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Recently, Velazquez and Curilef proposed a methodology to extend Monte Carlo algorithms based on a
canonical ensemble which aims to overcome slow sampling problems associated with temperature-driven
discontinuous phase transitions. We show in this work that Monte Carlo algorithms extended with this
methodology also exhibit a remarkable efficiency near a critical point. Our study is performed for the particular
case of a two-dimensional four-state Potts model on a square lattice with periodic boundary conditions. This
analysis reveals that the extended version of Metropolis importance sampling is more efficient than the usual
Swendsen-Wang and Wolff cluster algorithms. These results demonstrate the effectiveness of this methodology
to improve the efficiency of MC simulations of systems that undergo any type of temperature-driven phase
transition.
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I. INTRODUCTION

Many different algorithms have been proposed to overcome
slow sampling problems in large-scale Monte Carlo (MC)
simulations. Most of them are based on two types of strategies:
(1) the substitution of local MC moves by a simultaneous
update of a large number of degrees of freedom, the so-called
cluster MC methods [1–10], and (2) the use of histograms
to extract information from MC simulations combined with
reweighting techniques to improve the statistics, such as the
multicanonical method and its variants [11–15]. Cluster MC
methods are useful to overcome slow sampling problems
associated with a continuous phase transition (PT). However,
the application of nonlocal moves, by itself, does not help
so much in the presence of a discontinuous PT. For such
cases, the consideration of a reweighting technique as the
multicanonical method is more appropriate, which reduces the
size dependence of the decorrelation time from exponential to
a power-law behavior.

Not one of the above strategies seem to be sufficiently
general to overcome any type of sampling problem of MC
simulations. The success of cluster MC algorithms is not
universal because the proper cluster moves seem to be highly
dependent on the system. In fact, efficient cluster MC methods
have been found for only a reduced number of models
[1–10]. Multicanonical method and its variants have a general
applicability. However, the efficiency of these algorithms is
not so significant to justify their application to overcome slow
sampling problems associated with continuous PTs [14].

Recently, Velazquez and Curilef introduced a different
methodology to overcome slow sampling problems associated
with a temperature-driven discontinuous PT [16,17]. Their
proposal is based on the general equilibrium situation associ-
ated with the fluctuation relation [18,19]

C = β2〈δU 2〉 + C〈δβωδU 〉, (1)

which generalizes the canonical relation [20,21]

C = β2〈δU 2〉, (2)

between the heat capacity C and the energy fluctuations [22].
This relation describes the existence of a feedback perturbation
of the environment during its thermodynamic interaction with
the system. This mechanism is characterized by the correlation
function 〈δβωδU 〉 between the system internal energy U and
the environmental inverse temperature βω = 1/T ω. A relevant
feature of fluctuation relation (1) is its compatibility with the
existence of negative heat capacities C < 0 [23–25].

The consideration of the above arguments in MC simula-
tions enables a considerable reduction of the dependence of
the decorrelation times on system size N , from exponential
τ (N ) ∝ exp(γN ) to a very weak power-law behavior τ (N ) ∝
Nα [26]. For example, the dynamic critical exponent α ranges
from 0.14 to 0.2 in the case of two-dimensional (2D) 7- and
10-state Potts models regardless of if one employs local or non-
local MC moves [16,17]. Such an improvement is significantly
better than the one achieved by applying the multicanonical
method and its variants to the same model systems, whose
typical exponent α ranges from 2 to 2.5 [11,12]. We shall
show in this work that canonical MC algorithms extended
with this methodology also exhibit a good performance near
a critical point. This claim is illustrated for the particular case
of 2D four-state Potts model [14]. Our results evidence the
effectiveness of the present methodology to overcome slow
sampling problems associated with temperature-driven PT
regardless of its continuous or discontinuous character.

II. OVERVIEW OF METHODOLOGY

A. Theoretical background

The methodology reviewed in this section is based on the
consideration of generalized ensembles. Many generalized
ensembles that are employed in MC simulations have no
physical meaning, e.g., multicanonical ensemble [11–15].
However, this is not necessarily the case of the equilibrium
situation considered in Ref. [18] to derive fluctuation relation
(1): a closed system composed of two systems, A and B,
with finite heat capacities CA and CB , which are put in
thermal contact among them and isolated from any external
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influence. This situation can be implemented in a physical
laboratory with an acceptable accuracy. Moreover, this is the
arrangement considered in statistical mechanics to discuss
thermal equilibrium conditions [20,21]. Curiously, standard
textbooks of statistical mechanics never refer to implications
of equilibrium conditions concerning to states with negative
heat capacities [23–25]. For its own importance in this work,
let us start this section by clarifying this question. See Ref. [18]
for further details.

