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The phase-field crystal model (PFC model) resolves systems on atomic length scales and diffusive time
scales and lies in between standard phase-field modeling and atomistic methods. More recently a hyperbolic or
modified PFC model was introduced to describe fast (propagative) and slow (diffusive) dynamics. We present
a finite-element method for solving the hyperbolic PFC equation, introducing an unconditionally stable time
integration algorithm. A spatial discretization is used with the traditional C’-continuous Lagrange elements with
quadratic shape functions. The space-time discretization of the PFC equation is second-order accurate in time and
is shown analytically to be unconditionally stable. Numerical simulations are used to show a monotonic decrease
of the free energy during the transition from the homogeneous state to stripes. Benchmarks on modeling patterns
in two-dimensional space are carried out. The benchmarks show the applicability of the proposed algorithm
for determining equilibrium states. Quantitatively, the proposed algorithm is verified for the problem of lattice

parameter and velocity selection when a crystal invades a homogeneous unstable liquid.
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I. INTRODUCTION

The phase-field crystal model (PFC model) is a continuum
model that describes processes on atomic length scales and
patterns on the nanolength and microlength scales [1-3].
This model is characterized by a conserved field that is
related to the local atomic number density, such that it is
spatially periodic in the solid phase and constant in the
liquid phase. The model has been related to other continuum
field theories such as classical density-functional theory [4,5]
and the atomic density function theory [6]. The PFC model
provides an efficient tool for simulating the ordering of
nanoscale structures on micron length scales [3], liquid-solid
transitions, dislocation motion and plasticity, glass formation
and foams, epitaxial growth, grain boundary premelting, crack
propagation, surface reconstructions, grain boundary energies,
dynamics of colloidal systems, and polymers (for an overview,
see Ref. [7] and the references therein).

Originally formulated in a parabolic form, the PFC model
has now been extended to include faster degrees of free-
dom consistent with inertia due to propagative regimes of
transformation. In particular, a hyperbolic or modified PFC
model was introduced which includes an inertial term, and
thus allows for the description of both fast and slow dynamics
of transformation [8—10]. Fast front dynamics occurs when a
system is quenched far below a transition point or far below
the equilibrium temperature of the phase transition. These
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conditions lead to a fast phase transition when the velocity
of the front is comparable to the speed of atomic diffusion
or the speed of local structural relaxation. The movement of
a phase transition front at such fast velocities can lead to the
formation of bulk phases that are not in a local structural or
chemical equilibrium.

The fascinating physics captured by the hyperbolic PFC
model has triggered a growing interest in the development of
computational methods to solve the equation. From a numeri-
cal analysis perspective, algorithms for solving the hyperbolic
PFC model have to contend with first- and second-order time
derivatives and six-order spatial derivatives. Therefore, several
special numerical methods for the solution of the hyperbolic
PFC equation were recently developed. Wise et al. [11] derived
a first-order accurate and unconditionally energy stable finite-
difference scheme based on a convex splitting of a discrete
energy for the parabolic PFC equation. Similar concepts
were applied to the hyperbolic Cahn-Hilliard and Allen-Cahn
equations in Ref. [12]. Subsequently, a second-order accurate
finite-difference method was introduced [13,14], which is
unconditionally stable with respect to a discrete version of
a quantity entitled as “pseudoenergy.”

In the present paper, we concentrate on the development
of a finite-element method for the hyperbolic PFC equation,
introducing a new unconditionally stable time integration
algorithm. A space-time discretization of the hyperbolic PFC
equation which is second-order time accurate and uncondition-
ally stable is proposed. Unconditional stability in this context
means that the free energy of the discrete solution decreases
(or remains constant) from one step to the next irrespective
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of the mesh size and the time step. This implies that the
algorithm respects the underlying physics of the equation.
From a practical point of view, unconditional stability is
associated with increased robustness, better behavior of the
numerical solution for large time steps, and higher accuracy
for long-time calculations. The most common paradigm for
achieving unconditional stability in the context of phase
transition problems is the so-called Eyre’s method [15,16],
which is widely used in computational physics [17,18].
Although Eyre’s method was a significant step forward, it
has been recently shown that it leads to inaccurate solutions
for large time steps [19] because it is only a first-order
accurate method. Recently, a generalization of Eyre’s method
that achieves unconditional stability has been introduced, but
in contrast with Eyre’s method, it is second-order accurate
[19,20]. This generalization has been applied to the PFC
equation [20], using a space discretization that requires the
use of globally C'-continuous finite elements [21]. In the
present work this algorithm is extended to the hyperbolic
(modified) PFC equation. We introduce a space discretization
that can be used with traditional C°-continuous Lagrange finite
elements, available in all finite-element software packages. As
an example, the proposed algorithm is applied to the problem
of the lattice parameter and velocity selection when a periodic
crystal front invades homogeneous liquid phase.

