetition makes more reliable the measures of accuracy
and efficiency illustrated in our tests. It is also desirable to
use approximately the same CPU time for the different PT
schemes that are compared. In this way, we hope to obtain
an objective assessment of their behavior. Since the local
algorithms obey different time complexities, we will adapt
the parameters Nlocal(T ), teq, tav, and Nr in a way that makes
the algorithms (almost) equivalent in CPU time.

III. ERROR AND EFFICIENCY MEASURES: TESTS
ON THE 2D ISING MODEL

In this section we present tests, carried out by using the L =
50 square ferromagnetic Ising system with PBCs. A variety of
PT protocols will be implemented, obtained by combining
features mentioned in the previous sections. Using the exact
DOS [54], we calculate the values of the specific heat at the PT
protocol temperatures and define the following error measures:

ε(Ti) = [Cexact(Ti) − CPT(Ti)]/Cexact(Ti), (7)

ε̄ =
M∑
i=1

ε(Ti)/M, (8)

ε̂ =
M∑
i=1

|ε(Ti)|/M, (9)

ε∗ = max[|ε(Ti)|], (10)

Our first test concerns the NN PT protocols and in particular
the four cases (NN)a , (NN)b, (NN)c, and (NN)d described in
Sec. II B. In Fig. 1, we illustrate their errors ε(Ti), and on
the legend (in parentheses) we give the corresponding error
measures, namely, ε̄, ε̂, and ε∗, as defined above. In each of
the presented cases, we have used Nr = 200 independent MC
runs with teq = 3N , tav = 15N , and Nlocal(T ) = N and the
Metropolis algorithm for the local moves. It is evident from
the excellent accuracy obtained in all cases that there is not
any noticeable and statistically significant difference between
the four choices; rather it appears that they all obey a good
mixing of the exchange attempts in the long run. Therefore,
hereafter we will use only the (NN)a PT protocol and vary the
other ingredients of the schemes.

We now attempt to observe whether the two selections of
temperature produce any significant difference. Also, we test
the NN against the APE protocols. In Fig. 2, we illustrate
the error behavior of two NN and two APE protocols using
both the CEI and CAE selections as indicated in the legend.
The details of the illustrated PT schemes [Nr,teq,tav,Nlocal(T )],
are the same as the ones specified above. The NN protocols

FIG. 1. (Color online) Specific heat errors for the nearest neigh-
bor (NN) PT protocols. The CEI selection of temperatures, as given
in Table I, has been used. The error measures, given in parentheses
in the legend, are respectively ε̄, ε̂, and ε∗.

perform excellently when compared with the APE protocols.
The CAE and CEI selections give comparable accuracy. The
APEB protocol suffers very large errors in the specific heat
that are more pronounced close to the specific heat maximum.
Apparently, this erratic behavior is a reflection of the problem
mentioned earlier. The APEB method does not use any time
weights for the MC averaging process, and therefore is,
in general, unreliable for the estimation of thermodynamic
equilibrium properties. On the other hand, the APEM protocol,
which is a standard PT protocol attempting also distant
(Metropolis) exchanges, shows a good error behavior. We
should also point out here that the APEB runs need almost
double CPU time, due to the calculations needed for the
application of Eqs. (5) and (6). However, this additional time
can be greatly reduced by observing that the APEB protocol

FIG. 2. (Color online) Specific heat errors for four different PT
protocols. The first two use the nearest neighbor protocol (NN)a ,
while the last two use the all-pair exchange protocols of Brenner
et al. [44] and Metropolis (Sec. II B). The method for the selection
of temperatures and the resulting error measures are indicated in the
notation in the legend.

013312-6



COMPARATIVE STUDY OF SELECTED PARALLEL . . . PHYSICAL REVIEW E 88, 013312 (2013)

FIG. 3. (Color online) Diffusion behavior of the PT protocols.
The diffusion fraction nup(Ti)/[nup(Ti) + ndown(Ti)], as defined in
the text, for the four PT protocols of Fig. 2.

does not create distant exchanges with significant probability,
and thus can be restricted to significant exchanges only.

In order to observe the diffusion behavior of the PT
protocols, we define for each temperature Ti the fraction
of replicas which have visited one of the two extremal
temperatures most recently. In our implementations we assign
labels up or down to each replica if its most recent visit to one
of the two extremal temperatures is to TM or T1, respectively.
The label of an up replica remains unchanged if the replica
returns to TM , but changes to down upon its first visit to T1.
Similarly, the label of a down replica remains unchanged if
the replica returns to T1, but changes to up upon its first visit
to TM . For each temperature Ti , we record histograms nup(Ti)
and ndown(Ti), which are incremented by 1 after a swap attempt
involving an up or down replica at Ti respectively.