As usual, the total energy UT and entropy ST of the closed
system are assumed as additive quantities, UT = UA + UB and
S = SA + SB . Maximization of entropy ST at constant energy
UT demands the stationary condition,

∂ST

∂UA

= ∂SA

∂UA

− ∂SB

∂UB

= 0 ⇒ 1

TA

= 1

TB

(≡β), (3)

as well as the stability condition,

∂2ST

∂U 2
A

= ∂2SA

∂U 2
A

+ ∂2SB

∂U 2
B

< 0 ⇒ CACB

CA + CB

> 0. (4)

We have considered here the microcanonical expressions

1

Tα

= ∂Sα

∂Uα

and
∂2Sα

∂U 2
α

= − 1

T 2
α Cα

, (5)

with α = (A,B). Accordingly, systems A and B can be found
in thermal equilibrium if they exhibit the same temperature
and their heat capacities satisfy one of the following stability
conditions: (i) both systems exhibit positive heat capacities or
(ii) a system exhibits a negative heat capacity, e.g., CA < 0,
and the other a positive heat capacity CB > 0 that satisfies the
following inequality:

CB < |CA|. (6)

Condition (6) was obtained by Thirring almost 40 years
ago [27]. Accordingly, a system with a negative heat capacity
cannot be found in thermal equilibrium with an environment
that exhibits an infinite heat capacity, e.g., under thermody-
namic influence of the natural environment. In other words, a
canonical ensemble is unable to study systems with negative
heat capacities. However, these systems can be analyzed
considering the thermal contact with an environment that
exhibits a finite heat capacity. This conclusion is especially
relevant for MC simulations. An unexpected consequence
of the above analysis concerns the so-called zeroth law of
thermodynamics [28], which states that if two systems are
both in thermal equilibrium with a third system, then they are
in thermal equilibrium with each other. Although this law helps
to define the notion of temperature, its validity is restricted
to systems exhibiting positive heat capacities. Two identical
systems that are initially prepared in the same macroscopic
state cannot be in thermal equilibrium if such a macroscopic
state exhibits a negative heat capacity. It is noteworthy that
each system can remain in thermal equilibrium with a third
system exhibiting a positive heat capacity whenever it obeys
Thirring inequality (6). This violation of the zeroth law of
thermodynamics was recently discussed in the literature [29].

Let us now regard system B as an environment in order to
study thermodynamic properties of system A. Since the heat
capacity of this environment is finite, its temperature TB will be

affected by the energy interchange with system A. Considering
δTB = −δUA/CB ⇒ δβB = β2δUA/CA, one obtains from (1)
the following result:

CACB

CA + CB

= β2
〈
δU 2

A

〉
. (7)

Stability condition (4) is derived from the positivity of the
right-hand side of Eq. (7) but this time from a fluctuational
viewpoint. Relation (7) drops to canonical fluctuation relation
(2) in the limit CB → +∞, as well as the microcanonical
result 〈δU 2

A〉 → 0 when CB → 0+. Accordingly, this type
of equilibrium situation can be associated with a family
of generalized ensembles that contains microcanonical and
canonical ensembles as particular cases. As expected, the exact
mathematical form of each ensemble depends on system B
acting as the environment.

The phenomenon of negative heat capacity has been
regarded as an anomalous behavior. In particular, their ex-
istence is incompatible with results of classical fluctuation
theory [20,21], e.g., fluctuation relation (2). However, this
incompatibility arises because of the restricted applicability of
some conventional assumptions. Specifically, the macroscopic
state of the environment can be affected by influence of
the system under study. Such an environmental feedback
perturbation is systematically omitted when one employs
traditional ensembles, such as Boltzmann-Gibbs distributions
[20,21],

ωBG(U,X|T ,Y ) = 1

Z
exp[−β(U + XY )], (8)

where the environmental inverse temperature β = 1/T and
the external generalized forces Y (e.g., pressure p, magnetic
and electric fields H and E, etc.) are assumed as constant
control parameters for the energy U and the generalized
displacements X (e.g., volume V , magnetization M, and
electric polarization P, etc.). As expected, more general
equilibrium situations involve nonvanishing correlations such
as 〈δβδU 〉 or 〈δY δX〉. Fluctuation theorems associated with
these equilibrium situations provide a suitable treatment for
states with negative heat capacities as well as other anomalies
in response functions [30].