The paper is organized as follows. The hyperbolic or modi-
fied PFC-equation is formulated in Section II. To have a finite-
element discretization of the modified PFC equation, a splitting
and a variational formulation of the equation are presented in
Sec. III. Spatial and temporal discretization of the equations are
shown in Sec. IV. A numerical approximation of the discrete
form is given in Sec. V using triangular Lagrange elements.
In Sec. VI we present tests for the numerical scheme. Results
on the phase diagram and free energy of the entire system are
summarized. Section VII is devoted to the numerical solution
of the problem of the wave number and velocity selection of
a front invading an unstable phase. Numerical results for the
front velocity and wave number at the front are compared to
those obtained previously using marginal stability analysis.
Finally, Sec. VIII presents a summary of our conclusions.

II. MODIFIED PFC EQUATION

Let ¢ be a continuous field describing an atomic-scale
density. We consider the following free energy functional
[12,22]

FI$.T1 = Fugl$l + Fueal T1, (1)
with the local equilibrium contribution
Feqlg] = fg [F<¢) — Vol + %(VW} e, ()
and the following pure nonequilibrium contribution
FoeglJ] = %fgi JdQ, t>0. 3)

In Eq. (2) the homogeneous (space independent) part of the
free energy density is given by

F@) = ——¢* + ¢>3+ 4» )
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while, in Eq. (3), J is a vector field of the flux that satisfies the
conservation equation
d¢

a——l—V J =0, 4)

where ¢ denotes the time. For the free energy functional defined
in Eq. (1) to decrease or remain constant in time the vector field
J needs to fulfill the relation

-

i T=-¥ ©)
o =TV
where the chemical potential u is given by
8F _dF(¢) 2 4
= — = +2Vp+V 7
(@) = 56~ dp ¢ ¢, @)
with
dF
% = ¢ +ad’ + (1 —e)p = f(@). ®)

In the above expressions, ¢ = (T, — T)/ T, is the governing
parameter which characterizes undercooling, 7 and 7, are
the temperature and the critical temperature of the transition,
respectively, and 7 is the relaxation time of the flux J to
its stationary state. The free energy density (4) can describe
transitions from metastable (as occurs close to first-order phase
transitions, e.g., in solidification processes) and unstable states
(as occurs in second-order phase transitions) to stable ones.
The system of Egs. (5) and (6) can be rewritten in the form
2¢ d¢ 2
oo =V ©)
The hyperbolic equation (9) includes the dissipation described
by the traditional parabolic PFC equation [1], as well as
an inertial term od’¢/dt> that accounts for the kinetic
contribution (3). Alternatively, Eq. (9) was proposed by
Stefanovic et al. [8] to incorporate both fast elastic relaxation
and slower mass diffusion.
Introducing the new variable 1, one can split Eq. (9) as

¢

at
L
Bt

=,
(10)

Vi — .

Using the Helmholtz decomposition theorem, the flux J can
be unambiguously deﬁned through the expansion of gradient
and curl contributions: J = —Vu 4+ V x U. Now, we notice
that the dynamics of the phase variable ¢ is only determined
by the divergence of J [12], so one can take the divergence of
Eq. (6), and use the Helmoholtz decomposition of J in Eq. (5)
to derive the system of partial differential equations
d¢
ot
av?
‘ 8tu = Vi — Vi, an

1= f(p)+2V2p + V.

The system of equations (11) is equivalent to the hyperbolic
equation (9), and represents a convenient form for developing
an unconditionally stable computational schemes [12,13].

= Vzu,
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While in principle an equation for the curl of J could also
be included it is not of much interest since it does not couple
to ¢ and decays exponentially in time in such a manner that
Freq always decreases. Thus the contribution of VxUtolJ
can be ignored.

