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Self-organization and solution of shortest-path optimization problems with memristive networks
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We show that memristive networks, namely networks of resistors with memory, can efficiently solve shortest-
path optimization problems. Indeed, the presence of memory (time nonlocality) promotes self organization of
the network into the shortest possible path(s). We introduce a network entropy function to characterize the
self-organized evolution, show the solution of the shortest-path problem and demonstrate the healing property of
the solution path. Finally, we provide an algorithm to solve the traveling salesman problem. Similar considerations
apply to networks of memcapacitors and meminductors, and networks with memory in various dimensions.
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I. INTRODUCTION

Currently, much attention is being devoted to memory
circuit elements (memelements) [1,2] and their applications
in different domains of electronics [3]. In particular, comput-
ing with memelements [4,5]—memcomputing—has received
much attention because of the ability of network architectures
built out of memelements to store and process information on
the same physical platform [4–6]. This is a major conceptual
and practical departure from the present day architectures
based on the von Neumann machine concept [7]. The strength
of memcomputing is essentially based on the analog massively
parallel dynamics of many, if not all, memelements in the
network and the ability to recover the result(s) of the compu-
tation from the same computing units, much like the brain is
thought to operate [5,8]. Examples of approaches to compute
with memelements include neuromorphic computing with
memristive synapses [4,9–14], massively parallel computing
with memristive networks [8,15], logic with memory circuit
elements [4,6,16,17], and memristive cellular automata [18].

In order to realize this memcomputing paradigm some
criteria need to be satisfied. We have introduced and expended
on these criteria in Ref. [5]. These are

(i) scalable massively-parallel architecture with combined
information processing and storage,

(ii) sufficiently long information storage times,
(iii) the ability to initialize memory states,
(iv) mechanism(s) of collective dynamics, strong memory

content,
(v) the ability to read the final result (from relevant

memelements), and
(vi) robustness against small imperfections and noise.

One can show that the memcomputing schemes mentioned
above satisfy all or the majority of these criteria [5]. We also
note that although memristive devices [19] are the main focus
of present efforts, memcapacitive and meminductive devices
[1] are also of great promise because of their potential to
perform calculations at a minimal energy cost.

Previously, we demonstrated a maze problem solution using
memristive networks [8]. Clearly, all of the above requirements
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are satisfied within this approach [5]. In this paper we consider
a more complex case of the shortest-path optimization: the
shortest path optimization on a two-dimensional plane. In
fact, our approach and results can be easily extended to any
hyperplane in an N -dimensional space, with N > 1. The
difficulty inherent in this problem stems from the fact that
any two points of the plane are connected by multiple often
degenerate paths, which complicates the finding of a single
optimal solution. We show that random networks, without any
predefined symmetry directions, are more promising in this
regard. In addition, we suggest an algorithm that provides a
possible solution to the NP-hard traveling salesman problem.
A further development of the suggested algorithm may lead
to some quite interesting results on the long way [20] toward
finding more efficient solutions of this problem.

The paper is organized as follows. In Sec. II, we discuss es-
sential details of memcomputing schemes utilizing memristive
networks. Section III presents our studies of memcomputing
with symmetric (regular) networks. In particular, we show
that regular networks can find a unique solution if a pair of
specified nodes is located along a symmetry direction. In a
more general case, however, a degenerate solution is obtained.
Moreover, we demonstrate the healing property of the solution
path (Sec. III C). Section IV studies memcomputing with
random networks suitable to solve the shortest-path problem
in any direction (Sec. IV A). We also suggest an algorithm that
provides an approximate solution to the traveling salesman
problem (Sec. IV B). Finally, we conclude in Sec. V.