B. Application to MC simulations

The inclusion of a feedback effect 〈δβωδU 〉 to extend any
canonical MC algorithm is achieved replacing the constant
inverse temperature β of the canonical ensemble by an effective
inverse temperature βω(U ),

βω(U ) = − ∂

∂U
log ω(U ), (9)

which depends on the energy U of system under study. This
effective inverse temperature corresponds to an environmental
influence whose probability weight ω(U ) differs from the one
associated with canonical ensemble,

ω(U ) 	= ωc(U |β) = 1

Z(β)
exp(−βU ). (10)

This type of arguments were employed by Gerling and
Hüller to propose dynamic ensemble MC method [31]. These

013311-2



IMPROVING THE EFFICIENCY OF MONTE CARLO . . . PHYSICAL REVIEW E 88, 013311 (2013)

authors considered as environment an ideal gas with N degrees
of freedom. Analysis of detailed balance led them to introduce
an effective inverse temperature βω = (N − 2)/2Nkb. Here,
kb = (UT − U )/N is the mean kinetic energy per particle for
the ideal gas, while UT is the total energy. Effective inverse
temperature βω is adjusted dynamically during the course of
MC simulation. Data are then obtained by computing the mean
value of the energy 〈U 〉 and the mean value of the temperature
from 2〈kb〉. This method allows to detect the presence of states
with negative heat capacities whenever Thirring inequality (6)
is fulfilled.

Methodology proposed by Velazquez and Curilef in-
cludes three important modifications for dynamic ensemble
MC method of Gerling and Hüller [16,17]: (i) the consid-
eration of a more suitable generalized ensemble, (ii) the
employment of a point statistical estimation to obtain the
relevant microcanonical dependencies and reduce incidence
of finite-size effects, and, finally, (iii) the optimization of
efficiency considering a more active control on the system
fluctuating behavior. In the rest of this section, let us explain
these modifications in detail.

C. Gaussian ensemble and its implementation

Let us consider the power expansion of environmental
inverse temperature βω(U ) around the mean value of the energy
Ue = 〈U 〉,

βω(U ) = β +
∞∑

n=1

an(U − Ue)n. (11)

Assuming that energy fluctuations δU = U − Ue are suffi-
ciently small, power expansion (11) can be restricted to first-
order approximation, βω = β + λδU/N . Coupling constant
λ = Na1 is the control parameter in conjunction with the ex-
pectation value of inverse temperature β = 〈βω〉. Substituting
this ansatz into Eq. (1), one obtains the fluctuation relations

〈δU 2〉 = N

β2N/C + λ
and

〈
δβ2

ω

〉 = 1

N

λ2

β2N/C + λ
,

(12)
as well as the stability condition,

β2N/C + λ > 0. (13)

It is noteworthy that the size dependencies of the energy

U and inverse temperature 
βω dispersions (
x ≡

√
〈δx2〉)

behave as 
U ∝ √
N and 
βω ∝ 1/

√
N for a short-range

interacting system. As expected, the linear approximation
βω = β + λδU/N is good as long as the system size N be
sufficiently large. If coupling constant λ obeys the stability
condition (13), the statistical ensemble associated with the
present equilibrium situation becomes equivalent to the mi-
crocanonical ensemble in the thermodynamic limit,

lim
N→∞


U

U
= lim

N→∞

βω = 0, (14)

regardless of the positive or negative character of heat capacity
C of the system under study. The origin of the exponential de-
pendence with N of the decorrelation time in MC simulations
τ (N ) ∝ exp(γN ) is due to the multimodal character of the
energy distribution function within the canonical ensemble

[14]. Such a bimodal character of energy distributions is
associated with the existence of macrostates with negative
heat capacities. Since the ensemble equivalence ensures the
existence of only one peak, MC simulations based on the
present equilibrium situation cannot undergo this type of slow
sampling problem.

The equilibrium situation previously described is imple-
mented assuming a linear dependence of the environmental
inverse temperature on the system energy, βω(U ) = βs +
λs(U − Us)/N , with (Us,βs,λs) being three seed parameters,
where Us and βs are roughly estimates of the expectation
values 〈Uω〉 and 〈βω〉. According to Eq. (9), this choice
corresponds to the Gaussian ensemble [32,33],

ωG(U ) = 1

Zλ(βs)
exp

[
−βsU − 1

2N
λs(U − Us)

2

]
, (15)

with parameter λs � 0. The Gaussian ensemble describes
intermediate equilibrium situations between the usual thermal
contact (canonical ensemble) when λs → 0+ and energy iso-
lation (microcanonical ensemble) when λs → +∞. The bath
associated with this ensemble corresponds to a hypothetical
substance whose heat capacity decreases with temperature as
CB ∝ 1/T 2 [37] . Gaussian ensemble (15) provides several
advantages to improve canonical MC simulations. In particu-
lar, its mathematical form makes the analysis of the detailed
balance and the point statistical estimation easier.