The diffusion fraction nup(Ti)/[nup(Ti) + ndown(Ti)] is
illustrated in Fig. 3, for the PT protocols of Fig. 2. Apparently,
the same definition has been used in Ref. [40] and a similar
one (with up replaced by down and vice versa) in Ref. [53].
All four cases in Fig. 3 show very similar diffusion behavior
with a sharp decline close to the critical point (specific heat
maximum). Thus, a significant increase of efficiency of kinetic
MC methods [43,44] that attempt to enforce remote exchanges
is not verified from the illustrated diffusion behavior. Figure 3
also illustrates the similarity in the diffusion behavior between
the two selection methods. The larger concentration of replicas
of the CEI method, close to the maximum specific heat point,
does not produce any significant difference in the diffusion
behavior of the protocol. We observe again comparable perfor-
mance for the CAE and CEI selection rules. This observation,
may be related to the finding of Ref. [55] (see Fig. 1, and the
related discussion in Sec. V). Namely, moderate variations in
the acceptance rate (r) do not produce significant changes in
the efficiency of PT protocols, provided the acceptance rates
remain in the range of optimum performance.

Our next test, illustrated in Fig. 4, verifies the important
observation by Bittner et al. [40]. By varying the numbers
of local moves, in accordance with the canonical correlation
times, we observe strong changes induced in the behavior

FIG. 4. (Color online) Changes induced in the behavior of the
diffusion fraction by varying the numbers of local moves in accor-
dance with the canonical correlation times, as proposed by Bittner
et al. [40]. The three protocols use the CEI selection and correspond
to Nlocal(T ) = N , Nlocal(T ) = 0.25τ (T )N , and Nlocal(T ) = τ (T )N .
The corresponding numbers of independent MC runs are Nr = 200,
80, and 20 as indicated in the notation in the legend.

of the diffusion fraction. The three protocols illustrated
use the CEI selection with teq = 3N and tav = 15N , and
correspond to Nlocal(T ) = N , Nlocal(T ) = 0.25τ (T )N and
Nlocal(T ) = τ (T )N . The numbers of independent MC runs
are Nr = 200, 80, and 20 as indicated in the notation in this
figure ([CEI200,(NN)a], [CEI80,(NN)a], and [CEI20,(NN)a],
respectively), and thus in total the schemes require approxi-
mately the same CPU time (from Table I, the mean of the
correlation times is approximately 10). Furthermore, in Fig. 5
we reproduce the [CEI200,(NN)a] and [CEI20,(NN)a] cases
of the previous figure with the corresponding CAE protocols.
This comparison supplements the crucial observation that the
key ingredient, improving the efficiency of the protocols, is
the proper choice of the number of local moves.

FIG. 5. (Color online) The first two CEI protocols are the same as
those illustrated in Fig. 4, while the other two are the corresponding
CAE protocols.

013312-7



A. MALAKIS AND T. PAPAKONSTANTINOU PHYSICAL REVIEW E 88, 013312 (2013)

FIG. 6. (Color online) Illustration of the efficiency of the PT
protocols using the measures defined in Eq. (11). The four protocols
of the main panel use Nlocal(T ) = N , while the three PT protocols in
the inset use Nlocal(T ) = τ (T )N .

An alternative way to measure the efficiency of the PT
protocols is to observe global aspects of the statistics of
the numbers of exchange attempts required to transfer any
replica from the highest (lowest) temperature to the lowest
(highest) [44]. Let uj (dj ) denote the average numbers of
exchange attempts required for the corresponding transfer,
averaged over the PTSs of a long independent run j (j =
1,2, . . . ,Nr ) and over the M different replicas of the protocol.
These quantities are strongly fluctuating in the ensemble of
Nr independent runs and it is more convenient to illustrate the
behavior of the running averages of their combination

[(u + d)/2]k =
k∑

j=1

[(uj + dj )/2]/k, (11)

where k = 1,2, . . . ,Nr , and we will also refer to the ratio of
their running averages [u]k/[d]k .

Figure 6 provides a clear illustration of the efficiency of
the PT protocols. We observe the strong influence of the
numbers of local moves on the efficiency measure defined
in Eq. (11). This verifies again that the choice of the number of
local moves, related to the canonical correlation times, is the
decisive ingredient of all PT protocols for increasing efficiency.
Thus, our tests support the proposal made earlier by Bittner
et al. [40] and also show that the influence of the selection
method is of minor importance. Furthermore, the influence
of the APEB method on the efficiency is also marginal, and
we should keep in mind that this method suffers from larger
specific heat errors, as illustrated in Fig. 2. The ratio of the
corresponding running averages [u]k/[d]k is not equal to 1, but
depends on several details of the protocols and in particular on
the selection of the highest and lowest temperatures. Although
it appears that the efficiency is higher when this ratio is close
to 1, the differences between the protocols using the same
numbers of local moves are rather small.