III. VARIATIONAL FORMULATION

In this section we introduce a variational formulation of
the modified phase field crystal equation with the ultimate
goal of deriving a finite-element discretization. To implement
a classical Lagrange finite-element scheme it is convenient to
introduce the variable 0, such that 8 = V2¢, and, following
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Egs. (11), we solve the system of equations

¢

= Vu,
Bt
V2
T “ = VZ/,L — Vzu,
o1 (12)
w= f($)+2V3i + V20,
90 9V
ar ot

The variational problem associated with the system of equa-
tions (12) is stated as follows: find ¢, u, u, 8 such that for all
v, w, p, g the following system of equations is satisfied

/v—dsz+fw.%udsz=o,

9 . .
—/rVw-—dQ+/Vw~V/LdQ—/Vw~VudQ:0,
(13)
/ pli— F@Q + / 2Vp - VpdQ2 + / Vp - VodQ =0,
Q Q Q

which assumes free-flux conditions for all variables on the
surface I for the volume 2. Due to their integral form,
Egs. (13) present a weak form of differential equations (12).

We show now that Egs. (13), which are equivalent to the
modified PFC equation (9), lead to a stable evolution of the
system such that the free energy of the entire system does not
increase in time, i.c.,

dF@.J) SFap S8F dJ
T‘L(ﬁEJFE 8t>d§2 0. (14)

Using the balance (5), one can obtain from Egs. (1) and (3)
that the free energy (14) is given by

dF(p,J .. -9
Mz_fuv.mmr/u.—dg
di o o
3¢ - 9T
= | 1Zaq 7 -2aq, 15
/Q“az +fgf a1 (15

with / =0 on T. Taking v = u, and w = u in Eq. (13) and
combining the first two equations, one gets

[ nian s [ o5
Q

_ The first equation in Egs. (11) and the balance (5) lead to

(J + Vu) = 0. Using again the Helmholtz decomposition
of J, we note that the last equation is unaffected by the term
V x U, so we may just take

dVu > >
—dQ—I—/ Vu-VudQ = 0.
ot Q
(16)

-

J=—Vu. a7

/89d52+/% 3%‘1’6152—0
Sy o Ty -

Substituting the later relation between J and u into Eq. (15)
gives

dF(p.J d - =0

ﬁzf ¢d§2+f Vu-VERdQ.  (18)
dt q Ot Q ot

Comparing Eq. (18) with Eq. (16) we obtain the stability

condition

dF@.J)

— | Vu-VudQ <0, 19
o /Qu u (19)

which confirms Eq. (14) for the stable evolution of the entire
system.

In consideration of the variational formulation (13) we
have now shown an important feature of the free energy
F which has classical contribution consistent with the local
equilibrium processes and the additional kinetic contribution
for the description of fast transitions on the scale of r,
Eq. (1). Namely, the sign of the free energy time derivative
in Egs. (14) and (19) shows that F can be considered as a
Lyapunov function: a function that is nonincreasing in time
and determines the stability of the system.

IV. STABLE NUMERICAL SCHEME

A. Discretization

We now discretize the variational form (13) replacing the
relevant functions with their discrete counterparts that will be
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denoted with an 4 superscript. Then it follows that

ha¢h > h Sk
V' —dQ+ | VU -Vu'dQ2 =0,
@ Of Q

o h aVu" ooh o h ooh o h
— | tVw" - dQ+ | Vw'-vu'dQ— | Vw" - Vu'dQ =0,
Q ot Q Q 20)

/ it — f(¢h)]ds2+/ 2Vt %¢hdsz+/ vp - VedQ =0,
Q Q Q

aoh - aVeh
/qh—dQ+/th~ P 4o —o.
Q ot Q ot

The system of equations (20) is a semidiscretized numerical scheme, i.e., it represents the spatial discretization of
Egs. (13).

To obtain the time discretization algorithm, the time interval of interest [0,7] is subdivided into N uniform subintervals
T, = (ty,ty1+1) where t,11 —t, = At; n=0,...,N — 1. The discrete approximation of ¢"(t,) is notated as ¢ff, where the
dependence on the spatial coordinate is omitted for simplicity. Analogous notation is used for other functions of interest. Special
notations {{¢}} = ¢\, — ¢k and ¢}, , = 5(¢}h,, + ¢}) are also used below. We propose an algorithm which may be thought
of as a second-order accurate generalization of Eyre’s method [15]. However, rather than splitting the free energy into a concave

and convex parts as in Eyre’s method, we split it as follows:

F(¢) = Fi(9) + F_(9), 2

where Ffr“’)(qﬁ) >0, FIV (¢) < 0, and the superscript (iv) denotes the fourth derivative. The advantage of this splitting over
Eyre’s splitting is that it permits deriving a second-order accurate and unconditionally stable method in contrast to Eyre’s method
which is only first-order accurate. As shown for the dynamics of phase separation [19], the use of a second-order accurate method
permits taking time steps several orders of magnitude larger than those required by the first-order accurate method. We also note
that, although for the modified phase field crystal equation, in which one gets F_ = 0, we will present the method in its full
generality, assuming that both Fy and F_ are nonzero. The general method would be useful, for example, for PFC equations,
based on logarithmic potentials (which give F_ # 0). We will also use the notation f(¢) = F(¢) and f_(¢) = F’(¢). Then,
our algorithm, Egs. (20), may be written as follows:

h
/Uh{{int}}dgz‘i‘/%vh%MZJrl/ZdQ:O’
Q Q

- Vuh > N - -
—/Qrth~Mdﬂ—i—/;th-V,uZH/ZdQ—/Qth-Vuﬁﬂ/de:O,

At
h, h 0l h h /{{M}}z ar 7 ah (22)
| W L R CO) e e VACH R )
+ / VP!Vl Hd2+ | VPVl ,d2 =0,
Q Q
(o - o Helh o
/Qq AL dQ—i—/QVq -V AL )dQ—O.

The system of equations (22) is a fully discretized numerical following relations hold [19]:

scheme, i.e., it represents the temporal and spatial discretiza- , ;

tion of Eqgs. (13). As we will see in the next section, the / dx — b—a DY — b—ay ,
appearance of the second and third terms in the third equation p §(x)dx = 2 [s(a) +5(B)] 12 § (@)
lead to an unconditionally stable discretization of the nonlinear

b-at ,
erm. — € s X €@h). (23)
b 3
b—a b—-a)y ,
B. Stability gx)dx = = [g(a) + g(D)] — o8 (®)
To show that the algorithm inherits the stability condition of ‘ )
the continuous theory, d F /dt < 0 [see Eqgs. (14) and (19)], we b-a ,
need to take into account the following quadrature formulas: 24 § =) x-€@bh). (24

Let g :[a,b] — R be a sufficiently smooth function. The
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Let us consider the trivial identity

¢s+l ¢nh+1
/ Fl(z)dz = / fi(2)dz. (25)
L4 o

n

If we integrate directly the left-hand side of the equation, and
apply the quadrature formula (23) to the right-hand side, we
obtain

(e = W om 1 o]
y

Al gy M2 ),

£y € (0,1). (26)
Rearranging Eq. (26), it follows that

Fi (o) o1l L h
(AT NI

= o) + (ot - LI oy
= (0,1). (27)

t

At

At

Rearranging Eqgs. (31) and using the identities (27) and (29),
it follows that

1 - .
A—t{{}"}} — —/QVuﬁH/z-Vqu/de

[ e -

I ($n1e ) ]dSe.
(32)

Since f”is a positive function and f" is negative, the stability
condition (19) is proven.

In Eq. (32), the first term corresponds to the physical
dissipation, while the second term corresponds to numerical
dissipation. The second term tends to zero as we reduce the
time step.

Thus, our algorithm, which follows directly from the
system of equations (22), is second-order time accurate. This
is a consequence of the linear terms being approximated
with a midpoint-type method and the nonlinear terms being
handled with a higher-order generalization of the trapezoidal
rule.

+/926(%) ' %¢2+1/2d9+/96<{{i_€}}
/Qefﬂ/Z{{Z—rlzz}}dQJr/Q%@fﬂ/z'%({{M}})dsz:o_

PHYSICAL REVIEW E 88, 013310 (2013)

Analogously, applying quadrature (24) to the identity
¢rlzx+l ¢Z+l
[ e = [ (8)
2 A

and operating, one obtains

{{F7(¢Z)}} {{(pr]Z}}3 m( h
Morlp 2 )
{en})’

1
= E[f ( n) + f ( n+l)] 12 f (¢1]11+l)
£ e (0,1). (29)

‘We now show that with the choices

h h ho_ o h
V' = By W= Uy
ten)) o
h __ n _ 9/1
p = At 4 = n+1/2>

the stability condition is inherited by the discrete formulation
for arbitrary time step size. Indeed, from Eq. (22) one
gets

G h %”Z}} S S, & h & h
~ /s TVl A—dQ + o Vity1ya - Vidyy12dS2 = o Vityiiya - Vit pd$2 =0,