Let Wc(Ui → Uj ; β) be the transition probability of a given
canonical MC algorithm, which satisfies the detailed balance
condition

Wc(Ui → Uj ; β)

Wc(Uj → Ui ; β)
= exp(−βδUij ), (16)

where δUij = Uj − Ui is energy change after transition. The
detailed balance condition corresponding to the Gaussian
ensemble (15) can be satisfied considering the following
transition probability W (Ui → Uj ):

W (Ui → Uj ) = Wc
(
Ui → Uj ; βt

ω

)
, (17)

where βt
ω = (βi

ω + β
j
ω)/2 is the transition inverse temperature

[17], with βi
ω and β

j
ω being the environmental inverse temper-

atures at the initial and the final configurations, respectively,
βi

ω = βω(Ui) and β
j
ω = βω(Uj ). This result follows from the

identity

W (Ui → Uj )

W (Uj → Ui)
= ωG(Uj )

ωG(Ui)
≡ exp

(−βt
ωδUij

)
, (18)

which is obtained from the mathematical form of Gaussian
ensemble. Accordingly, one should replace the constant
inverse temperature β of any canonical MC algorithm with
the transition inverse temperature βt

ω. Unfortunately, the ap-
plication of this result requires, a priori, the final configuration
Xj of the system with energy Uj . Therefore, this method
can be applied only to extend local MC algorithms such as
Metropolis importance sampling [34,35] or Glauber dynamics
[36]. Extending cluster canonical MC algorithms is also
possible, but their implementation is carried out by dividing
each MC moves into two steps as follows [17]:

(1) To obtain a virtual configuration Xj with energy Uj

through a canonical cluster MC method using the inverse

013311-3



L. VELAZQUEZ AND J. C. CASTRO-PALACIO PHYSICAL REVIEW E 88, 013311 (2013)

temperature βi
ω of the initial configuration Xi with

energy Ui ;
(2) To accept the virtual configuration Xj using the accep-

tance probability wi→j :

wi→j = min

{
1,

W
j

j→i

W i
i→j

exp
(−βt

ωδUij

)}
. (19)

The terms Wi
i→j = Wc[Ui → Uj ; βi

ω] and W
j

j→i =
Wc[Uj → Ui ; β

j
ω] represent the transition probabilities of the

direct and the reverse process, respectively. Thus, the transition
probability of the global process can be expressed as

W (Ui → Uj ) = Wc
(
Ui → Uj ; βi

ω

)
wi→j . (20)

In general, values of the acceptance probability wi→j are close
to the unity because of the change of the inverse temperature
δβ

ij
ω = β

j
ω − βi

ω and the energy change δUij are very small if
the system size N is sufficiently large.

D. Point statistical estimation

By definition, statistical expectation values of macroscopic
observables are ensemble dependent, that is, they depend on
the concrete equilibrium situation associated with a given
statistical ensemble. To avoid this arbitrariness, one should
perform the calculation of microcanonical quantities derived
from the system entropy S(U ), such as the microcanonical
caloric curve β(U ) = ∂S(U )/∂U and the curvature curve
κ(U ) = −N∂2S(U )/∂U 2. Notice that this second quantity
is directly related to the microcanonical heat capacity C as
κ = β2N/C.

In multicanonical algorithms and other reweighting tech-
niques, the microcanonical dependencies β(U ) and κ(U )
can be obtained by direct numerical differentiation of the
entropy S(U ), which was previously estimated using energy
histograms. However, this procedure increases the statistical
errors associated with any MC calculations, whose incidence
is more significant with a larger order of differentiation [17]. A
more precise calculation is performed using the point statisti-
cal estimation at the equilibrium energy Ue, which is related to
the thermal equilibrium condition βω(Ue) = β(Ue) = βe. The
estimation of microcanonical quantities (Ue,βe,κe) is based on
the asymptotic tendency of the energy distribution to adopt a
Gaussian form in the thermodynamic limit N → +∞. Analo-
gously to the dynamic ensemble MC method [31], estimation
of microcanonical dependencies is exact only in the thermo-
dynamic limit. However, the incidence of finite-size effects is
considerably reduced using the following expressions [17]:

Ue = 〈U 〉 − 1 − ψ1

2〈δU 2〉 〈δU
3〉 + O

(
1

N3

)
,

βe = 〈βω〉 − λ
1 − ψ1

2N〈δU 2〉 〈δU
3〉 + O

(
1

N3

)
, (21)

κe = 1 − ψ1 − λ〈δU 2〉/N
〈δU 2〉/N + O

(
1

N2

)
,

where ψ1 = 6
5ε2 + 11

30ε1 is a second-order correction term
defined from the cumulants ε1 and ε2,

ε1 = 〈δU 3〉2

〈δU 2〉3
, ε2 = 1 − 〈δU 4〉

3〈δU 2〉2
. (22)

