
PHYSICAL REVIEW E 88, 013304 (2013)

Extended lattice Boltzmann method for numerical simulation of thermal phase
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In this article, a method based on the multiphase lattice Boltzmann framework is presented which is applicable
to liquid-vapor phase-change phenomena. Both liquid and vapor phases are assumed to be incompressible. For
phase changes occurring at the phase interface, the divergence-free condition of the velocity field is no longer
satisfied due to the gas volume generated by vaporization or fluid volume generated by condensation. Thus,
we extend a previous model by a suitable equation to account for the finite divergence of the velocity field
within the interface region. Furthermore, the convective Cahn-Hilliard equation is extended to take into account
vaporization effects. In a first step, a D1Q3 LB model is constructed and validated against the analytical solution
of a one-dimensional Stefan problem for different density ratios. Finally the model is extended to two dimensions
(D2Q9) to simulate droplet evaporation. We demonstrate that the results obtained by this approach are in good
agreement with theory.
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I. INTRODUCTION

Two-phase gas-liquid flows including phase changes play
an important role in many natural processes such as the
weather (e.g., fog or evaporation of water across the soil-
atmosphere interface) as well as in industrial applications such
as combustion engines, heat exchangers, boilers, dryers, etc.
Experimental investigations as well as numerical simulations
will lead to better understanding of these systems. Due to
the potential multitude of the relevant spatial and temporal
scales of phase-change processes, one frequently encounters
technical barriers to obtaining accurate experimental measure-
ments. The development of numerical methods to be validated
by preliminary experimental measurements is a powerful
complementary approach to gain in-depth insight into the
fundamental physics of phase change in vapor-liquid flows
(i.e., boiling, evaporation, and condensation).

Different methods for the direct numerical simulation of
gas-liquid flows including phase changes have been presented
over the past decades. For Navier-Stokes solvers, the volume
of fluid method [1], the level set method [2], and front tracking
methods [3] are the most common numerical strategies to
describe the dynamics of the phase interface. Despite the
growing body of research on the aforementioned flows, the
direct simulation of two-phase flows with (reactive) dynamic
interfaces is still a challenging task. The major difficulties are
due to the coupling of many effects such as interfacial mass
transfer, latent heat, and surface tension in accordance with the
relevant conservation laws of mass, momentum, and energy.

The lattice Boltzmann method (LBM) which is based on
mesoscopic kinetic equations seems to be a promising method
for dealing with interfacial flows. The mesoscopic nature of
LBM aims to include only a minimum amount of microscopic
details to reproduce interfacial physics and macroscopic flow
hydrodynamics in a consistent manner. Therefore, it can
address length scales between macroscale and microscale and
simulate phase interfaces from a more fundamental basis.

During the last decades, various lattice Boltzmann (LB)
models have been proposed for simulation of complex fluids,

especially multiphase and multicomponent flows. The earlier
LB models of multiphase flows had many drawbacks when
applying them to practical problems such as stability problems
for high density and viscosity ratios as well as large spurious
currents in the vicinity of the interface due to inconsistencies in
the numerical discretization of different parts of the pressure
tensor. During the last decade different strategies have been
proposed to cure the aforementioned deficiencies [4–6]. In
spite of many successes that have been achieved by modern
LB multiphase models, the thermodynamically consistent
simulation of thermal phase changes in a gas-liquid system
has rarely been addressed in the LBM related literature. Many
physical problems such as rising bubbles, falling droplets,
droplet coalescence, wall wetting, and contact line dynamics
have been simulated with different LB models to date. Yet,
a comprehensive study of thermal phase-change phenomena
based on thermodynamically consistent LBM approaches
seems to be lacking.

One of the first attempts in this field can be found in
Palmer and Rector [7]. They incorporated thermal effects
in a two-phase lattice Boltzmann framework and used the
free-energy model of Swift et al. [8] in combination with an
internal energy distribution function thermal model and solved
some simple examples such as evaporation of a thin liquid film
from a heated plate and evaporation of an isolated droplet.
Later they pointed out that an error in reducing the data from
some of their simulations had caused them to conclude that the
algorithm could consistently model evaporation of a fluid [9].
Their further analysis proved that their LBM algorithm cannot
be used for quantitative simulations of evaporation or other
thermally driven phase changes.

Lee and Lin proposed a pressure evolution equation LBM
formulation for an isothermal two-phase fluid flow with phase
changes [10]. The pressure evolution equation was derived
by taking into account the time derivative of the equation
of state for nonideal gases. This model permits compress-
ibility of the fluid at phase interfaces when phase change
occurs due to pressurization and depressurization. They
applied the model to simulate a one-dimensional isothermal
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phase-change process and their results were in good agreement
with analytical solutions. According to the first author’s private
communications with Lee, this model has not been further
developed and extended to two-dimensional and more practical
cases because of its limited stability.

Zhang and Chen presented a pseudopotential model (based
on the approach by Shan-Chen), capable of simulating thermal
multiphase flows [11]. They claimed that their approach is
thermodynamically consistent at the macroscopic level. The
evolution of temperature was modeled by solving the scalar
energy transport equation with a finite difference scheme. The
liquid-vapor boiling process, including liquid-vapor formation
and coalescence together with a coupling of temperature,
was simulated. Yet, only qualitative results were reported and
no validation or quantitative comparisons with experimental
or analytical data were provided. Instead, the authors listed
necessary improvements for further studies including a more
physical treatment of the heat capacity and latent heat, incorpo-
ration of more realistic equations of state (EOS) instead of the
van der Waals EOS, improvement with respect to numerical
stability to achieve significantly higher density ratio and lower
viscosity, and comparisons with experimental results.