The above findings raise questions regarding the importance
of introducing cluster algorithms for the local moves in the PT
schemes, since, as is well known, cluster algorithms have very

FIG. 7. (Color online) Specific heat errors for the PT protocols
shown in the legend and discussed in more detail in the text. The
CAE selection of temperatures, as given in Table I, has been used in
all four cases.

small dynamical exponents. Therefore, it should be expected
that the implementation of such algorithms, for the local
moves, will increase the efficiency of the protocols. Naturally,
we now consider schemes that use for the local moves two
further alternatives, besides the Metropolis algorithm. These
two alternatives are (i) the Wolff cluster algorithm (denoted
in the figures as W), which is known for its small dynamical
exponent, and (ii) the one-spin-flip algorithm known as the
n-fold way or BKL algorithm (denoted in the figures as BKL)
described in Sec. II B.

In order to simplify our presentation, we consider now
only the CAE selection method and we omit the initials
CAE from our notation. Thus, the protocols of interest are
now denoted by [BKL,(NN)a], [BKL,APEB], [W,(NN)a],
and [W,APEB], corresponding to NN exchange and the APE
method of Brenner et al. [44]. Their behavior is illustrated in
the following three figures.

In particular, Fig. 7 illustrates the specific heat error
behavior of these four PT protocols. Comparing the two
APEB protocols of Fig. 7 with the APEB protocols of Fig. 2
which use a local Metropolis algorithm, we observe clear
improvements in the behavior of the illustrated error measures.
The improvement is substantial in the case of the [W,APEB]
protocol and moderate in the case of the [BKL,APEB]
protocol. In order to appreciate these improvements we specify
the rest of the details of the protocols. The number of
independent MC runs is again Nr = 200 in all four cases.
For the [BKL,(NN)a] and [BKL,APEB] protocols we use
again teq = 3N , tav = 15N , and Nlocal(T ) = (M − 1)n(T ) =
0.216N , which corresponds to n(T ) = 30 BKL spin flips be-
fore each swap move. This choice makes the time requirement
of the BKL protocols approximately equivalent to that for
the corresponding Metropolis protocols. As mentioned earlier,
the APEB PT protocol requires more time, due to the extra
calculations needed for the application of Eqs. (5) and (6),
before each swap move. Yet we can achieve approximately
the same time requirements for this protocol, by restricting the
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FIG. 8. (Color online) Illustration of the diffusion fraction for
the PT protocols shown in the legend. Again, the CAE selection of
temperatures, as given in Table I, has been used in all four cases.

possible remote exchanges up to fourth order. We note that the
sum of probabilities of orders 5, 6, 7, and 8 is only 0.074%
and the higher orders never occur. The probabilities of the
first four orders of exchanges are 71.01%, 23.17%, 5.03%,
and 0.72% for first-, second-, third-, and fourth-neighbor
exchanges, respectively. The error behavior and the efficiency
of the protocol are very weakly influenced by this restriction,
and thus it is more reasonable to use this restriction than to use
small parameters for the APEB protocols. In the cases using
the Wolff algorithm for the local moves, we have used teq =
3N/50, tav = N , and Nlocal(T ) = (M − 1)n(T ) = 0.0216N ,
which corresponds now to n(T ) = 3 Wolff cluster flips before
each exchange attempt. The above adjustments for the Wolff
PT protocols are essentially reflecting the small dynamical
exponent of the Wolff algorithm, in an attempt to construct a
protocol having approximately the same time requirements as
the Metropolis PT protocols.

Figure 8 illustrates the behavior of the diffusion fraction of
the four protocols. One can now observe that while the BKL
cases behave very similarly to the Metropolis case shown
in Fig. 3, the Wolff cases show a behavior resembling the
Metropolis protocols using numbers of local moves analogous
to the canonical correlation times of Figs. 4 and 5. In fact
the changes induced in the behavior of the diffusion fraction
are now more spectacular. Furthermore, Fig. 9 provides a
demonstration that the combination of the APEB exchange
method with a local Wolff algorithm is now the best choice for
increasing the efficiency of the PT scheme. Since the numbers
of PTSs used, tav, are different for the BKL and Wolff protocols
we have plotted in Fig. 9 the running averages of the quantity
(M − 1)tav/[u + d]k . This defines the mean number of round
trips of a replica during one independent run and is larger for
the most efficient protocol, which is now clearly the [W,APEB]
PT scheme.