Accordingly, one should proceed with the MC calculation of
the statistical expectation values 〈U 〉 and 〈βω〉, as well as the
n moments of energy 〈δUn〉 with n = (2,3,4). It is noteworthy
that the expression for curvature κe = β2

e N/Ce represents
a second-order improvement of the energy fluctuations
considered in Eq. (12). These same calculations enable us
to obtain a rough estimate for the third- and the four-order
derivatives of the entropy:

ζ 3
e = N2 ∂3S(Ue)

∂U 3
= N2 〈δU 3〉

〈δU 2〉3
(1 − 3ψ1) + O

(
1

N2

)
,

(23)

ζ 4
e = N3 ∂4S(Ue)

∂U 4
= −ψ2

N3

〈δU 2〉3
+ O

(
1

N

)
,

where ψ2 = 12
5 ε2 + 41

15ε1. Derivation of the above formulas
was discussed in the appendix in Ref. [17]. The same ones were
obtained for the particular case of Gaussian ensemble (15), and
their applicability is associated to the licitness of the Gaussian
approximation for describing system fluctuating behavior. This
means that the seed parameters (Us,βs,λs) of Gaussian ensem-
ble (15) should be carefully chosen to guarantee applicability
of Gaussian approximation. The way to achieve this goal will
be explained at the end of the next subsection.

E. Efficiency factor and its optimization

The efficiency of MC methods is commonly characterized
by the decorrelation time τ , that is, the minimum number
of MC steps needed to generate effectively independent,
identically distributed samples in the Markov chain [14]. This
quantity will be calculated as follows:

τ = lim
k→∞

τk = lim
k→∞

kvar(uk)

var(u1)
, (24)

where var(uk) = 〈u2
k〉 − 〈uk〉2 is the variance of uk , which is

defined as the arithmetic mean of the energy per particle u =
U/N over k samples (consecutive MC steps),

uk = 1

k

k∑
i=1

ui. (25)

However, the decorrelation time τ provides a partial
characterization about the efficiency in the case of the extended
canonical MC methods. To clarify this idea, let us consider
the number of MC steps S needed to obtain a point of the
caloric curve β(u) with a precision δu2 + δβ2 < a2. This
quantity can be estimated in terms of the total dispersion 
2

T =
〈δU 2〉/N + N〈δβ2

ω〉 and the decorrelation time τ as follows:

S = τ
2
T /Na2. (26)

The total dispersion 
2
T is kept fixed for canonical ensemble,

and, hence, a canonical MC algorithm is more efficient as its
decorrelation time τ decreases. However, the total dispersion

2

T is ensemble dependent, e.g., this quantity depends on the
control parameters (Us,βs,λs) of Gaussian ensemble (15).
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According to expression (26), an extended canonical MC
algorithm is more efficient as its efficiency factor decreases:

η = τ
2
T . (27)

The efficiency factor (27) depends on both decorrelation time
τ and the system fluctuating behavior. Moreover, decorrelation
time τ depends on both the statistical ensemble and on the
concrete canonical MC algorithm. The explicit mathematical
form of the decorrelation time τ in terms of control parameters
of a given MC calculation is difficult to determine precisely.
The simplest criterion to reduce the efficiency factor η is to
minimize the total dispersion 
2

T , that is, to introduce a more
active control onto the system fluctuating behavior [16,17].
Using the expressions of Eq. (12), the lower bound of the total
dispersion 
2

T and the optimal value of the control parameter
λs are as follows:

λs = λ
(κe) =
√

1 + κ2
e − κe and min

(

2

T

) = 2λ
,

(28)

where κe is the curvature at the energy point Ue. Accordingly,
the optimal value for the parameter λs requires a rough
estimation of the curvature κe.

Seeds parameters (Us,βs,λs) for a given MC run can
be specified using the microcanonical estimates (Ue,βe,κe)
obtained from a previous simulation run. We have employed
in this work the following iterative scheme:

Uj+1
s = Uj

e + ε; βj+1
s = βj

e − κj
e ε and λj+1

s = λ


(
κj

e

)
,

(29)

with ε being a small energy step. It can be noticed that the
scheme for β

j+1
s is simply a first-order power expansion of

the microcanonical inverse temperature, βj+1
s = β(Uj

e + ε) =
β(Uj

e ) + β ′(Uj
e )ε + O(ε2). Moreover, we have assumed a

zero-order approximation for the curvature κ
j+1
e = κ(Uj

e +
ε) = κ

j
e + O(ε) . The initial values of the seed parameters

(Us,βs,λs) could be estimated from any canonical MC
algorithm far from the region of temperature-driven PT.
Sometimes, it is recommendable to consider a variable energy
step ε, overall, in those energy regions where the absolute
values of microcanonical curvature curve κ(U ) are sufficiently
large. We have employed in this work the following rule
ε = ε0/

√
1 + κ2

e , with ε0 being the energy step near the
critical point where κe � 0. Notice that this rule guarantees,
approximately, a constant arc length between neighboring

FIG. 1. (Color online) Microcanonical estimates of a 2D q-state Potts model for q = 2–6 with L = 32, which were obtained from extended
version of Wolff cluster algorithm: the inverse temperature β(u) = ∂s(u)/∂u, the curvature curve κ(u) = −∂2s(u)/∂u2, and third and four
partial derivatives, ζ 3(u) = ∂3s(u)/∂u3 and ζ 4(u) = ∂4s(u)/∂u4, with s(u) and u being the entropy and the energy per site, respectively.
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points of the microcanonical caloric curve β versus U . This
feature is shown in Fig. 1.