Dong et al. [12] combined the multiphase LBM of Zheng
et al. [13] with a passive scalar LB thermal model to investigate
the growth and deformation of a rising vapor bubble in a
superheated liquid. In the multiphase model of Zheng et al. the
convective Cahn-Hilliard equation is employed for interface
capturing. However, it has been demonstrated that Zheng’s
model is only valid for uniform densities and its application
for large density ratios is questionable [14]. Dong et al.
used a passive scalar approach for evaluating the temperature
variations and a separate distribution function was employed
for recovering the heat equation. In their model the phase
change is considered as a change of phase order parameter and
a source term was added to the Cahn-Hilliard equation. Later
in 2010, they employed this model to simulate bubble growth
on and departure from a superheated wall [15]. Their modeling
approach has two main drawbacks. First, the application
of Zheng’s model to problems with high density ratios is
not consistent. Secondly, they only added a source term to
the Cahn-Hilliard equation to track the interface, but the
momentum equation remained unchanged. This means that
the phase-change process only moves the interface location
without any velocity change in the computational domain.
Physically the process of phase change should induce a net
momentum into the flow field which has not been considered
in their model.

Márkus and Házi [16] have improved the model of Zhang
and Chen [11] and performed a quantitative analysis. They
improved the discretization of interparticle potential force in
order to increase stability. A passive scalar thermal LBM has
been incorporated in their model. They utilized macroscopic
jump conditions to evaluate the accuracy of their results
for the one-dimensional problem of evaporation through a
plane-phase interface. They also extended the model to two
dimensions and investigated heterogeneous boiling. Based on
their results, important features of the boiling process could
be captured qualitatively by this model.

It seems that two different approaches can be employed for
simulation of phase-change process in a two-phase fluid flow.

One can model the phase transition in a thermodynamically
consistent manner which means that the nonideal gas equation
of state (EOS) governs the equilibrium state between liquid
and vapor phases, respectively. In this context, the change in
pressure or temperature alters the equilibrium and the phase
transition will be automatically controlled via the equation
of state. Most of the LBMs discussed above belong to this
category [7,10,11,16].

Another approach is similar to the idea which is incor-
porated in the volume of fluid (VOF), level set, and some
other front tracking methods for phase-change modeling. In
this concept the gas and liquid phases are considered as an
immiscible and incompressible fluid system. The mass transfer
rate through the interface is estimated by a suitable correlation
related to the temperature gradient or vapor mass fraction
(species concentration) gradient. One example of such an LBM
framework is the work of Dong et al. [12]. However, their
formalism and results have problems as discussed above.

In addition to partial inconsistencies such as neglecting
volumetric changes at the interfaces due to phase changes,
according to our test, the models described above suffer from
numerical instability at high density and viscosity ratios which
limits their applications in most practical cases.

Recently Lee proposed a remarkable lattice Boltzmann
multiphase scheme based on the Cahn-Hilliard diffuse inter-
face theory [17] which overcomes most of the limitations
which previous LB multiphase models faced. As a result
of using the potential form of the intermolecular force for
nonideal fluids and compact isotropic discretization of this
forcing term, spurious currents could be reduced to round-off
and stable solutions are obtained for density ratios up to
1:1000, at least for low Mach numbers. Recently Li et al. [18]
have shown that LB Cahn-Hilliard-like interface capturing
methods contain an additional force term in the recovered
momentum equation. The force has zero value in bulk phases
but nonzero across the interface, so it can be considered as
an additional interfacial force. The effects of this unwanted
interfacial force become more significant when the velocity or
the Reynolds number increases.

In this paper, the binary-fluid model of Lee is extended
to simulate thermal phase-change phenomena in two-phase
fluid flows. Both liquid and gas phases are considered to
be incompressible. However, the phase-change process is
modeled by incorporating a proper source term at the phase
interface. First the extension of the classical convective Chan-
Hilliard equation in the presence of phase change is presented.
Then this modified evolution equation is employed in the
multiphase LB framework of Lee. The developed model is
successfully validated for a one-dimensional Stefan problem
with different density ratios up to 1:1000. Finally the ability
of the model to simulate two-dimensional droplet evaporation
is tested.

II. MATHEMATICAL MODELING

A. Extension of convective Cahn-Hilliard equations

Consider the system of two incompressible and immiscible
fluids of different bulk density (i.e., ρI as liquid phase density
and ρg as gas phase density). Similar to the volume of
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fluid (VOF) method, the two phases are distinguished by
their composition in a volume element of the domain. This
composition C takes a value of 1 in the liquid phase and a lower
value in the gas phase (0 � C � 1). So the local densities (ρ̃i)
are related to bulk densities (ρI ) by

ρ̃l = Cρl, ρ̃g = (1 − C) ρg. (1)

The local averaged density is denoted by ρ = Cρl +
(1 − C) ρg .

The continuity equation for component i may be written as

∂ρ̃i

∂t
+ ∇ · ni = ±ṁ′′′ (i = l,g) , (2)

where ni is the mass flow rate (per unit volume) of the
component i and ṁ′′′ denotes the volumetric source or sink
due to phase changes. In the bulk region, the mass flow is only
attributed to advection, thus ni = ρ̃iu where u is the volume
averaged velocity of the flow. In interfacial regions, a diffusive
flow may exist as a result of the smooth transition of the
composition between the different phases. This diffusive mass
flow is indicated by −ρiji , where ji is the volume diffusive
flow rate. Thus the total mass flow rate of component i is
expressed as [19]

ni = ρ̃iu − ρiji . (3)

Equation (2) can be written in terms of C for each phase by
recalling Eq. (1):

∂C

∂t
+ ∇ · (uC) − ∇ · jl

= − ṁ′′′

ρl

for the liquid phase, and (4)

∂ (1 − C)

∂t
+ ∇ · [u (1 − C)] − ∇ · jg

= ṁ′′′

ρg

for the gas phase. (5)

If the diffusive flow rate is only related to compositions [19],
jl = −jg = j. Thus, the divergence of velocity field can be
obtained from Eqs. (4) and (5):

∇ · u = ṁ′′′
(

1

ρg

− 1

ρl

)
. (6)

Note that in the absence of any phase change, the volumetric
source vanishes and the divergence-free condition of the
velocity field will be satisfied.