Thus, taking also into account the observation that the
implementation of the Wolff algorithm removes the problem
with the large specific heat errors, we may declare here that,
under some conditions, the APEB PT method may provide
a respectable and efficient PT protocol. This appears as a

FIG. 9. (Color online) Running averages of the quantity (M −
1)tav/[u + d]k , which is the mean number of round trips of a replica
during one independent run. The larger running averages of these
numbers correspond to the most efficient protocol which is now
definitely the [W,APEB ] PT scheme.

justification of the suggestion of Calvo [43]: the exchange
moves could be considered as extra moves that are not
directly involved in the averaging process. An explanation for
the generally large specific heat errors of the APE schemes
may be sought in problems coming from the omission of
appropriate residence times and possible strong disturbances
caused by remote exchanges enforced by the APE exchange
methods. Apparently, these seem to be cured by the very
fast restoration of equilibrium that takes place after the Wolff
local moves. On the other hand, the moderate improvement of
the [BKL,APEB] protocol, compared with the corresponding
[M,APEB] in Fig. 2, may be due to the use, at the local level,
of appropriate average lifetimes, as is usually done in a BKL
implementation [1,46–48]. The above observations provide
clues for improving the all-pair exchange methods, such as
those proposed by Calvo [43] and Brenner et al. [44]. Our
tests on the Ising model illustrate some of the merits and
weaknesses of these schemes. Of course, the real power of
all PT methods should be checked in rare-event problems
in which the performance of conventional MC methods can
become unreliable.

IV. GROUND STATES OF 3D SPIN-GLASS MODELS

We proceed to test the efficiency of PT protocols for the
production of ground states (GSs) in 3D spin-glass models.
It is well known that finding the GS of a spin-glass system
in D = 3 is an NP-complete problem [57,58] and there exist
a large number of heuristic algorithms developed in order to
tackle this outstanding problem [58–62]. In a recent paper,
Roma et al. [37] have concluded that PT is comparable to
the performance of the more powerful heuristics. In particular,
they have concentrated on the estimation of the minimum
number of PTSs needed to achieve a true GS with a given
probability. In their study they considered the Edwards-
Anderson model in 2D and 3D with bimodal and Gaussian
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bond disorder. We will consider the 3D EAB model [10,12]
and an anisotropic 3D EAB model.

We will first discuss, in Sec. IV A, the standard (isotropic)
3D EAB model and observe the relative performance of
some of the presented PT protocols. Then, in Sec. IV B, we
shall consider a variant of this model, with spatially uniaxial
anisotropic exchange interactions. This model has been studied
recently [63], and its phase diagram has been estimated. For
this case we will provide results for its finite-size behavior
of the GS energy, comparing our estimates with the isotropic
case. The anisotropic spin-glass model [63,64], is defined by
the Hamiltonian

H = −
∑

u

∑
〈ij〉u

J u
ij sisj , (12)

where the exchange interactions are uncorrelated quenched
random variables, taking the values ±J xy on the xy planes
and the values ±J z on the z axis. The bimodal distribution of
J u

ij takes the general form

P
(
J u

ij

) = puδ
(
J u

ij + J u
) + (1 − pu)δ

(
J u

ij − J u
)
, (13)

where u denotes the z axis (u = z) or the xy planes (u = xy),
J u denotes the corresponding exchange interaction strength,
and pu are the probabilities of two neighboring spins (ij )
having antiferromagnetic interaction. The standard isotropic
EAB model corresponds to J z = J xy = J (=1) and pz = pxy .
In the following we consider the production of GSs for
the isotropic (pz = pxy = 0.5) and anisotropic (pz = 0,pxy =
0.5) cases.

A. Ground states of the 3D EAB model: Further
tests of PT protocols

In this section, we consider the standard isotropic 3D
EAB model on a cubic lattice of linear size L = 6. For
this model, Roma et al. [37] have addressed the question
of whether it is more efficient, in order to find a true GS,
to use large running times or several independent runs (tav

and Nr in our notation) for each realization of the disorder,
called henceforth the sample. We note that, due to some
differences in defining the PTS, our notation is not identical

with that in Ref. [37], but the analogies are obvious and we
will also use Ns to denote the number of different samples.
The collapse example in Fig. 2(b) of Ref. [37] shows clearly
that increasing the number of PTSs (tav) has approximately
the same effect as an analogous increase in the number
of independent runs (Nr ) for each sample. Accordingly the
production of a true GS depends on the product Nrtav. Thus, in
what follows we demonstrate the performance of some of the
previous PT protocols, using Nr = 1000 and Nr = 100 for the
number of independent runs, and adjusting tav and the other
parameters of the protocols in a way that enabled us to compare
schemes requiring approximately the same CPU time. We will
implement single-spin-flip local algorithms, since an efficient
cluster algorithm for the production of GSs in the spin-glass
problem is not available. Primarily, we wish here to observe
the relative efficiency and dependence of the PT schemes on
the local algorithms, on the exchange method used, and also
on the selection method of temperatures for the PT process.
These issues distinguish our comparative approach from that
of Roma et al. [37], who concentrated mainly on estimating
the running times necessary for generating true GSs with a
given probability and not on differentiating among various PT
recipes, using different local and swap moves. However, their
estimated times have guided our tests, and also our study of
the GS energy of the mentioned anisotropic variant of the EAB
model, considered in the next section.