III. EFFICIENCY NEAR A CRITICAL POINT

A. Temperature-driven continuous PT

Ensemble equivalence is always ensured in the case of a
temperature-driven continuous PT. Slow sampling problems in
systems that undergo this type of PT are a consequence of the
large increases of the energy fluctuations and the heat capacity
C when the inverse temperature β of the canonical ensemble
approaches the critical point βc. As discussed elsewhere [20],
the fluctuating behavior observed here can be associated with
the existence of large correlation length ξ among the system
constituents.

The incidence of slow sampling problems could be signifi-
cantly reduced if such strong correlations could be avoided by
some external influence. If possible, the relaxation times of the
averages of physical observables could be good enough even
using local MC moves. Such a reduction of correlation length
ξ can also be achieved considering the feedback perturbation
of the environment. According to Eqs. (12) and (13), the
coupling constant λ acts as a control parameter of the system
thermodynamic stability and fluctuating behavior. Canonical
fluctuation relation (2) predicts that the energy dispersion
diverges 
U → ∞ when C → ∞. However, the quantity 
U

remains finite whenever the stability condition (13) is applied,
that is, if the coupling constant λ > 0 when C −→ ∞. Since
the energy fluctuations are kept finite at the critical point, the
underlying correlation length ξ among the system constituents
should be reduced.

B. Potts model and its MC algorithms

For the sake of convenience, let us consider the q-state Potts
model [14],

H = −
∑
(i,j )

δσiσj
, (30)

defined over a square lattice L × L with periodic boundary
conditions, where σi = (1,2, . . . ,q) is the spin variable of the
i-th site and the sum in (30) involves all nearest neighbors.
This family of toy models undergoes both continuous and
discontinuous PT at βc = ln(1 + √

q) in the thermodynamic
limit L → ∞. Their MC study can be performed using
different canonical MC algorithms. Specifically, we will
consider Metropolis importance sampling [34] as a local
MC method, as well as Swendsen-Wang and Wolff cluster
algorithms [1–3] as examples of nonlocal MC methods. These
cluster MC methods are easily extended with the application
of the present methodology. First, we need to obtain the
transition probabilities Wc

i→j and Wc
j→i , which appear in the

acceptance probability (19). Denoting by pi = 1 − e−βi
ω and

pj = 1 − e−β
j
ω the acceptance probabilities of bonds for the

direct and reverse processes, the transition probabilities Wi
i→j

and W
j

j→i are expressed as follows:

Wi
i→j = p

ba

i (1 − pi)
bp+bd , W

j

j→i = p
ba

j (1 − pj )bp+bc .

(31)

Here, ba and bp + bd are the numbers of inspected bonds
which have been accepted and rejected in the direct process,
respectively. Moreover, bd is the number of rejected bonds
which have been destroyed in the final configuration Xf , while
bc is number of created bonds. Note that the energy change is
given by δUif = bd − bc. The integer numbers (ba,bd,bc,bp)
should be obtained for each cluster move.

C. Numerical simulations

Figure 1 shows several microcanonical dependencies of the
q-state Potts model with L = 32 and q = 2–6, which were
estimated using the extended version of the Wolff cluster
algorithm and the point statistical estimation (21). Each point
of these curves was obtained considering M = 4 × 104τ itera-
tions for each MC run, with τ being its associated decorrelation
time. The convergence of the four-order derivative ζ 4(u) is
less significant than the other microcanonical dependencies.
However, this is a reasonable result, taking into consideration
that ζ 4(u) is associated with high-order fluctuating behavior
beyond the Gaussian approximation.

According to the minimal total dispersion, min(
2
T ) =

2λ
(κe), the system exhibits its largest energy fluctuations
when the curvature κe reaches its minimum value κmin.
The character of the PT depends on the signature of the
curvature κmin. It is continuous for κmin � 0 (q = 2–4), while
discontinuous for κmin < 0 (q > 4). The extended version of
the Wolff algorithm is able to describe both continuous and
discontinuous temperature-driven PTs. Since the 2D four-state
Potts model exhibits the largest fluctuating behavior near
critical point, this particular case will be considered to analyze
the impact of the present methodology on the efficiency of MC
simulations.