II. MEMCOMPUTING WITH MEMRISTIVE NETWORKS

A. Memristive processor

A memristive processor (network) consists of a collection of
grid points on a hyperplane of N -dimensional space (N > 1)
connected by basic units involving memristive elements and
traditional elements, such as switches (see Fig. 1). Below, we
consider different organizations of the grid points including
a regular square array such as that shown in Fig. 1 and
a random one on a (two-dimensional) 2D plane. Although
not strictly necessary, in the examples we have chosen the
design of each basic unit to be symmetric (involving two
bipolar memristive elements) so as to conveniently provide
independency of the circuit operation on the sign of the applied
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FIG. 1. An example of a memristive processor consisting of a
network of memristive elements in which each grid point is attached
to several basic units. Each basic unit involves two memristive devices
connected symmetrically (in parallel) and two switches (field-effect
transistors). The switches provide access to individual memristive
devices, while in-parallel connection symmetrizes the response of
bipolar memristive elements.

voltage. We also introduce switches for two main functions: (i)
to provide independent access to each individual memristive
device, and (ii) to define the network topology, if needed (see
Ref. [8] for an example). Thus, the architecture of Fig. 1
provides access to each individual memristive device for the
purpose of initialization and reading of the calculation result.
The calculation consists in the evolution of the network state,
defined as the collection of states of all memristive devices,
when an appropriate pulse sequence is applied to a subset of
grid points.

B. Algorithms

Computation algorithms for memristive processors involve
three standard stages: initialization, calculation, and result
reading. In this work, we focus on solving the shortest path and
traveling salesman problems. The corresponding algorithms
are formulated below.

1. The shortest-path problem

In the shortest-path problem, we want to find the shortest
path between two specified (input and output) nodes [such as,
for example, those shown by dark red (dark gray) arrows in
Figs. 2(a) or 2(b)] in the network. The algorithm used for this
calculation is the following:

Initialization stage. All memristive devices are pre-
initialized into the off (high-resistance) state.

Calculation stage. A voltage pulse of a suitable amplitude
and duration is applied to the pair of specified nodes.

Calculation reading. The shortest path is given by a subset
of basic units in their on (low-resistance) state [21].

2. Traveling salesman problem

In the traveling salesman problem [20], a salesman is given
a set of cities to visit. The objective of the salesman is to
find a path, which minimizes the round-trip distance: each
of the cities should be visited only once. In order to solve

this problem, we will consider a two-dimensional memristive
network and select a set of nodes representing all the cities
in the set. The actual geographic locations of the cities will
be taken into account for the selection of nodes. The basic
algorithm for the traveling salesman problem includes the
following steps.

Initialization stage. All memristive devices are preinitial-
ized into the off (high-resistance) state.

Calculation stage. A sequence of square voltage pulses
of random polarity is applied to randomly selected pairs of
nodes representing the cities. During this stage, low-resistance
paths in the network will start to develop. Importantly, the
memristive network will retain memory on the previously
applied pulses, and the subsequent network evolution will
be largely based on the topology of the already developed
low-memristance paths. In this way, an optimized problem
solution emerges. Moreover, we anticipate that the path
formation in the network occurs hierarchically: at shorter
times, the low memristance paths between closely spaced
cities are formed and, at longer times, this different group
of cities becomes connected. As the electric current tends to
flow through the shortest/least resistive path, we expect that the
proposed algorithm works out the traveling salesman problem,
at least in some cases.

Calculation reading. The shortest path is given by a subset
of basic units in their on (low-resistance) state.

III. SELF-ORGANIZATION AND HEALING
IN REGULAR NETWORKS

A. Self-organization

We now provide an explicit example of computing with
memelements, specifically with regular memristive networks,
in order to exemplify even further the criteria given above,
and the possibilities offered by this paradigm. Details of the
specific memristive systems used and the simulation details
can be found in Appendix.

Figure 2(a) shows the initial state of the network when all
memristive devices are in their OFF states. At the initial mo-
ment of time t = 0, a single constant amplitude voltage pulse is
applied to the input/output nodes shown by dark red (dark gray)
arrows in Fig. 2(a). The final state of the memristive network
(the calculation result) is presented in Fig. 2(b). Clearly, two
specified nodes are connected by a chain of memristive devices
in the ON state giving the shortest-path problem solution. Note
that Figs. 2(a) and 2(b) depict the memristance of each basic
unit consisting of two memristive devices.