In Table II, we give the temperature sequences (T se-
quences) obtained by averaging the individual T sequences
over 50 samples of the 3D EAB model for a lattice size L = 6.
The individual T sequences were obtained using relatively
short runs, by the histogram method outlined in Sec. II A.
Sequences for two values of the acceptance rate r of the
CAE method, together with the corresponding CEI method
sequences, are shown. The T sequences displayed in Table II
correspond to the values r = 0.1 and r = 0.5, involving
M = 5 and M = 11 temperatures, respectively. Since each
sample has its own T sequences, the illustrated averaged T

sequences will be, in any case, only a rough approximation for
each sample. Thus, short PT runs, using an ad hoc reasonable
set of temperatures, were found to be adequate for each of
the 50 samples used to construct the table. Of course, one

TABLE II. Temperature sequences obtained by averaging over Ns = 50 samples the individual T sequences. The individual T sequences
are obtained by relatively short runs, as described in the text. Sequences for two values of the acceptance rate r of the CAE method, together
with the corresponding CEI method sequences, are shown.

CAE(r = 0.1) : M = 5 CEI: M = 5 CAE(r = 0.5) : M = 11 CEI: M = 11

T r T r T r T r

0.5000 0.097 0.5000 0.033 0.5000 0.481 0.5000 0.211
0.8868 0.103 1.0200 0.130 0.6893 0.486 0.7800 0.382
1.2269 0.112 1.3550 0.222 0.8934 0.498 0.9600 0.511
1.5940 0.105 1.6750 0.144 0.9746 0.498 1.1150 0.489
2.0235 2.0350 1.1137 0.501 1.2550 0.537

1.2553 0.516 1.3900 0.548
1.4018 0.501 1.5250 0.519
1.5560 0.507 1.6600 0.637
1.7191 0.510 1.8000 0.622
1.8973 0.498 1.9500 0.552
2.0950 2.1100
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TABLE III. Sample averages ([P ]) and minimum (Pmin) probabilities of generating a true GS for various PT protocols. In each case, the
notation indicates the implementation of the Metropolis (M) or the BKL algorithm for the local moves, and the implementation of the (NN)a
or the APEB method for the PT exchanges. Finally, we have indicated the employed T sequences (CAE or CEI selection method) and give in
the table the main parameters of the PT protocols.

CAE(r = 0.1) : M = 5 Nr n = Nlocal/(M − 1) teq tav [P ] Pmin

[CAE,M,(NN)a] 1000 54 108 216 0.8205 0.026
[CAE,M,APEB ] 1000 54 108 216 0.8302 0.024
[CAE,BKL,(NN)a] 1000 16 108 216 0.9324 0.035
[CAE,BKL,APEB ] 1000 16 108 216 0.9398 0.039

CAE(r = 0.1) : M = 5 Nr n = Nlocal/(M − 1) teq tav [P ] Pmin

[CAE,M,(NN)a] 100 54 108 2160 0.9769 0.05
[CAE,M,APEB ] 100 54 108 2160 0.9787 0.04
[CAE,BKL,(NN)a] 100 18 108 2160 0.9921 0.09
[CAE,BKL,APEB ] 100 18 108 2160 0.9929 0.11

CAE(r = 0.5) : M = 11 Nr n = Nlocal/(M − 1) teq tav [P ] Pmin

[CAE,M,(NN)a] 100 21 64 1271 0.9856 0.12
[CEI,M,(NN)a] 100 21 64 1271 0.9818 0.10
[CAE,BKL,(NN)a] 100 5 64 1271 0.9936 0.15
[CEI,BKL,(NN)a] 100 5 64 1271 0.9917 0.14
[CEI,BKL,APEB ] 100 5 64 1271 0.9930 0.15

can improve this approximation by increasing the PT running
times (tav) for recording the histograms (of energy and specific
heat), but this will produce nonsignificant changes in the
final averaged T sequences. However, some defects of this
short-time approximation can be observed in the fluctuation of
the exchange rate in the CEI method in the second part of the
table for the case r = 0.5.

We have used a set of Ns = 1000 samples, in order to test
the performance of several PT protocols. The local algorithms
used are the Metropolis (M) and the BKL (n-fold-way)
algorithms. The swap moves are carried out by the (NN)a
and the APEB methods. In Table III we summarize these tests
in three groups. The CAE T sequence of r = 0.1 with M = 5
temperatures has been used in the first and second group of
four schemes, while both the CAE and CEI T sequences,
corresponding to the case r = 0.5 and M = 11 temperatures,
have been used in the third group of five schemes. In an obvious
notation, in each case we give the abbreviation for the T se-
quence, then the acronym of the local algorithm, and finally the
method of PT exchange. Thus, [CAE,M,(NN)a] denotes the
PT protocol based on the CAE sequence, using the Metropolis
algorithm for the local moves and the (NN)a method for the
swap moves, while [CEI,BKL,APEB] denotes the PT protocol
based on the CEI sequence, using the BKL algorithm for the
local moves and the APEB method for the swap moves.