12At

(U e [ s peans [ M Gy 4 g0 a0

) ’ %¢ﬁ+1/2d9 =0,

V. NUMERICAL APPROXIMATION AND SOLUTION

Before choosing the finite-element spaces, a few remarks
about the nonlinearity of the equations are in order. To reduce
the nonlinearity of the system (22) it is useful to linearize the
cubic and quadratic terms (qb,f 41 and ¢’21 1) in the function f(¢)
in the following form:

(@1,1) ~3(e") e, —2(¢"), (33)
(¢h,)" ~ 200l — (¢1)". (34)

Linearizing quadratic terms (34) further reduces the order of
terms in equations and decrease their nonlinearity (similarly to
the previous analyses [23] where the cubic contributions of the
kind of (¢ H)* were linearized). We note that by linearizing
the cubic term, the unconditional stability of the algorithm
is lost on a theoretical level. We performed a number of
simulations with the linearized algorithm and always found
nonincreasing energy in the numerical solutions. Thus, we
believe our linearly implicit scheme is a good compromise
between stability and efficiency.
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After the above remarks on linearization, an approximation
for the functions ¢", u”", u", and 6" should be done by
choosing the finite-element spaces in Eqs. (22). We search the
solution using triangular Lagrange elements with quadratic
shape functions. Every function can be approximated as a sum
of basic functions multiplied by solutions in grid nodes [24]:

n+l z :(I)11+lnn+l’ n+l z : -Hnn-H’

“n+1 = Z ‘I’fz+1’72+1v 9n+1 = Z ®f1+17751+1s .
i i |
M,y AL Anti 0 0
0 AN, —Apn O
Py + 24,4 0 My1 Ann
Anti 0 0 My
where
Myi1 = ("n+1”7n+1) Angr = (%’72+1ﬁ’7£+1)1
= ({2a¢, +3¢2 +[1 — el}niy.nl ),
Myprn = (0heynl). Awsrn = (V0. V1l),
= ({11 = &lgn — &3 }omi1) (37)

and (-,-) is the usual scalar product. As a result, Eqgs. (36)
together with Eqs. (35) and (37) represent Egs. (22) in the
operator form.

VI. BENCHMARKS

In this work only the results of modeling for transformation
from unstable state are presented with « =0 in Egs. (4)
and (37). Since the system of equations Egs. (36) is nonsym-
metric it was solved by a generalized minimal residual method
(GMRES) solver in the finite-element toolbox FREEFEM++
[25]. We use adapted mesh to the Hessian with the method and
algorithm for the mesh generation from Ref. [26].

A. Phase diagram

The computational scheme was used to examine the
evolution from a random nonequilibrium state to verify that
the scheme does lead to the expected states. This evolution is
made in comparison with the phase diagram in the coordinates
“undercooling e—averaged atomic density field (¢)” (see, for
details, Ref. [2]). In two spatial dimensions, for small values of
&, the phase diagram contains three equilibrium states, a con-
stant homogeneous state, stripes, and a triangular distribution
of drops. The regions of phase coexistence are determined
by the Maxwell equal-area construction rule [2]: coexisting
phases must have equal chemical potentials under constant
pressures of the coexisting phases. Sets of equations for two
spatial dimensions with “homogeneous state—triangles” and

q)n-H
Un+1
“pn+1
®n+1
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where n,'l 4 are the shape functions used for the discretization
of the n + 1 time step, and <I>n+1, U,iH, \IJ,QH, ®;+1 are the
unknown nodal values of the solution for the functions ¢/,

u, +1’ Mn 4+1- and Qn 1» respectively. Choosing the same mesh
on each time step, we have equal shape functions 7’ =
n, =n'. In the case of adaptive mesh, the shape functions
are not equal, so one would compute integrals containing
the shape functions defined on two meshes as it is shown
below. Thus, substituting approximations (35) into Egs. (22)
gives

At
Mn+l n q)n - 7A11+L,n Un

21— At
An l,nUn +An l.nq"n
= e o . (36)
n+1,n\yn + P¢— 2An+1,ncbn - An+1,n®n

AnJrl,n D" + MnJrl,ll@n

“stripes—triangles” are described as

1) = i(dn),
{ Fy = Fy = (@)@ — ¢, 38)

w(d) = uley),
{ Fy = Fy = (@)@ — ), 59)

where F, ¢, and u are the free energy density, coexistence den-
sity of phases, and chemical potentials, respectively. Subscripts
t, s, and h denote the corresponding phases: triangles, stripes,
and homogeneous, respectively. For small ¢ these phases can
be described by

¢h = (¢), ¢s = A Sin(QSx) + (¢),

¢ = A, cos(q;x) cos(q,y//3)

— Ar c0s24:y/N/3)/2 + (), (40)

where the quantities g and A give the minimum of the free
energy as

g =1, A =2Ve/3- ()2 a =+3/2,
A = 1((9) + 3v/156 — 36(¢)?).