Cahn and Hilliard assumed that the diffusive flow rate is
proportional to the gradient of chemical potential [17], say j =
M∇μ where M > 0 is the mobility. They related the mixing
energy density of an isothermal system to composition by
Emix (C,∇C) = E0 (C) + κ |∇C|2 /2, where E0 = βC2(1 −
C)2 is the bulk energy. The derivative of E0 with respect to
C gives the classical part of the chemical potential, i.e., μ0 =
∂CE0. The equilibrium profile between two phases may be
obtained by minimizing the mixing energy. This will lead to
the following equation for the chemical potential μ which is
used to determine the diffusive flow rate:

μ = μ0 − κ∇2C. (7)

For a detailed explanation about mixing energy and parameters
such as κ and β, see [6,17].

Finally the behavior of the binary-fluids system is governed
by the transport equation of composition C as

∂C

∂t
+ ∇ · (uC) = ∇ · (M∇μ) − ṁ′′′

ρl

. (8)

In the case of zero volumetric source term, ∇ · u and ṁ′′′ vanish
and Eq. (8) reduces to the classical convective Cahn-Hilliard
equation. The calculation of ṁ′′′ will be presented later.

B. Lattice Boltzmann equations for the flow field

By incorporating the intermolecular interaction force, the
discrete Boltzmann equation (DBE) for the transport of density
and momentum of a nonideal fluid can be written as [17]

Dfα

Dt
= ∂fα

∂t
+ eα · ∇fα = −1

λ

(
fα − f eq

α

)

+ 1

ρc2
s

(eα − u) · Ff eq
α , (9)

where fα are the particle distribution functions, eα is the
microscopic particle velocity with discrete index α, ρ is the
density, u is the volume averaged velocity, c2

s is the speed of
sound, λ is the relaxation time, and f

eq
α is the equilibrium

distribution function:

f eq
α = wαρ

[
1 + ea · u

c2
s

+ (ea · u)2

2c4
s

− (u · u)

2c2
s

]
, (10)

where wα is the weight factor determined from lattice
structure. The external force F representing the intermolecular
interaction and nonideal gas effects can be expressed as

F = ∇ρc2
s − ∇pth + ρκ∇∇2ρ, (11)

where pth is the thermodynamic pressure and ρκ∇∇2ρ is
responsible for surface tension effects. Equation (11) is the
pressure form of the external force. Lee [17] has shown that
by employing the potential form of the external force instead of
the pressure form and higher-order finite difference treatment,
parasitic currents are tamed substantially. For binary fluids,
the external force F is computed by replacing the density by
the composition C and taking the free energy of the system
into account. Furthermore, Lee included the hydrodynamic
pressure (ph) gradient to the forcing term which enforces
incompressibility:

F = ∇ρc2
s − ∇ph − C∇μ. (12)

The total pressure can be assumed as the sum of the thermody-
namic pressure, the hydrodynamic pressure, and the pressure
contribution due to curvature of the phase interface [17]:

ptot = pth + ph − κC∇2C + 1
2κ |∇C|2 . (13)

The DBE of Eq. (9) evolves the density and momentum. One
can evolve the pressure instead of the density by introducing
a new distribution function as

gα = fαc2
s + (

ph − ρc2
s

)
�α (0) , (14)

where �α (u) = f
eq
α

ρ
. The DBE of the new distribution function

gα can be found by taking the total derivative of Eq. (14):

Dgα

Dt
= c2

s

Dfα

Dt
+

(
Dph

Dt
− c2

s

Dρ

Dt

)
�α (0) . (15)
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The total derivative is expressed as Dt () = ∂t () + eα · ∇ ().
Lee assumed the divergence-free condition of the velocity field
and by using the continuity equation [i.e., ∂t (ρ) + ∇ · (ρu) =
0], the total derivatives of Eq. (15) can be stated as

Dρ

Dt
= (eα − u) · ∇ρ,

Dph

Dt
= (eα − u) · ∇ph. (16)

When phase change occurs at the interface, the divergence-free
condition of the velocity is no longer satisfied. Thus the total
derivatives of Eq. (16) will be changed. For simplicity we
assume that the phase change has no effect on the incompress-
ibility of two phases and does not affect the hydrodynamic
pressure, but density would be changed due to phase transition.
Hence the total derivative of the hydrodynamic pressure
remains the same as Eq. (16) and by combining the continuity
equation and Eq. (6), the total derivative of the density can be
computed as

Dρ

Dt
= (eα − u) · ∇ρ − ρ∇ · u

= (eα − u) · ∇ρ − ṁ′′′ρ
(

1

ρg

− 1

ρl

)
. (17)

Finally the DBE for the evolution of the hydrodynamic
pressure and momentum is as follows:

∂gα

∂t
+ eα · ∇ga = −1

λ

(
gα − geq

α

) + (eα − u)

· {∇ρc2
s [�α − �α (0)] − C∇μ�α

}

+ ρc2
s ṁ

′′′
(

1

ρg

− 1

ρl

)
�α (0) , (18)

where the new equilibrium distribution function is

geq
α = f eq

α c2
c + (

ph − ρc2
c

)
�α (0)

= wα

{
ph + ρc2

c

[
ea · u
c2
s

+ (ea · u)2

2c4
s

− (u · u)

2c2
s

]}
. (19)

In the derivation of Eq. (18), the gradient of hydrody-
namic pressure is neglected. This is due to the fact that
in low Mach number flows the hydrodynamic pressure is
assumed to be ph ≈ O(Ma2), so the gradient term (ea − u) ·
∇ph[�α − �α(0)] ≈ O(Ma3) can be neglected.

The lattice Boltzmann equation (LBE) of Eq. (18) is derived
by applying a trapezoidal integration along characteristics over
time step δt as:

ḡα (x + eαδt,t + δt) − ḡα (x,t)

= − 1

τ + 0.5

(
ḡα − ḡeq

α

)∣∣∣∣
(x,t)

+ δt (eα − u)

· {∇ρc2
s [�α − �α (0)] − C∇μ�α

}
(x,t)

+δt

2
ρc2

s ṁ
′′′

(
1

ρg

− 1

ρl

)
�α (0)

∣∣∣∣
(x,t)

+ δt

2
ρc2

s ṁ
′′′

(
1

ρg

− 1

ρl

)
�α (0)

∣∣∣∣
(x+eαδt,t+δt)

, (20)

where τ = λ/δt is the nondimensional relaxation time. ḡα

and ḡ
eq
α are particle and equilibrium distribution functions

which are defined to retain the scheme as an explicit one with

second-order accuracy.