For a particular sample, a large number of independent PT
runs (Nr ) is carried out and some of these runs (nj ) successfully
find a true GS. Thus, Pj = nj/Nr is the probability of reaching
a GS for the j th sample. This probability will depend on the
details of the PT protocols, but is also strongly dependent on
the particular sample. It is well known that easy and hard
samples exist with very different behavior (see, for instance,
Fig. 15 of Ref. [37]), and one expects that in a large ensemble
of samples the hardest samples have the smallest Pj . The
minimum of this probability Pmin, in a given ensemble, will
therefore give us an indication of the performance of the PT

protocol for the hard samples, while the sample average [P ] =∑Ns

j=1 Pj/Ns reflects the average global performance of the
PT protocol. The introduction of these probabilities for the
production of true GSs enables us now to discuss the entries
of Table III and compare the PT schemes.

For each sample j of the set Ns = 1000 samples, used
for the construction of Table III, we denote the GS energy
per site u6,j , indicating also in the notation the lattice size
(L = 6). The sample average (u6) of the GS energy per
site, for the particular set of samples, was found to be
u6 = ∑Ns

j=1 u6,j /Ns = −1.770 26. This appears as an exact
result, for the chosen set of samples, since true GSs have been
found for all samples (with probability almost 1). To verify that
true GSs were found for each sample, we have used also runs
longer than those in Table III by a factor of 4. Note here that
according to Ref. [37], the probability of true GS production
for running time t = 2 × 105 is of order 0.999, and that the
recording times (Nrtav) used for Table III are of the same order.
Thus, using the longer runs and observing no difference in the
above estimate u6, we conclude that true GSs have been found
for all samples.

As mentioned earlier, in each of the three groups of
examples shown in Table III, care has been taken to adjust the
PT parameters in a way that corresponds to the same CPU time
within each group and reflects the different time requirements
of the protocols involving local BKL or Metropolis moves. The
CPU times of the second and third groups are approximately
the same while the CPU time of the first group is larger by a
factor 1.88, mainly because in the first group, the disregarded
equilibration part (teq) is comparable to the recording part (tav)
of the protocols. We note here that, in all our implementations,
the search for ground states and the rest of the recording
processes are carried out only in the recording part (tav) of
the runs. The fine adjustments of parameters needed in order
to achieve approximately the same CPU time in each group
were fixed by short preliminary runs.
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From Table III, we observe the superiority of the BKL
algorithm compared to the Metropolis algorithm for the local
moves. This is reflected, within each group, in the values of
the global sample-averaged probability [P ], and it is more
pronounced in the first group, where the averaged probability
is not very close to 1. The superiority of the BKL algorithm
is also reflected, within each group, in the values of the
minimum probabilities Pmin that concern the behavior of the
hardest samples. The superiority observed here is not a surprise
from an algorithmic point of view, since n-fold-way updates
have been the basis for previous attempts in searches for
GSs of spin glasses [58,59,65]. The all-pair exchange APEB

method improves rather marginally the production process of
GSs. Finally, comparing the CAE and CEI cases in the third
group, we notice that the results for the CAE T sequence
are slightly better than the corresponding results for the CEI
T sequence.

In the first and second groups of Table III only the results
corresponding to the CAE T sequence are shown. These
CAE results are again better than the corresponding results
for the CEI T sequence (not included in the table). The
requirement of an exchange rate r = 0.1 yields sequences with
only M = 5 temperatures. In this case, the lowest-temperature
exchange rate for the CEI method is too low (see Table II).
This could be the source of the superiority of the CAE
selection method. However, as illustrated in Table III, even
in the case of an exchange rate r = 0.5, the CAE results
are slightly better. Finally, comparing the probabilities of the
first group with the other two groups, one can see the strong
dependence of the sample-averaged probability [P ] on the
running times tav, as should be expected and as pointed out by
Roma et al. [37].

The main conclusion of this section is the observation
that, among several PT recipes tested, the PT protocol using
for the local moves the BKL algorithm and a T sequence
obtained by the CAE method is superior to the other tested
protocols. This conclusion was verified by more tests not
presented here for brevity. Furthermore, we have tried to
observe the effect of using larger numbers of local moves
on the probability measures Pmin and [P ]. In particular the run
[CAE,BKL,(NN)a], of the second group in Table III, was
repeated using the choices (n = 4 × 18; tav = 2160), (n =
2 × 18; tav = 2 × 2160), and (n = 18; tav = 4 × 2160). Note

that these cases are almost equivalent in CPU time. The result-
ing probabilities were ([P ] = 0.996; Pmin = 0.14), ([P ] =
0.997; Pmin = 0.07), and ([P ] = 0.997; Pmin = 0.18), re-
spectively. It appears that at this level of precision the increase
of the numbers of local moves is of minor importance for
the production of true GSs of the spin-glass system, or to
put it differently, it appears that the production of true GSs
depends only on the product ntav. At this point, one should
also appreciate that the increase of efficiency by the increase
of the numbers of local moves, indicated in previous sections,
is compensated by the fact that one can increase the above
probabilities by increasing also the number of independent
runs (Nr ) for each sample, as shown by Roma et al. [37].