Free energy densities of phases in the one-mode approximation
are given by [2]

(41)

2 4
Fo= (-0 O

g2 (+ee)? (@)
F=-2+C2O B @

ot (e B, @
F, = 0.1<£ +50(¢))+ >

4 4
+ %\/158 —36(¢)? <§<¢)2 - 2) RECE)

Figure 1 shows the regions of the phase existence and
coexistence which are divided by the boundaries obtained
from the solution of Egs. (38) to (43). Numerical simulations
were conducted at various values of (¢) and € with an initial
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FIG. 1. (Color online) Phase diagram of two-dimensional pat-
terns as predicted by the solution of Egs. (38) to (43). Solid points
indicate initial values for the undercooled homogeneous phase (¢).
Pictures in different regions of phase diagram show the finally evolved
patterns modeled by Egs. (36).

condition containing small random fluctuations in ¢ about (¢).
The results of the simulated patterns are shown in Fig. 1 and in
each case are consistent with analytic one-mode calculations.

Sample time evolutions of the system from a homogeneous
to a triangular state are shown in Fig. 2 and from a stripe
state to a stripe-triangular coexistence is depicted in Fig. 3.
The following parameters where used in these simulations:
(t,{¢),At,Ax) = (0.1,0.2,0.01,0.1) in a system of size 190 x
190 grid points. The undercooling ¢ was 0.2 and 0.8 for

FIG. 2. (Color online) Evolution of the undercooled homoge-
neous state to stable equilibrium triangle pattern: (a) ¢t = 0; (b) t =
5 x 10% (c) t = 10%; (d) t = 2 x 10°. Averaged field (¢) = 0.2 has
been initially undercooled by € = 0.2.

PHYSICAL REVIEW E 88, 013310 (2013)

|l
- " 1
| J

FIG. 3. (Color online) Transformation of undercooled stripes to
equilibrium coexistence of stripes and triangles: (a) t = 0; (b) t =
5 x 10% (c) t = 10%; (d) t = 2 x 10°. Averaged field (¢) = 0.2 has
been initially undercooled by € = 0.8.

Figs. 2 and 3, respectively. Both results are consistent with
the calculated phase diagram shown in Fig. 1.

We also note that the boundaries in the phase diagram of
Fig. 1 have been calculated using one-mode approximation
which is the first approximation to solution of the PFC
equation (9) only at small undercooling ¢ and 7 — 0.
Consequently the numerical solutions will deviate from the
analytic calculations for larger undercoolings.

B. Unconditional stability

The algorithm and discrete scheme deliver unconditional
stability of numerical computations. The time step At can be
arbitrary chosen and it is limited only by the requirement of
computational accuracy. The stability of the presented algo-
rithm has been verified numerically in a series of computations
with different values for space and time discretization.

To demonstrate unconditional stability, the evolution of the
free energy is analyzed. The free energy (1) to (4) has been
taken in the following form:

F(p,J) = /ﬂ [F(q))— IVo|? + %(v2¢)2+ %ﬁuﬁ] Q.
(44)

The energy (44) is defined by a local equilibrium part described
by the slow variable ¢ and a local nonequilibrium part, ocJ 2=
|Vu|?, corresponding to the kinetic contribution of the free
energy [27] in terms of the fast variable J. Thus, we shall plot
the evolution of the energy (1) to (4).

Figure 4 shows the evolution of the free energy functional
JF described by Eq. (44) for different values of the relaxation
time 7. As it can be seen, F monotonically decreases during
the computational time 0 < ¢ < ¢* for the transition from the
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FIG. 4. (Color online) Transition from initially homogeneous
state to stripes. The homogeneous state has been quenched at ¢ = 0.2
and (¢) = 0.02. Numeric parameters were chosen as (Af,Ax) =
(0.005,0.1). The free energy functional F from Eq. (44) decreases
monotonically with time for the developing stripes during the
computational time 0 < ¢ < t* (see the developing pattern in the left
part). The free energy functional F has a constant values in modeling
with r > t* (see the steady pattern in the right part).

initially undercooled homogeneous state to stripes. With ¢ >
t*, the steadily stable stripes exhibit a constant value of F for
all values of t tested in this work. The behavior of 7 shown
in Fig. 4 is similar to that obtained for the crystal growth in
a supercooled liquid described by the parabolic PFC equation
(see Fig. 2 in Ref. [20]). This clearly supports our theoretical
results obtained for the algorithm, computational scheme, and
approximation of functions.