ḡα = gα +
(
gα − g

eq
α

)
2τ

− δt

2
(eα − u) · {∇ρc2

s [�α − �α (0)] − C∇μ�α

}
, (21)

ḡeq
α = geq

α − δt

2
(eα − u) · {∇ρc2

s [�α − �α (0)] − C∇μ�α

}
.

(22)

A new distribution function is needed for evolution of the
composition C. It should recover the extended convective
Cahn-Hilliard equation [Eq. (8)]. One of the simplest choices
for particle and equilibrium distribution functions are hα =
(C/ρ) fα and h

eq
α = (C/ρ) f

eq
α respectively. The DBE for the

transport of the composition can be obtained by taking the total
derivative of hα . From Eqs. (6) and (8), the total derivative of
the composition C is written as

DC

Dt
= (eα − u) · ∇C − C∇ · u + ∇ · (M∇μ) − ṁ′′′

ρl

.

(23)

The DBE for hα can be written in the following form:

∂hα

∂t
+ eα.∇ha = −1

λ

(
hα − heq

α

) + (eα − u)

·
[
∇C − C

ρc2
s

(∇ph + C∇μ)

]
�α

+
(

M∇2μ − ṁ′′′

ρl

)
�α. (24)

By applying a trapezoidal integration along characteristics
over time step δt we obtain the following LBE:

h̄α (x + eαδt,t + δt) − h̄α (x,t)

= − 1

τ + 0.5

(
h̄α − h̄eq

α

)∣∣∣∣
(x,t)

+ δt (eα − u) ·
[
∇C − C

ρc2
s

(∇ph + C∇μ)

]
�α

∣∣∣∣
(x,t)

+ δt

2

(
M∇2μ − ṁ′′′

ρl

)
�α

∣∣∣∣
(x,t)

+ δt

2

(
M∇2μ − ṁ′′′

ρl

)
�α

∣∣∣∣
(x+eαδt,t+δt)

, (25)

where the modified distribution functions h̄α and h̄
eq
α are

defined as follows:

h̄α = hα +
(
hα − h

eq
α

)
2τ

− δt

2
(eα − u) ·

[
∇C − C

ρc2
s

(∇ph + C∇μ)

]
�α, (26)

h̄eq
α = heq

α − δt

2
(eα − u) ·

[
∇C − C

ρc2
s

(∇ph + C∇μ)

]
�α.

(27)

The gradient terms of Eqs. (20)–(22) and (25)–(27) are
discretized in accordance with Lee’s suggestions [6,20].
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It should be noted that in Eqs. (20) and (25) the last term
on the right-hand-side is approximated at (x + eαδt,t) instead
of (x + eαδt,t + δt) in order to avoid implicitness in C and T .
As mentioned by Lee and Liu [20], this approximation does
not violate the second-order accuracy of the scheme.

The composition, hydrodynamic pressure, and momentum
are calculated by taking the zero- and first-order moments of
the modified distribution function:

C =
∑

α

h̄α, (28)

ρu = 1

c2
s

∑
α

eαḡα − δt

2
C∇μ, (29)

ph =
∑

α

ḡα + δt

2
u · ∇ρc2

s . (30)

C. Lattice Boltzmann equations for temperature field

Since the focus of this paper is on the proper phase-change
modeling in low Mach number and incompressible limits of the
fluid flow, the pressure work and heat dissipation could be ig-
nored. Hence, the simple passive scalar approach is employed
for the evolution of the temperature field in the computational
domain. In this approach the temperature is passively advected
by a fluid velocity and the coupling between energy and
momentum equations is done at the macroscopic level. The
convection-diffusion equation of the temperature can be solved
with a separate distribution function called sα in the LB frame-
work. The DBE for the new distribution function is written as

∂sα

∂t
+ eα · ∇sα = − 1

λT

(
sα − seq

α

)
, (31)

with equilibrium distribution in the form of

seq
α = wαT

(
1 + eα · u

c2
s

)
. (32)

It has been shown that the linear equilibrium distribution
function, which contains the terms up to first order in u,
would be sufficient for solving a typical convection-diffusion
equation [21,22]. The DBE of Eq. (31) is integrated along
characteristics to achieve LBE for the temperature. Applying
the trapezoidal integration leads to

sα (x + eαδt,t + δt) − sα (x,t) = − sα − s
eq
α

2τT

∣∣∣∣
x+eαδt,t+δt

− sα − s
eq
α

2τT

∣∣∣∣
x,t

, (33)

where τT = λT /δt is the nondimensional relaxation time.
Since Eq. (33) is implicit in time, the modified distribution
function is introduced as follows to make the scheme explicit
with second-order accuracy:

s̄α (x,t) = sα (x,t) + sα (x,t) − s
eq
α (x,t)

2τT

. (34)

One can easily derive the LBE for the modified distribution
function of temperature as

s̄α (x + eαδt,t + δt) − s̄α (x,t) = − 1

τT + 0.5

(
s̄α − s̄eq

α

)∣∣∣∣
(x,t)

.

(35)

The temperature is calculated by taking the zero-order moment
of the above distribution function (i.e., T = ∑

α sα = ∑
α s̄α)

and the thermal diffusion is related to the relaxation time by
α = c2

s τT δt .
The multiscale Chapman-Enskog expansion of Eq. (35)

for recovering the convection-diffusion equation is found
extensively in the literature [21–23], but some of the authors
have ignored to indicate the errors and unwanted terms recov-
ered by multiscale expansion. Chopard et al. [24] discussed
the effects of linear and quadratic equilibrium distribution
function on the unwanted terms. They showed that with
linear equilibrium distribution function, the Chapman-Enskog
expansion of Eq. (35) results in

∂T

∂t
+ ∇ · (uT ) = α∇2T + α

c2
s

∂

∂t
∇ · (uT ) , (36)

where the last term in the right-hand side is the error term.
It is worth noting that the above equation is second-order
accurate in time and space as mentioned by Chopard et al. [24].
However, neglecting the error term of α

c2
s

∂
∂t

∇ · (uT ) needs more
justification.