Finally, we report here that using [CAE,BKL,(NN)a] of the
second group in Table III we have estimated the sample average
of the GS energy per site, for a larger set of Ns = 10 000
samples, to be u6 = ∑Ns

j=1 u6,j /Ns = −1.7711(6). This is
now comparable with the estimate u6 = −1.7714(3) given by
Roma et al. [37] for a sample set with the same number of
disorder realizations (Ns = 104).

B. Ground state energy of the anisotropic 3D EAB model

We now consider the finite-size behavior of the GS energy
of the anisotropic case (pz = 0,pxy = 0.5). As mentioned
earlier, the anisotropic model, pz = 0, pxy � 1

2 with J z =
J xy = J (=1), has been studied recently by the present authors,
and its phase diagram has been presented in some detail [63].
The irrelevance of the anisotropy for the ferromagnetic-
paramagnetic transition was established, and further signs
of universality concerning the other two kinds of transition,
ferromagnetic–spin-glass and spin-glass–paramagnetic, were
pointed out. Of particular interest, for our study here, is
the observation [63] that the phase diagram points of the
spin-glass–paramagnetic transition for the isotropic (pz =
pxy = 0.5) and the anisotropic (pz = 0, pxy = 0.5) cases are
very close or even coincide. However, such a coincidence is
a prediction which, although appealing, goes well beyond the
general universality question, and cannot be trusted before a
formal proof is provided. We will now present results that
indicate an analogous situation for the asymptotic limit of
the GS energy of these two cases, increasing the interest in a
possible equivalence in the asymptotic limit.

TABLE IV. PT parameters and GS energy per site of the 3D anisotropic EAB model. The last column is the difference of GS energies per
site between the isotropic, from Table B.3 of Ref. [37] and the present anisotropic case. All runs were carried out by the [CAE,BKL,(NN)a]
protocol using an initial value teq = 2N .

L (r; M) n = Nlocal/(M − 1) Ns tav uL(ani) uL − uL(ani)

3 (0.5;5) 2 5 × 105 2.7 × 102 −1.7642(3) 0.0925
4 (0.35;5) 4 105 6.4 × 102 −1.7703(3) 0.0328
5 (0.2;5) 9 105 1.25 × 103 −1.7733(3) 0.0122
6 (0.1;5) 216 2 × 104 3.24 × 103 −1.7762(3) 0.0048
7 (0.15;7) 17 6 × 103 3.43 × 104 −1.7786(3) 0.0014
8 (0.1;7) 102 104 4.2 × 104 −1.7803(3) 0.0003
9 (0.1;9) 27 2 × 103 1.2 × 106 −1.7825(3) 0.0001
10 (0.1;11) 120 2.5 × 103 1.2 × 106 −1.7830(2) 0.0000
12 (0.1;13) 43 102 107 −1.7850(8) 0.0001
14 (0.1;13) 68 102 1.4 × 107 −1.7862(8) 0.0004
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FIG. 10. (Color online) Finite-size behavior of GS energies per
site for the 3D EAB model and the present anisotropic model. In the
insets we show their difference, which as shown in the nested inset,
is much smaller than the estimated errors for L � 6.

Following the approach of [37], we produce here estimates
for the finite-size GS energy per site for the anisotropic model.
Our simulations cover the range of sizes L = 3–14 and we are
using the PT protocol [CAE,BKL,(NN)a], which is a simple
and efficient choice. In all runs, we choose Nr = 1, use a
short disregarded part (teq = 2N ), and vary the rest of the
PT parameters as shown in Table IV. In particular, the main
running times (tav) are almost comparable to those in Table B.3
of Ref. [37]. The temperature range used is approximately the
range T = 0.4–2.0 and the CAE T sequences were obtained
using the practice outlined in the previous section, with an
exchange rate and corresponding number of temperatures
indicated in the second column of Table IV. For some sizes
(L = 6, 8, and 10), the numbers of local moves were varied in
alternate runs, to test their effect on the estimated GS energies.
Our estimates of GS energies for the anisotropic model are
given in Table IV. Also, in the last column of the table, we give
the differences of GS energies per site between the isotropic
model (from Table B.3 of Ref. [37]) and the present anisotropic
model.

In Fig. 10, we show the finite-size behavior of the GS energy
per site for both isotropic and anisotropic 3D EAB models.
In the insets, their differences are illustrated. In particular, it
shown that their differences for L � 6 are much smaller than

the estimated errors. Therefore, the asymptotic limits of these
GS energies practically coincide. The two dashed lines in the
main panel indicate previous asymptotic estimations, namely,
u∞ = −1.7863(4) [60] and −1.7876(3) [61].