VII. VELOCITY AND WAVE NUMBER AT THE FRONT
INVADING UNSTABLE PHASE

Patterns that emerge when the interface or front invades
an excitable or unstable media have been of interest in many
physical phenomena [28]. In this section the numerical method
developed in this work will be used to find the velocity and
wavelength of a periodic pattern that emerges as a phase
front sweeps through an unstable phase. The results can be
quantitatively compared with the predictions of the marginal
stability analysis on the wavelength selection at the front of pe-
riodic pattern described by the hyperbolic PFC equation [22].
The predictions for front velocities and wavelength selection
from marginal stability have been numerically verified in
other pattern forming models, such as a phase field model
of a superheated solid invading an undercooled melt at large
undercoolings [29].

A. Marginal stability analysis

Let us consider a front between a periodic striped pattern
and a spatially homogeneous unstable state at (¢) — O,
such the periodic state is the lowest energy state for all
undercoolings, ¢ (see the phase diagram plotted in Fig. 1).
The situation is depicted in Fig. 5. The goal of this work is to
determine the velocity (V) of the front and the periodicity of
the pattern selected near the front (which is different from the
equilibrium wavelength). Far enough in ahead of the front the
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FIG. 5. Front of periodic pattern described by PFC model. The
selected lattice parameter (or wavelength) on the front invading
un(meta)stable phase should be measured at the farthest away point
significant growth of amplitude of periodic pattern as is shown in the
inset. x¢ is the point from which the lattice parameter (wavelength)
begins to be calculated.

equation of motion can be linearized around the homogeneous
state (i.e., ¢ = 8¢ + (¢)) in a moving reference frame and
solutions for velocity and periodicity can be obtained using
the marginal stability condition as described by the authors of
Ref. [22]. Briefly this calculation first determines the linear
dispersion rate at the front, which is given by

w(k) = %[\/Tré(k)— 11+iVk,

(45)
with  &(k) = k*[e — (1 — k),
where 8¢ o exp [w(k)t], k is the wave number and 8¢ is the
Fourier transform of §¢. A perturbation is marginally stable at
the moving front for Re[w(k)] = 0, i.e., the front neither grows
nor decays exponentially at the amplification rate (45) as

vepreliiraEE -0l e

Here k* is the selected wave number assumed to be complex
valued, k* =k}, + ik, where k% and ki are the real and
imaginary parts, respectively.

The most unstable mode at the front of the periodic stripes
is given by the saddle point dw/dk = 0 with k = k*. Using
the amplification rate (45), the saddle-point condition gives

2k*[e — 1 + 4Gk — 3]

iv+ e =0. A7)
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Finally, the selection of the wave number k; at the front
oscillating at angular frequency Im[w(k*)] is defined by

_ Imfo(k")]

v (48)

kg
Using Eq. (45), the system of equations (46) to (48) was
solved numerically [22] to predict the selection of the wave
number & ;(¢) and lattice parameter ay(g) = 27 /ky(¢) at the
front moving with the velocity V(¢).

B. Algorithm for numerical results of the velocity
and wave number

The velocity and wave number selected can be obtained
by direct numerical simulation of the PFC equation. After
reaching a stationary regime the determination of these
quantities was obtained using the following algorithm.

(1) Find the peak or maximum with a height above ¢ >
(¢) + 0.1 farthest from the initial perturbation position. This
peak will be denoted x(, the next farthest as x;, and so on, as
shown in Fig. 5. The distance between successive peaks can
then be used to calculate the selected lattice parameter or wave
vector.

(2) Compute the distances between neighboring peaks (see
the inset in Fig. 5). Then, the required lattice parameters a; are

ap = Xo — X1,

ay = xp — X2, 4y =Xy — X3,

ap+ a; a; + a
an = ——5—, dn=—F—. (49)
Calculate the average lattice parameter by its mean value
a= WTC”Z. (50)

(3) After the calculation of the lattice parameter a, the wave
number ks on the front is computed by ky = 27 /a.

(4) Calculate the front velocity as a displacement of the
initial point xo divided by the time step: V = [xo(t + At) —
xo()]/ At.