As assumed previously, bulk phases are considered to
be incompressible and the compressibility due to the phase
change at the interface is mimicked by a proper source term.
In the next section we declare another important assumption
about the temperature. As we will assume, in this study the
liquid phase temperature is fixed at saturation temperature and
the energy equation is only solved for the gas phase. Thus,
due to incompressibility of the gas phase, the error term of
Eq. (36) can be reduced to α

c2
s

∂
∂t

u · ∇T . After some algebra,

one may find that this unwanted term is of order O( u2

c2
s
) [25].

Since in incompressible limits the Mach number should be
small enough to ensure u

cs
� 1, the terms of order O( u2

c2
s
)

could be neglected. Hence, the convection-diffusion equation
for temperature can be derived as

∂T

∂t
+ ∇ · (uT ) = α∇2T . (37)

In this work, the D1Q3 lattice is used for one-dimensional
problems and the D2Q9 for two-dimensional simulations
for the temperature distribution function (s̄α). For the linear
equilibrium distribution function of Eq. (32), the simpler lattice
structures such as D2Q4 or D2Q5 can also be employed
without the loss of accuracy and stability [25].

D. Computation of the volumetric source due to phase changes

The phase transition from the liquid phase to the gas phase
is called vaporization. Evaporation is a type of vaporization
which occurs on the liquid surface. From the macroscopic
point of view one can assume that the vapor source is present at
the phase interface and the gaseous ambience, which is located
away from the interface, contains a lower vapor concentration.
Thus evaporation can be explained as a continuous diffusion
of vapor from the phase interface to the ambience. In this
concept the evaporation rate depends on the temperature and
the concentration of the different species.

In some practical applications such as droplet heating
and evaporating in combustion engines and gas turbines, the
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transient heating period does not affect the droplet lifetime
considerably [26]. Therefore, for studying the evaporating
droplets at enginelike conditions, the droplet is sometimes
assumed to be at boiling temperature or saturation temperature.
Thus the heat which is transferred from the bulk gaseous
phase to the liquid interface causes the vaporization at
the phase interface. Moreover this postulation eliminates
the necessity of solving the energy equation in the liquid
phase and the species concentration transport equation in the
gas phase.

In this paper the liquid phase temperature is assumed at
saturation temperature and the driving force for evaporation is
the amount of heat which is transferred to the interface. So by
applying the energy balance for the interface regions the local
vaporizing mass flow rate per unit surface (ṁ′′) may be written
as

ṁ′′ = K∇T

hfg

· n̂, (38)

where hfg is the latent heat of vaporization, K is the thermal
conductivity, and n̂ is the unit vector normal to the phase
interface. The above vaporization rate is computed per unit
surface, so it should be converted to the volumetric form
in order to be employed in the convective Cahn-Hilliard
equation. The interface area at each computational cell or
node is needed for calculation of the volumetric mass source
or sink. As discussed before, the composition C is similar to
the volume-fraction function used in the VOF method. Since
our phase-field LB framework is physically a diffuse-interface
modeling approach, instead of having an exact interface at
which the evaporation takes place, we will have a vaporization
region in which the liquid phase evaporates continuously. In
this context referring to Hardt and Wondra [27], one important
feature of the gradient of the volume-fraction field is that its
integral over a region including a part of the phase interface
measures the local interface area. This statement is thus valid
for the gradient of the composition field (i.e.,

∫
V

|∇C|dV =∫
S
dS). So by multiplying ṁ′′ with the local interface content

(i.e., |∇C|) and recalling n̂ = ∇C
|∇C| , the volumetric mass source

of evaporation can be obtained as

ṁ′′′ = K∇T

hfg

· ∇C. (39)

In more general situations, the evaporative mass flux is related
to the gradient of vapor concentration instead of the gradient
of the temperature. The extension of the above mentioned
routines to these general cases seems to be straightforward
and would be a topic of future work.

III. RESULTS AND DISCUSSION

A. One-dimensional validation tests

The one-dimensional Stefan problem, for which an ana-
lytical solution is available, is a well-known benchmark to
test two-phase flow phase-change simulations. It was first
considered by Son and Dhir [2] for validation of the level set
method and later by Welch and Wilson [1] for the VOF method.
In the problem, the vapor and liquid phases are initially at
a stationary state with saturation temperature. As shown in

T=T(x,t)

Vapor

T=Tsat

Liquid

Interface

Tsat
Twall

x

FIG. 1. Schematic view of the one-dimensional Stefan problem.

Fig. 1, the vapor phase is in contact with an isothermal wall.
Once the wall experiences an increase in the temperature, heat
is transferred to the interface leading the liquid to evaporate.
In this flow, the vapor will be motionless while the interface
and liquid would be driven away from the wall.