For comparison purposes, the microcanonical quantities
will be estimated using the entropy S(U ) derived from
the Wang-Landau method [13]. To avoid statistical errors
associated with numerical differentiation of the entropy S(U ),
we shall consider the formulas (21) of the point statistical
estimation. Statistical expectation values can be evaluated as
follows:

〈a(U )〉 =
∑

i a(Ui) exp[−φG(Ui) + S(Ui)]∑
i exp[−φG(Ui) + S(Ui)]

, (32)

where φG(U ) = βs(U − Us) + λs(U − Us)2/2N . The esti-
mates of the entropy per site s = S/N and the inverse
temperature β versus energy per site u = U/N are shown
in Fig. 2 for the case of a 2D four-state Potts model with
L = 32. As clearly illustrated, results obtained from a direct
numerical differentiation of entropy S(U ) are strongly affected
by the statistical errors associated with MC calculations of
energy histograms. Fortunately, the point statistical estimation
overcomes this difficulty providing a smooth dependence for
the microcanonical caloric curve β versus u. Results from the
Wang-Landau method are considered as a reference in Fig. 3,
which illustrates microcanonical estimates derived from three
canonical MC algorithms and their extended versions. We
have considered a variable number of steps M = 4 × 104τ

for each simulation run, with τ being its decorrelation time.
Dependencies associated with Wang-Landau method were
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FIG. 2. (Color online) Entropy per site s(u) and microcanonical
inverse temperature β(u) of a 2D four-state Potts model estimated
from the Wang-Landau multicanonical algorithm. Here the variable
u denotes the energy per site, u = U/N , with N = L2.

obtained from two simulation runs with M = 2 × 107 and
M = 1.1 × 108 steps.

Results derived from the extended versions of canonical
MC algorithms and the Wang-Landau method exhibit a
great agreement among them. Discrepancy among these MC
methods is observed only for estimation of the curvature curve
κ(u) near the critical region [see Fig. 3(b)]. This discrepancy
was also observed in Fig. 2 of Ref. [17]. In principle,
extended canonical MC algorithms and the Wang-Landau
method should provide same microcanonical estimates when
the number of steps M is sufficiently large. However, the
entropy per site s(u) obtained from the Wang-Landau method
is not sufficiently equilibrated to perform a more precise
estimation of the curvature curve κ(u) = −∂2s(u)/∂u2 near
the critical point. The convergence of results obtained from
estimation formulas (21) is not uniform everywhere. Even
using the optimal values for the seed parameters (Us,βs,λs) of
the Gaussian ensemble (15), the largest fluctuating behavior is
always observed near the critical point. This fact evidences a
particular advantage of extended canonical MC algorithms.
These methods enable the study of a small energy region
in a given simulation run. Thus, the number of steps M

of each run can be locally extended as large as needed to
guarantee the convergence of microcanonical estimates. On
the contrary, the Wang-Landau method sweeps the whole
energy range in a single run. Although this feature is regarded
as an advantage in many applications, this is not the case
of calculations of partial derivatives ∂ns(u)/∂un. Statistical
errors of entropy per site s(u) are only reduced, increasing
the number of steps of the Wang-Landau method for whole
energy range. According to the results shown in Fig. 3(b), there
exists a certain convergence of results of the Wang-Landau
method towards the results of extended canonical MC methods
when the number of steps M is increased from 2 × 107

to 1.1 × 108 [38]. However, the full convergence requires
many more calculations. This exigence contrasts with the
high performance of the extended Wolff cluster algorithm.
Using this last MC method, we have employed a total of only

(a)

(b)

FIG. 3. (Color online) Energy dependence of inverse temperature
β and curvature κ obtained from three different canonical MC
algorithms and their extended versions in the case of a 2D four-state
Potts model with L = 32. Each point estimated with these MC
algorithms was obtained from a simulation run with a number of
steps M = 4 × 104τ , with τ being the decorrelation time of this
simulation run. Results of the Wang-Landau multicanonical method
are employed here as a reference, which were obtained from two
different simulation runs with M = 2 × 107 and M = 1.1 × 108

steps.

M = 7.3 × 106 steps, with an average of M = 2.2 × 105 steps
for each calculated point.