Calculated values of the wave number k, are strongly
dependent on the computational grid used in numerical simu-
lations. With the refinement grid, the values of ky converge to
the value necessary to obtain the prediction. As an example,
Table I gives values for wave numbers k(a;) calculated with
different grids and from the values of the lattice parameter a;
given by Eqs. (49) and (50).

TABLE I. Modeling predictions for wave numbers calculated for
different grids and various averaged procedures.

k(a)) k(az) k(ao) k(an) k(ap)

1.026 1.036

e mesh  k(ap) k(a)

0.1 regular 1.047 1.026 1.026 1.036 1.033
adapted 1.023 1.016 1.010 1.020 1.013 1.016 1.016

0.4 regular 1.169 1.169 1.1424 1.169 1.1555 1.1555 1.16
adapted 1.1284 1.1152 1.1010 1.1218 1.1080 1.1145 1.1148

0.6 regular 1.226 1.197 1.197 1211 1.197 1.211 1.206

adapted 1.195 1.180 1.161 1.187 1.170 1.178 1.178
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FIG. 6. (Color online) Velocity V of the PFC front versus
undercooling ¢ as given by the results of present modeling (points) in
comparison with the marginal stability predictions (curves), Egs. (45)
to (48).

C. Comparison

For the numerical calculations the initial condition was such
that ¢~o = 0 and ¢,— have been set to be random numbers
chosen between 0 and 0.01. The initial size of the system
was 1000 x 10, with a grid spacing of the initial regular mesh
h = 0.125 and a minimal grid spacing in the adapted mesh
as Amin = 1 x 107*, This grid was used to obtain the results
summarized in Table I. The size of this system is large enough
that steady state profiles were obtained before the boundary
conditions interfered.

Our computational domain has been chosen to be a
quasi-one-dimensional region to provide comparison to the
marginal stability analysis [22] in one-dimensional space. All
comparisons for the wavelength selection have been made for
the stripes. In the numerical simulations the stripes propagate
in the direction perpendicular to their geometrical axes.

The marginal stability results are only valid far from the
front in which the linearization is valid. For this reason
the comparison should work the best farthest from the front.
The inset in Fig. 5 gives an example of the peak positions
chosen for the study. A comparison of the numerically
calculated front velocity and wave number (dots in plots)
with the predictions of the marginal stability described by
Egs. (45) to (48) (lines in plots) are summarized in Figs. 6
and 7, respectively. It can be seen from Fig. 6 that the velocity
V obtained in the present modeling for the stripes’ propagation
is perfectly consistent with the front velocity described by the
criterion of marginal stability. The wave number k calculated
on the front of the modeled stripes is also consistent with &
selected on the front of the periodic pattern analytically pre-
dicted by the marginal stability criterion (Fig. 7). Although the
calculated wave numbers (see circles, diamonds, and squares
in Fig. 7) exhibit some deviations from the curves given by
the marginal stability criterion, they depend on their averaged
values obtained for different computational grids (see Table I)
and from the wavelengths for different peaks in a periodic
pattern on the front (see the inset in Fig. 5). As a result, the
wave numbers obtained in the present modeling have error bars
which include the curves given by the criterion of marginal
stability (see Fig. 7). Hence, the present numerical algorithm
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FIG. 7. (Color online) Wave number k ; selected at the PFC front
as a function of undercooling ¢. The present modeling results (points)
are compared to the predictions of marginal stability analysis (curves),
Eqgs. (45) to (48).

and its numerical realization exhibit quantitative agreement
with the results obtained from the marginal stability analysis
described by Egs. (45) to (48).

VIII. CONCLUSION

An unconditionally stable time integration algorithm for
the solution of the hyperbolic PFC model equation is pre-
sented. Variational formulation of the model has allowed
us to use a finite-element method for numerical simulation

PHYSICAL REVIEW E 88, 013310 (2013)

using standard C%-continuous Lagrange elements (available
in modern program packages). As a result, a second-order
accurate finite-element numerical scheme has been developed,
which is unconditionally stable and ensures that free energy
decreases as patterns evolve and become constant in the steady
state.

The numerical scheme was shown to give results consistent
with the phase diagram of the model constructed from a
one-mode approximation in the appropriate limit. Additionally
the scheme was shown to be quantitatively consistent with
the predictions of marginal stability theory for velocity and
wave-vector selection of a striped phase invading an unstable
homogeneous state. These results confirm the applicability of
the present algorithm and numerical scheme to theoretically
important and practically significant quantitative predictions.
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