The temperature equation of the vapor phase can be written
as

∂T

∂t
= α

∂2T

∂x2
0 � x � xi (t) , (40)

where xi (t) is the interface location and α = Kg/(ρgcp,g) is
the thermal diffusivity. The boundary conditions are

T (x = 0,t) = Twall, T [x = xi (t) ,t] = Tsat. (41)

The problem is closed by applying a jump condition for the
temperature:

ρguihfg = −Kg

∂T

∂x

∣∣∣∣
x=xi (t)

, (42)

in which ui = dxi

dt
is the interface velocity. The analytical

solution for the interface location can be expressed as [1]

xi (t) = 2β
√

αt, (43)

where β is the solution to the following transcendental
equation:

β exp(β2)erf (β) = cp,g (Twall − Tsat)

hfg

√
π

. (44)

The liquid phase velocity can be obtained by assuming a mass
continuity jump condition at the interface:

ul = ui

(
1 − ρg

ρl

)
. (45)

This problem is sometimes rescaled using the dimensionless
Stefan number which is defined as the ratio of sensible heat to
the latent heat:

St = cp,g (Twall − Tsat)

hfg

. (46)

A D1Q3 lattice Boltzmann model is developed for the one-
dimensional Stefan problem. The left boundary is set as
an isothermal wall. The bounce-back rule is applied to the
momentum and composition distribution functions (ḡα and
h̄α) (see Appendix), while a constant temperature boundary
condition is employed for the temperature distribution function
(sα). The right boundary is considered to be the outflow
boundary. A second-order extrapolation is used for the eval-
uation of unknown distribution functions of the momentum
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and composition [23]. Since the temperature of the liquid
phase remains constant during the phase-change process,
the temperature distribution function in the liquid phase is
assumed to be at equilibrium.

In the method of Lee, one needs to compute the second-
order central and biased (upwind) differences of the macro-
scopic variables at each node. For boundary nodes (xb)
and their neighboring nodes (xb − eαδt), the information
at (xb + eαδt) and/or (xb + 2eαδt) is required. Lee [20]
suggested that when the points (xb + eαδt) and (xb + 2eαδt)
are located outside the computational domain near wall
boundaries, the correspondent macroscopic variables are
approximated by

φ (xb + eαδt) = φ (xb − eαδt) ,
(47)

φ (xb + 2eαδt) = φ (xb − 2eαδt) ,

where φ can be any variable such as density, pressure,
composition, etc. As Lee mentioned [20], Eq. (47) avoids
unphysical mass and momentum transfer through the wall
boundary nodes.

For open boundaries such as outflow boundary condition
two additional virtual nodes are assumed to exist at (xb + eαδt)
and (xb + 2eαδt). These nodes do not take part in the collision
and streaming steps and consequently do not have any
information about the distribution functions. However, only
the information about the macroscopic variables is available
for virtual nodes. An extrapolation technique is employed to
evaluate the variables at these nodes. Suppose that the node xb

is located on the open boundary while the nodes xb − eαδt

and xb − 2eαδt are inside the domain. A quadratic profile
passing these three nodes is determined for the variable φ.
Assuming this profile to be held at the virtual nodes, the
unknown variables can be simply approximated. More details
about imposing different boundary conditions are found in the
Appendix.

Different density ratios (1:10, 1:100, and 1:1000) are
considered to validate the simulations. The thermal diffusivity
of the gas phase is set to 2.5 × 10−4 m2/s for the case of density
ratio 10. With the assumption of constant heat conductivity and
specific heat capacity, the thermal diffusivity for density ratios
100 and 1000 will be 2.5 × 10−3 m2/s and 2.5 × 10−2 m2/s,
respectively. The Stefan number is fixed to be 0.02 in all cases.
Figures 2 and 3 show the evolution of the interface location
and liquid phase velocity for the analytical solutions and
simulation results. The lines represent the analytical solutions
while the numerical results are indicated by symbols. A grid
spacing of 
x = 0.1 mm is used for numerical simulations.
As can be seen, excellent agreement between the numerical
and analytical solutions can be obtained. This means that the
volumetric source term evaluated by Eq. (39) can satisfactorily
account for the phase-change process.

Since a diffuse-interface modeling approach is used in our
framework, the interface thickness has noticeable influence
on phenomena taking place at the interfacial region. As we
reduce the interface thickness, the maximum value of ∇C will
increase accordingly. Referring to Eq. (39), the evaporative
mass flux is dependent on ∇C. On the other hand, as a result
of Eq. (6), the increase of the density ratio will increase the
gas volume generated by evaporation. Thus, we found that
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FIG. 2. Comparison between the numerical and analytical solu-
tions of interface location for different density ratios.

as the density ratio increases, the interface thickness should
increase in order to decrease the maximum value of ∇C and
provide a balance in estimating the evaporation speed. We set
the interface thickness as 3, 4, and 5 lattice units for the density
ratios of 10, 100, and 1000, respectively.

A convergence study is done for different grid resolutions.
The relative global L2-norm error of the simulated interface
location is defined as

EL2 =
∑

(xnumerical − xanalytical)2∑
(xanalytical)2

, (48)

where
∑

implies summation over all grid nodes. The L2-
norm error is plotted against the inverse value of grid spacing
for three different density ratios in Fig. 4. We observe that
essentially quadratic convergence is achieved over the whole
range of density ratios.
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FIG. 3. Comparison between numerical and analytical solutions
of liquid phase velocity for different density ratios.
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FIG. 4. L2-norm error of the simulated interface location versus
grid size for low to high density ratios.

B. Two-dimensional droplet evaporation

In order to assess the validity of the model for two-
dimensional (2D) problems, an isolated static droplet vapor-
ization is selected as a test case. The D2Q9 lattice structure is
used for the following simulations. The evaporation is caused
by the temperature gradient at the interface. As in the case of
the one-dimensional Stefan problem, the liquid phase (droplet)
temperature is assumed to be the saturation temperature. The
gas phase temperature is kept above the droplet temperature by
applying the constant temperature condition on the boundaries.
As shown in Fig. 5, due to symmetry with respect to the axis
of coordinates, a 2D droplet is initialized at the corner of
the computational domain and only a quadrant of the whole
domain will be computed. The outflow boundary condition

x

y Symmetric boundary condition

Sy
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et

ri
c

bo
un

d
ar

y
co

nd
it

io
n

Liquid phase

Gas phase

( ) satT x y  T=

( ) gasT x y  T=hp
n

∂ =
∂

FIG. 5. Schematic representation of the vaporizing droplet simu-
lation.