Let us now consider the network evolution, the dynamics of
the calculation stage, in more detail. First of all, we would like
to mention a similarity between the process of computing as
performed by the memristive processor and the ant colony
optimization algorithm [22,23]. The latter is an adaptable
algorithm inspired by the observation that ants, upon finding
food, mark their trails by pheromones thus attracting other ants
in order to reinforce the trail closest to their nest. A similar
type of reinforcement is observed in the memristive network
dynamics. Figure 2(c) shows the current distribution in the
network at the initial moment of time when all the memristive
devices are in the OFF state. In this case, the current flows
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FIG. 2. (Color online) Solution of the shortest path problem for the pair of nodes indicated by dark red (dark gray) arrows in (a) and (b) in
a 11×11 memristive network. (a) Initial and (b) final states of the memristive network. Here, the memristance of each basic unit (involving two
memristive devices) is represented by a color. The vertical dark red (dark gray) dashed line shows the network cross section used in entropy
calculations. Distributions of electron current corresponding to (a) and (b) are shown in (c) and (d), respectively. See Appendix for details of
all calculations.

in multiple paths. However, since the rate of memristance
change is proportional to the current, the memristance of the
least resistive path will decrease faster attracting more and
more current. Therefore, the current flowing through the least
resistive path will reinforce this path, similarly to the trail
reinforcement of the ant colony, see Fig. 2(d).

Moreover, it is interesting to note that the problem solution
develops gradually, starting from both the specified nodes.
This is clearly seen in Fig. 3(a) that presents the rate of change
of the memristances along the solution path as a function
of time. Note also that the reinforcement of the solution is
not supervised, thus implying that the shortest path arises
spontaneously as a self-organized process. This is an important
fundamental result: it is the presence of memory, namely time
nonlocality, in the system that leads to self-organization of the
dynamics: no memory, no self-organization.

B. Network entropy

In order to quantify the system evolution even further,
we define a network entropy with respect to currents in the
network (similarly, we can use memristances for this purpose).

For example, by considering currents through a vertical cross
section of the network at its center [see Fig. 2(b)], we can
define the network cross section entropy as [24]

σi(t) = −
N−1∑
j=0

Ĩij (t)ln(Ĩij (t)), (1)

where N is the number of basic units connected in the
horizontal direction [crossed by the dark red (dark gray) dashed
line in Fig. 2(b)], j is the index of the row of horizontal
basic units crossed by the cross section, Ĩij = Iij /Itot is the
normalized current through a horizontally connected basic
unit, and Itot = ∑N−1

j=0 Iij . Figure 3(b) demonstrates (with
N = 11 and i = 6) that the network entropy decreases in time
as the computation proceeds. In statistical physics, the entropy
is related to the number of states available to the system. Here,
its decrease can be thus interpreted as due to the decrease in
the number of paths available for the current, with a more
pronounced decrease the larger the memory content in the
system (as represented by the ratio Roff/Ron). Alternatively,
one can consider an entropy defined for the complete network,
namely, σ (t) = −∑

ij Ĩij (t)ln(Ĩij (t)), where the summation is

013305-3



YURIY V. PERSHIN AND MASSIMILIANO DI VENTRA PHYSICAL REVIEW E 88, 013305 (2013)

FIG. 3. (Color online) (a) Dynamics of resistance switching
within the calculation stage corresponding to the shortest-path
problem solution presented in Fig. 2. This plot shows that the
solution emerges from both sides and propagates to the center. (b)
Network entropy as a function of time from Eq. (1) for networks of
different memory content. A slight increase of the entropy for the
RM

off/R
M
on = 10 curve at the time of about 0.4 (arb. units) is due to a

delayed partial switching of four vertical units directly connected to
the input/output nodes.

performed over all edges in the network. Qualitatively, its time
dependence is expected to be close to that shown in Fig. 3(b)
for the cross section entropy.