V. SUMMARY AND CONCLUSIONS

We reviewed several PT schemes and examined their
accuracy and efficiency. Our tests on the 2D Ising model
suggest that the two different methods of selecting the
temperature sequences (CAE and CEI) considered in this
paper produce results that are accurate and they are almost
equivalent in efficiency. The efficiency of PT protocols is
greatly increased by using numbers of local moves related to
the canonical correlation times, as proposed earlier by Bittner
et al. [40]. Accordingly, we found that PT protocols using a
Wolff algorithm for the local moves increase the efficiency
of the schemes. In particular an all-pair exchange method,
the APEB of Brenner et al. [44], when used with local Wolff
updates, has been found reasonably accurate and very efficient.
However, it was also found that, in general, APEB protocols
may show an unreliable behavior in estimating thermodynamic
equilibrium properties, such as the specific heat behavior
illustrated in Fig. 2. As argued, this may be related to an
improper implementation of the kinetic MC method, which
avoids the use of time weights for the MC averaging process.

We also considered the problem of GS production in the
3D EAB model, and we demonstrated the performance and
relative efficiency of several PT protocols. We found that PT
protocols based on the CAE T sequences appear to be slightly
better than those based on the corresponding CEI T sequences.
In all our tests, the superiority of the PT protocols involving
BKL (or n-fold-way) local updates was firmly established.
Finally, we presented evidence that the asymptotic limits of
the GS energy of the isotropic (pz = pxy = 0.5) and the
anisotropic (pz = 0,pxy = 0.5) EAB models are very close,
and possibly coincide. This seems relevant to an analogous
interesting behavior found recently for the finite-temperature
phase diagram points between spin-glass and paramagnetic
phases [63].
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Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-

Lorenzo, S. F. Schifano, B. Seoane, A. Tarancon, R. Tripiccione,
and D. Yllanes, J. Stat. Mech.: Theory Exp. (2010) P06026.

[40] E. Bittner, Andreas Nußbaumer, and W. Janke, Phys. Rev. Lett.
101, 130603 (2008).

[41] D. Sabo, M. Meuwly, D. L. Freeman, and J. D. Doll, J. Chem.
Phys. 128, 174109 (2008).

[42] J. P. Neirotti, F. Calvo, D. L. Freeman, and J. D. Doll, J. Chem.
Phys. 112, 10340 (2000).

[43] F. Calvo, J. Chem. Phys. 123, 124106 (2005).
[44] P. Brenner, C. R. Sweet, D. VonHandorf, and J. A. Izaguirre,

J. Chem. Phys. 126, 074103 (2007).
[45] R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987);

U. Wolff, ibid. 62, 361 (1989).
[46] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys.

17, 10 (1975).
[47] B. J. Schulz, K. Binder, and M. Muller, Int. J. Mod. Phys. C 13,

477 (2001).
[48] A. Malakis, S. S. Martinos, I. A. Hadjiagapiou, and A. S.

Peratzakis, Int. J. Mod. Phys. C 15, 729 (2004).
[49] N. Plattner, J. D. Doll, P. Dupuis, H. Wang, Y. Liu, and J. E.

Gubernatis, J. Chem. Phys. 135, 134111 (2011); 137, 204112
(2012).

[50] D. A. Kofke, J. Chem. Phys. 117, 6911 (2002); 120, 10852
(2004).

[51] C. Predescu, M. Predescu, and C. V. Ciobanu, J. Chem. Phys.
120, 4119 (2004).

[52] A. Kone and D. A. Kofke, J. Chem. Phys. 122, 206101 (2005).
[53] H. G. Katzgraber, S. Trebst, D. A. Huse, and M. Troyer, J. Stat.

Mech.: Theory Exp. (2006) P03018.
[54] P. D. Beale, Phys. Rev. Lett. 76, 78 (1996).
[55] C. Predescu, M. Predescu, and C. V. Ciobanu, J. Phys. Chem. B

105, 4189 (2005).
[56] E. Bittner and W. Janke, Phys. Rev. E 84, 036701 (2011).
[57] J. Houdayer and O. C. Martin, Phys. Rev. E 64, 056704 (2001).
[58] A. K. Hartmann, and H. Rieger, New Optimization Algorithms

in Physics (Wiley-VCH, Berlin, 2004).
[59] S. Boettcher and A. G. Percus, Phys. Rev. Lett. 86, 5211 (2001).
[60] K. F. Pal, Physica A 223, 283 (1996).
[61] A. K. Hartmann, Europhys. Lett. 40, 429 (1997).
[62] J. J. Moreno, H. G. Katzgraber, and A. K. Hartmann, Int. J. Mod.

Phys. C 14, 285 (2003); H. G. Katzgraber and A. P. Young, Phys.
Rev. B 67, 134410 (2003); H. G. Katzgraber, M. Körner, F. Liers,
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