R = R0 / 3
Initial state
( R = R0 ) R = 2R0 / 3

FIG. 6. Droplet interface shape during evaporation for the time
steps 0, 130 000, and 260 000. Interface is represented by C = 0.5
contour.

is considered by assuming ∂ph

∂n
= 0, where n is the normal

direction to the boundary.
At the initial time step, the uniform temperature of Tgas is

set for the gas phase, while the droplet temperature is fixed
to Tsat. The existence of the temperature gradient at the phase
interface leads to the vaporization of the droplet to the gaseous
ambient. As a result of evaporation, a radial velocity profile
called Stefan flow should be generated around the droplet
in the gas phase, whereas the droplet remains stationary. The
simulation is carried out on a 100 × 100 computational domain
discretized by 100 × 100 grid nodes with an initial droplet
radius of R0 = 20. The densities are fixed at ρl = 1.0 and
ρg = 0.001 (density ratio 1000). The temperature difference

T = Tgas − Tsat and hfg is selected to realize a definite Stefan
number. In the following results the Stefan number is fixed to
St = 0.05 unless otherwise stated.

Figure 6 shows the variations of droplet size and shape for
the time steps 0, 130 000, and 260 000. The Stefan number
is set to St = 0.2. It can be seen that the circular shape of
the 2D droplet is preserved during the evaporation process.
The velocity vectors and contours of velocity magnitude (in
lattice units) are presented in Fig. 7 for time step 40 000.
The vector’s radial direction normal to the interface and
rotational symmetry with respect to the center of the droplet
are consistently reproduced as expected.

To investigate the effects of latent heat and temperature
difference (Tgas − Tsat) on the evaporation, the reduced square
diameter is plotted against time for various Stefan numbers
in Fig. 8. The decrease of latent heat or increase of the
temperature difference causes the Stefan number to increase
and vice versa. As expected, the increase of Stefan number
accelerates the evaporation.

In order to evaluate the 2D numerical solutions quantita-
tively, two different tests will be carried out. The Laplace law
is the basic benchmark test to evaluate correct surface tension
effects of multiphase models. Lee’s model has already been
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FIG. 7. Velocity vectors and contours of velocity magnitude (in
lattice units) at the time step 40 000.

validated for the Laplace test before, but it would be beneficial
to check whether our extension to Lee’s model will satisfy
this law during the vaporization process. Figure 9 represents
the pressure difference between the inside and outside of the
droplet (
P ) against 1

R
, where R is the instantaneous droplet

radius.
It can be seen that the linear relationship between 
P and 1

R

agrees well with theory. However, for a definite instantaneous
radius the predicted pressure difference is slightly lower than
the exact value. To get more insight about this matter it would
be advantageous to declare more details about the conditions
of the temperature at the phase interface. Since our multiphase
LB model belongs to physical diffuse interface methods, there
is no exact and sharp location for physical interface between
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FIG. 8. Reduced square diameter versus time step (D0 represents
the initial drop diameter).
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FIG. 9. Laplace law validation during the evaporation process.

the liquid and gas phases. As discussed before, we need
to fix the temperature in the liquid phase and the energy
equation should be solved only for the gas phase. In order
to facilitate meeting this goal, we introduce a cutoff value
of the composition C. Each node with the condition of C �
Ccutoff has the liquid temperature of T = Tsat and the related
temperature distribution function is set to its local equilibrium
value described by Eq. (32). The cutoff value can noticeably
affect the evaporative mass flux. Considering Eq. (39), a cutoff
value closer to 1.0 makes the evaporative region thicker. Thus,
the evaporative mass flux will intensify. Our tests for the
one-dimensional Stefan problem reveal that numerical results
agree well with analytical solutions by taking Ccutoff ≈ 0.9.
The cutoff values of less than 0.9 will underpredict the
evaporation speed. On the other hand, increasing the cutoff
value has some effects on the thermodynamic pressure of the
liquid phase as depicted in Fig. 10.

According to Lee [17], the thermodynamic pressure is only
a function of C. During the simulation of nonevaporative static
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FIG. 10. The effect of the cutoff value on the thermodynamic
pressure of each phase.
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drop, the maximum and minimum values of the composition C

vary a little, so the total pressure (mainly the thermodynamic
pressure part) will satisfy the Laplace law. When the evapo-
ration occurs, due to the effects of source terms responsible
for the phase change, the values of the composition C in both
phases will be changed a bit compared with the nonevaporative
case. As we increase the cutoff value, the nodes with larger
values of C will be affected by the evaporative source term and
their composition value will decrease consequently. Hence,
the thermodynamic pressure in the liquid phase varies slightly
while the gas phase pressure remains unchanged and the total
pressure difference between the two phases deviates from
equilibrium Laplace pressure. The effect of cutoff value on
the Laplace law test is also shown in Fig. 11 and Table I.

As another test we check the total mass conservation within
the computational domain, as a reliable numerical scheme
for computational fluid dynamics (CFD) should be mass
conservative. In our case, as a result of evaporation, the total
fluid mass of the computational domain is decreased and the
Stefan flow around the droplet initiates a gas flux out of the
domain across the outflow boundaries. In order to perform
a mass conservation test, two different terms are calculated
during the evaporation; the time derivative of the total fluid
mass of the computational domain ( dmtot

dt
) and the gas flow rate

across the outflow boundaries. Mass conservation requires that
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FIG. 12. The total mass conservation test (values are in lattice
units).

these two terms cancel each other and their summation should
be zero. Figure 12 represents the variations of these terms over
different time steps. The approximate satisfaction of the mass
conservation law can be observed from the curves. The results
demonstrate an acceptable accuracy to predict the behavior of a
complicated problem such as evaporation. The sharp slopes of
the diagrams at early time steps are due to the high temperature
gradients near the phase interface. After a few time steps the
temperature gradient is smoothed because of heat diffusion
and a nearly constant evaporation rate is achieved.

Figure 12 confirms that the employed phase-change model
and the implemented boundary conditions do not lead to
any mass accumulation or mass disappearance within the
computational domain. In other words, the evaporated mass
within the interface region generates a consistent mass flux at
the outlet boundaries of the domain.