In order to show that networks with higher memory content
provide a better solution, we perform a calculation similar to
that presented in Fig. 2 assuming, however, a much smaller
difference between RM

on and RM
off of each memristive device

(RM
off/R

M
on = 1.25 compared to RM

off/R
M
on = 20 used in the

previous calculation). Figure 4 demonstrates that now the
solution of the shortest-path problem can not be found exactly
at the given bias. In fact, in addition to the switching of
memristive devices directly connecting the input and output
nodes, many other memristive devices are also switched
into the ON state (see Fig. 4). This example demonstrates
the importance of the strong memory content requirement
[criterion (iv) discussed in the Introduction, see also Ref. [5]].

In the general case, however, when the selected nodes are
located along an arbitrary direction (different from the network
symmetry directions), regular networks fail to uniquely find

FIG. 4. (Color online) Solution of the shortest-path problem by a
network of low memory content, RM

off/R
M
on = 1.25.

the problem solution. We demonstrate this feature in Fig. 5
showing a shortest-path problem solution, which is doubly
degenerate and developed along the symmetry directions of
the network. This is a direct consequence of the network
symmetry. Therefore, we expect that networks without any
local or global symmetry (random networks) or ordered
networks but not periodic, such as quasiperiodic networks
[25], are best candidates to solve shortest-path optimization
problems on the hyperplane. In Sec. IV below we indeed show
that random networks can find the proper solution for arbitrary
oriented selected nodes.

C. Healing of the damaged solution

In order to analyze criterion (vi) discussed in the Intro-
duction in more detail, let us now damage the shortest-path
problem solution shown in Fig. 2(b) (as well as the network) by
removing three horizontal basic units in the central part of the
network as shown in Fig. 6(a). We note that, due to memory,
the memristive network has a remarkable ability to repair
damaged solutions—the healing ability we have mentioned

FIG. 5. (Color online) Solution of the shortest-path problem by a
network of high memory content, RM

off/R
M
on = 10, when the input and

output nodes (shown by arrows) are selected not along a symmetry
direction. Two possible solutions are found.
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FIG. 6. (Color online) Healing (b) of a damaged (a) solution. To
heal the solution damage in (a), a single square pulse of appropriate
width and duration is applied to the input and output nodes shown by
the dark red (dark gray) arrows in (b).

above. Indeed, this property is close to the self-healing ability
that can be ascribed to systems or processes, which by nature
or by design tend to correct any disturbances.

The healing of the damaged solution is performed by
applying a single pulse of a certain amplitude and duration
to the input and output nodes. The result presented in Fig. 6(b)
shows that a new path connecting two pieces of the initial
shortest-path solution develops below the damaged region. The
three missing connections have been removed intentionally in
an asymmetric fashion in order to show that the healing occurs
along the shortest possible path around the damaged region.

It is easy to understand the origin of this healing process:
as soon as we switch on the pulse between the input and
the output nodes, the current will flow through all possible
paths. However, the shortest one is again the one that is mostly
affected, and thus reinforced during dynamics.

The stability of the shortest-path problem solution to small
imperfections of the system (e.g., finite width distributions
of threshold current, limiting values of memristance, etc.) is
evident, and therefore does not deserve a closer inspection.

IV. RANDOM NETWORKS

Let us now discuss the use of networks with no local/global
symmetry in the solution of optimization problems. Such

random networks are generated using the following algorithm.
The nodes are placed randomly in a Na × Na square area
where N is a number and a is a unit length with the constraint
that no two nodes can be closer than 0.9a. After that, any two
nodes located closer than 1.5a are connected by a memristive
edge. We note that the random networks obtained in this way
may involve some local intersections of edges that do not play
any significant role in the network dynamics, but in principle
could be realized on a chip. Therefore, we do not bother with
resolving the crossings. Moreover, we assume that each edge
is of a similar structure to that shown in Fig. 1 and, on the
hardware level, all operations such as initialization, dynamics,
and reading of the final results are performed as described in
Sec. II. Therefore, the only difference between regular and
random networks is in the network topology.