Microcanonical estimates derived from usual canonical MC
algorithms undergo large systematic deviations. This behavior
is not associated with a poor equilibration of the MC averages
but with the large energy fluctuations experienced by this
model system near the critical point within the canonical
ensemble. The canonical ensemble is a particular case of a
Gaussian ensemble with λs = 0, so formulas (21) of the point
statistical estimation are applicable to this ensemble when-
ever the associated energy distribution satisfies the Gaussian
approximation. This requirement cannot be satisfied near the
critical point, which is is illustrated in Fig. 4. We show here
the energy distributions near the critical point obtained from
the MC simulations using both the Wolff cluster algorithm and
its extended version for β � 1.098. The distribution obtained
from the usual Wolff cluster algorithm (canonical ensemble)
cannot be described by a Gaussian approximation. On the
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Gaussian

FIG. 4. Energy distributions associated with the canonical en-
semble and the Gaussian ensemble with optimal values of the seed
parameters (Us,βs,λs) near the critical point. These results were
obtained from the Wolff cluster algorithm and its extended version,
respectively.

contrary, the Gaussian approximation is fully licit for the dis-
tribution obtained from the extended Wolff cluster algorithm,

(a)

(b)

FIG. 5. (Color online) Size dependence of decorrelation time τ

and efficiency factor η for three different canonical MC algorithms
and their extended versions at the critical point of a 2D four-state
Potts model.

TABLE I. Dynamic critical exponents ατ and αη associated with
the size dependencies of decorrelation time τ and efficiency factor η

shown in Fig. 5.

MC Method ατ αη

Metropolis 1.06 ± 0.01 1.42 ± 0.01
Extended Metropolis 0.777 ± 0.006 0.790 ± 0.008
Swendsen-Wang 0.432 ± 0.007 0.792 ± 0.008
Extended Swendsen-Wang 0.098 ± 0.004 0.117 ± 0.004
Wolff 0.474 ± 0.005 0.833 ± 0.007
Extended Wolff 0.094 ± 0.006 0.103 ± 0.006

which considers a Gaussian ensemble with optimal values of
the seed parameters (Us,βs,λs). A way to reduce the incidence
of finite-size effects of microcanonical estimates derived from
the canonical ensemble is to consider higher-order correction
terms in formulas (21). This exigency presupposes calculation
of energy moments 〈δUn〉 with n> 4, which demands larger
simulation runs to achieve their convergence.

The size dependencies of the decorrelation time τ and the
efficiency factor η at the critical point are shown in Fig. 5
for canonical and extended versions of three different MC
algorithms for lattice sizes L ranging from 8 to 128. For all
extended versions, size dependency of decorrelation time
τ and the efficiency factor η exhibit power-law behaviors
τ (N ) = CτN

ατ and η(N ) = CηN
αη , which are weaker

than their canonical counterparts. For a better quantitative
characterization, estimates of dynamic critical exponents ατ

and αη are shown in Table I. The size dependency associated
with Metropolis importance sampling is reduced, but the
improvement of its decorrelation time τ is less significant
than the one achieved by cluster algorithms. Greater impact
of the present methodology is manifested when the efficiency
is described in terms of the efficiency factor η. The efficiency
factor η precisely determines the number of iterations needed
to achieve the convergence of the microcanonical caloric
curve β(u). All extended MC algorithms exhibit a better
efficiency factor η than their original canonical counterparts.
The extended version of Metropolis importance sampling, in
particular, is slightly more efficient than canonical Swendsen-
Wang and Wolff cluster algorithms. The exponents for
extended cluster algorithms near critical point αη � 0.1, which
are very similar to the typical values of systems that undergo
temperature-driven discontinuous PT. Dynamic critical
exponents ατ and αη are practically the same for extended
canonical MC algorithms. On the contrary, dynamic critical
exponents of canonical MC algorithms exhibit a constant
difference δ = αη − ατ � 0.36 that is directly associated with
the incidence of size effects in the total dispersion 
2

T .

IV. FINAL REMARKS

The methodology proposed by Velazquez and Curilef
[16,17] leads to a significant improvement of the efficiency
of MC simulations in the presence of any type of temperature-
driven phase transition. Although extended canonical clus-
ter algorithms exhibit the highest efficiencies, a local MC
method, such as extended Metropolis importance sampling,
has universal applicability and very good efficiency. For the
particular case of a 2D four-state Potts model, this extended
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local MC methods exhibits an efficiency comparable to the
canonical cluster algorithms of Swendsen-Wang and Wolff.
Consequently, this extended local MC algorithm can be espe-
cially useful in MC simulations of systems whose canonical
cluster algorithms are still unavailable in the literature.

Before ending this section, let us refer to some open
problems. First, the present methodology should be extended
to those MC algorithms based on Boltzmann-Gibbs
distributions [20]. An important antecedent of this problem
was considered by Velazquez and Curilef in Ref. [30], where
a general equilibrium fluctuation theorem (1) was generalized
for the case of many thermodynamic variables. However,

some relevant factors are still missing, such as extending
of formulas (21) for the point statistical estimation. On
the other hand, the present methodology can be combined
with reweighting techniques, such as the multihistograms
method, to improve statistics [14], which can provide a better
estimation for the higher-order derivatives of the entropy S(U ).
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