IV. CONCLUSION

In this article, a method has been proposed to simulate
phase-change effects based on the LBM multiphase model
of Lee. The convective Cahn-Hilliard equation which is
responsible for phase separation was extended to reflect phase
transition effects. A suitable source term was also added to the

TABLE I. The effect of the composition cutoff value on satisfaction of the Laplace law. The surface tension is fixed to 1.00 × 10−4. All
values are in lattice units.


P 
P 
P Relative error (%) Relative error (%)
1
R

(Laplace law) (Ccutoff = 0.5) (Ccutoff = 0.9) (Ccutoff = 0.5) (Ccutoff = 0.9)

0.05 5.00 × 10−6 4.92 × 10−6 4.49 × 10−6 1.66 10.26
0.075 7.50 × 10−6 7.28 × 10−6 6.58 × 10−6 2.92 12.23
0.10 1.00 × 10−5 9.78 × 10−6 8.90 × 10−6 2.23 10.98
0.15 1.50 × 10−5 1.49 × 10−5 1.32 × 10−5 0.44 11.90
0.175 1.75 × 10−5 1.77 × 10−5 1.54 × 10−5 1.11 12.02
0.19 1.90 × 10−5 1.94 × 10−5 1.66 × 10−5 2.11 12.70
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pressure-momentum distribution function to take into account
the effects of phase-change phenomena on the velocity field.
In order to calculate the volumetric source due to the phase
change within the interface region, the passive scalar thermal
lattice Boltzmann framework was successfully combined with
the multiphase LBM model. Different tests were carried out
for one- and two-dimensional cases to validate the approach
and demonstrate the consistency of the results.

Our approach explains the vaporization macroscopically
with the aid of appropriate physical postulations: Vaporization
can be described as the change of phase composition (C) with
a rate proportional to the temperature or vapor species con-
centration gradient at the interface. One of the most important
features of this approach is the ease of implementation. The
divergence of the velocity field (∇ · u) is evaluated globally
on each node by Eq. (6) and there is no need to apply
any special jump conditions at the interface to explain the
mass and momentum transfer between two phases. This will
substantially simplify the simulations of more complex cases
such as problems involving porous media or situations with a
strong degree of interface deformation.

Future works will focus on more general situations in which
the evaporation is forced by vapor concentration gradient
rather than temperature gradient. Moreover, it would be
interesting to include partial wetting wall boundary conditions
in the model to study more challenging real world problems
such as substrate evaporation and evaporation within three-
dimensional porous media.

APPENDIX

In this Appendix, different boundary conditions used in our
simulations are briefly discussed. Since ḡα and h̄α [Eqs. (21)
and (26)] contain forcing terms, in general the bounce-back
rule should be applied to gα and hα (not ḡα and h̄α), because
reflecting the force terms back to the domain seems unphysical.
The nonslip condition for the wall causes zero velocity (u = 0)
at the wall boundary node xb. Thus, only directional derivatives
[eα · ∇()] contribute to the forcing terms on the right-hand
side of Eqs. (21) and (26). According to Lee [20], these
derivatives should be discretized by employing the central
difference approximation. Recalling Eq. (47), one can easily
obtain that the directional derivatives in every direction except
the directions along the wall will go to zero. For example, in
the D2Q9 lattice for the left wall we have eα · ∇() = 0, where
α = 1,3,5,6,7,8. Hence, the forcing terms on the solid wall
are canceled out in the bounce-back directions. For directions
in which the bounce back is applied, the modified distribution
functions can be written as

z̄α = zα +
(
zα − z

eq
α

)
2τ

, (A1)

where z can be either g or h. As u = 0 at xb, zeq
α (xb) = z

eq
ᾱ (xb),

where ᾱ is in the opposite direction of α. So it can be concluded

from Eq. (A1) that we can apply the bounce-back rule on ḡα

and h̄α instead of gα and hα .
The constant temperature boundary condition is applied

similarly to that proposed by Inamuro et al. [22]. In this
approach, the unknown distribution functions are assumed to
be the equilibrium distribution functions calculated by Eq. (32)
with an unknown parameter T ′ as

s̄α|unknown = wαT ′
(

1 + ea · ub

c2
s

)
, (A2)

where ub is the velocity of the boundary. The unknown
parameter T ′ is determined so that the constant temperature of
Tb is satisfied on the boundary;

∑
α

s̄α =
∑

unknown

wαT ′
(

1 + ea · ub

c2
s

)
+

∑
known

s̄α = Tb.

(A3)

Once the parameter T ′ is determined by Eq. (A3), the unknown
distribution functions are computed by Eq. (A2).

The unknown distribution functions of the composition
(h̄α) are approximated by the second-order extrapolation as
described in [23]:

h̄α (xb) = 2h̄α (xb − eαδt) − h̄α (xb − 2eαδt) . (A4)

In order to apply the condition of ∂ph

∂n
= 0 on the outflow

boundaries, the hydrodynamic pressure on the boundary is
calculated by the second-order backward difference as

ph,b = ph (xb) = 4ph (xb − enδt) − ph (xb − 2enδt)

3
. (A5)

Then, an approach similar to the one described for the
temperature can be employed for the pressure. The unknown
pressure-momentum distribution functions are assumed to be
the equilibrium ones. Combining Eqs. (19) and (22), ḡ

eq
α is

written as

ḡeq
α = ph�α (0) + ρc2

s [�α − �α (0)]

− δt

2
(eα − u) · {∇ρc2

s [�α − �α (0)] − C∇μ�α

}
.

(A6)

The hydrodynamic pressure (ph) is replaced with an unknown
parameter (p′

h) for calculation of the unknown distribution
functions. From Eq. (30), the unknown distribution functions
can be evaluated by
∑

α

ḡα =
∑

unknown

ḡα +
∑

known

ḡα = ph,b − δt

2
u · ∇ρc2

s , (A7)

in which
∑

unknown ḡα is approximated by
∑

unknown ḡ
eq
α . Notice

that due to the presence of the velocity (u) in the right-hand
side of Eq. (A7), an iteration process should be employed for
evaluating the unknown parameter p′

h.
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