A. The shortest-path problem

Figure 7 shows solutions of the shortest-path problem
found with random networks for two different choices of
specified nodes. In both cases, the solution is very close to
the shortest geometrical solution. However, in some cases,
small deviations from the shortest solution are possible such
as a small bump in Fig. 7(b) starting at the second node of
the solution path bypassing an area of closely spaced nodes
(follow the solution path from the left bottom specified node).
We associate such deviations with local inevitable fluctuations
of network resistivity. Since, initially, each edge in the network
is of the same resistance, longer edges are more likely to be

FIG. 7. (Color online) Solution of the shortest-path problem by a
random 20a × 20a network for a horizontal (a) and diagonal (b)
choice of the specified nodes (large circles). These solutions are
obtained for RM

off/R
M
on = 100.
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FIG. 8. (Color online) Solving the traveling salesman problem
using a random 40a × 40a network: (a) initial state of the network
with cities denoted by large circles, (b) initial solution, (c) improved
solution [dark red (dark gray) lines after post processing where the
dead ends (light gray lines) have been eliminated. This solution
is obtained for a network with RM

off/R
M
on = 100. The final solution

of the traveling salesman problem is represented by edges in Ron

state in (c).

involved in the solution path as they offer less resistance to the
current flow.

Clearly, a solution degeneracy or near degeneracy is also
possible with random networks. For example, Fig. 7(a) demon-
strates a solution splitting in its central part. In some cases, the
solution near-degeneracy (for example, two parallel segments
of different length) can be removed by a post-processing
procedure in which the first problem solution (the set of edges
in the Ron state) is used as a new network for the shortest-path
problem that is subsequently solved following exactly the
same algorithm as outlined in Sec. II B1. Additionally, such
post-processing procedure (that actually can be applied several
times) removes all possible dead ends as well as segments
disconnected from the solution path that occasionally are

switched into Ron state [an example of a dead end is the edge
to above the left specified node in Fig. 7(a)].

B. Traveling salesman problem

Let us now consider the traveling salesman problem. For
this purpose we use the algorithm described in Sec. II B2, and
we apply it twice. First of all, we apply this algorithm to the
original network [Fig. 8(a)] and find the solution (that we call
as the initial solution S1) presented in Fig. 8(b). This solution,
however, contains some disconnected edges in the Ron states
and dead ends (paths with single connection). In order to
improve on the initial solution, we use a post-processing
procedure consisting in the following. We form a reduced
network consisting of all edges of S1 that are in the Ron

state and nodes connected by these edges. Then, the traveling
salesmen algorithm (Sec. II B2) is applied to the reduced
network. The total number of post-processing operations
depends on the network complexity. Networks presented in
this paper normally require one to two operations of this type.
The final solution is represented in Fig. 8(c) by edges in Ron

state [connected by dark red (dark gray) lines in the same
figure]. This is the correct solution of the traveling salesman
problem for the given configuration of cities.

Currently, however, it is difficult to identify strict mathe-
matical conditions when the traveling salesman problem can
be correctly solved by our approach and when it can not be
solved. But, even in the cases when the complete solution can
not be found, it is quite possible that the suggested algorithm
will provide partial solutions and thus tremendously reduce
the number of possibilities to verify. Understanding these
limitations will be a subject of a future study.

V. CONCLUSION

In conclusion, we have studied the possibility to solve
shortest-path optimization problems with memristive net-
works. Such approach is related to the concept of memcom-
puting: storing and processing of information on the same
physical platform [5]. There are six main criteria that need to
be satisfied in order to realize such a paradigm and it is clear
that memristive networks considered in this paper satisfy all of
them. Unlike other promising but more speculative proposals,
like quantum computing, memcomputing is already a practical
reality, at least in regard to some applications, such as
digital logic [4,6,16,17]. It bypasses several of the bottlenecks
of present-day computing architectures and its constitutive
units—memristors, memcapacitors, and meminductors—are
already widely available. Indeed, these elements emerge quite
naturally with increasing miniaturization of electronic devices.
The computational possibilities offered by this paradigm
are varied, and due to its tantalizing similarities both with
some features of the brain as well as with the collective
properties of colonies of living organisms, it promises to open
new directions in neuromorphic architectures and biological
studies.

In this work we have suggested and studied the im-
plementation of the shortest-path and traveling salesmen
problem algorithms utilizing memristive networks. Intuitively,
the shortest-path calculation can be understood as follows.

013305-6



SELF-ORGANIZATION AND SOLUTION OF SHORTEST- . . . PHYSICAL REVIEW E 88, 013305 (2013)

Typically, the shortest path has the lowest resistance. There-
fore, memristive devices along the shortest path switch into
their low memristance state faster than all other devices in
the network (since the switching rate is proportional to the
current). This process reinforces the current along the shortest
path finally resulting in a chain of memristive devices in the
low memristance state along the shortest path only.

Regarding the traveling salesman problem, the constraint
of passing through all the cities is satisfied a priori in our
algorithm as we apply multiple pulses between randomly
selected pairs of cities. In this way, the position of each city
is taken into account in the problem solution. This occurs,
however, in a nontrivial way whose explanation is hidden
in corresponding equations of circuit dynamics. However,
we understand intuitively that the problem solution is found
hierarchically. At shorter times, the low memristance paths are
formed between closely spaced cities. At longer times, these
clusters of cities become connected. As the electric current
tends to flow through the shortest/least resistive path, it is
expected that the proposed algorithm works out approximately
the traveling salesman problem.

The main advantage of our approach is based on the
analog parallel dynamics of many memristive devices. We
have reported certain limitations of periodic networks that
in some cases provide degenerate solutions. Random and
quasiperiodic networks without any (or a few) symmetries
are more promising in this regard. We have considered the
network evolution that can be conveniently described by a
network entropy. We anticipate that networks with memory
have a wide range of applications beyond the shortest-path
problems. In particular, such networks can be used to simulate
problem solving abilities of the human brain, the effect and
progress of mental illness, etc.

ACKNOWLEDGMENT

This work has been partially supported by NSF Grants No.
DMR-0802830 and No. ECCS-1202383, and the Center for
Magnetic Recording Research at UCSD.

APPENDIX: SIMULATIONS

The numerical results presented in this paper have been
obtained for a network of current-controlled bipolar mem-
ristive devices with threshold. Each memristive device is

described by

VM = R (x) IM, (A1)

and

dx

dt
=

{ 0 for |IM | < It (A2)

sgn(IM )γ (|IM | − It ) for |IM | � It (A3)

where VM and IM = q̇(t) denote the (time-dependent) voltage
and current across the device, respectively, R(x) ≡ x is the
memristance that changes between two limiting values RM

on and
RM

off , x is the internal state variable, γ is a constant describing
the rate of change of memristance when the magnitude of
the electric current IM exceeds the threshold current It ; and
sgn is the sign function. We note that a current-controlled
threshold-type memristive device model was used to describe
switching in bipolar memristive devices [26]. Moreover,
many models of voltage-controlled memristive devices can
be easily reformulated in the current-controlled form [3].
Equations (A1)–(A3) were directly used in our studies of the
shortest-path problem. In the case of the traveling salesman
problem, an absolute value of voltage was applied to each
basic unit (edge) in order to avoid back-and-forth switchings
when random polarity voltage is applied. Such an approach
can be easily implemented in electronics.

All numerical results were obtained for the follow-
ing model parameters: RM

off = 200�, Rij (t = 0) = RM
off , γ =

106�/(s A), It = 10 mA. Figures 2, 3(a), 5, and 6 are
obtained with RM

on = 10� and V = 6V of applied volt-
age; Fig. 3(b) is found using V = 6,6.75,10,15.25V for
RM

off/R
M
on = 20,10,4,1.25 curves, respectively; Fig. 4 is plotted

with RM
on = 160� and V = 15.25V. Note that RM

on and RM
off

are related to individual memristive devices, while Ron and
Roff (used in figures) represent limiting values of memristance
of the basic unit. While the OFF state of the basic unit is
attained when both memristive devices are in their OFF states,
the ON state of the basic unit corresponds to the ON, OFF
combination of single device states. In our simulations, at each
time step, the potential at all grid points is found as a solution
of Kirchhoff’s current law equations obtained using a sparse
matrix technique. The corresponding change in the memristive
states was computed using Eq. (A3). The width of the voltage
pulse is selected sufficiently long to reach the steady state in
each calculation.
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