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Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions
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The momentum exchange method has been widely used in lattice Boltzmann simulations for particle-fluid
interactions. Although proved accurate for still walls, it will result in inaccurate particle dynamics without
corrections. In this work, we reveal the physical cause of this problem and find that the initial momentum of
the net mass transfer through boundaries in the moving-boundary treatment is not counted in the conventional
momentum exchange method. A corrected momentum exchange method is then proposed by taking into account
the initial momentum of the net mass transfer at each time step. The method is easy to implement with
negligible extra computation cost. Direct numerical simulations of a single elliptical particle sedimentation
are carried out to evaluate the accuracy for our method as well as other lattice Boltzmann-based methods by
comparisons with the results of the finite element method. A shear flow test shows that our method is Galilean

invariant.
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I. INTRODUCTION

Efficient and accurate simulation of particle-fluid interac-
tions plays an important role in many industrial situations, such
as petroleum, chemical engineering, earth, and environmental
processes [1-4]. Compared with the finite element method
(FEM), which requires continuously regeneration of body-
fitting mesh, direct simulation of particle-fluid interactions
using the lattice Boltzmann (LB) method is more efficient [5],
especially for a large number of particles.

A moving boundary condition and evaluation of the
hydrodynamic force on the solid object are the two major
challenges in LB simulations of particle-fluid interactions.
Particle suspension models are primary targeted to solve the
above two challenges, which can be divided into two categories
by either excluding fluid information inside the particle or
not. The most popular models include the shell model by
Ladd [6,7] and the ALD (Aidun, Lu, and Ding) method by
Aidun et al. [8].

Ladd [6,7] proposed a particle suspension model based on
the midway bounce-back boundary condition. This model is
actually a shell model, as fluid exists on both sides of the
particle boundary. The same bounce-back operation is carried
out for both interior fluid and exterior fluid. The momentum
exchange method based on the difference of distribution
functions from opposite directions along the boundary link
is proposed to evaluate the hydrodynamic force acting on the
particle. For the shell model, both interior fluid and exterior
fluid contribute in the momentum exchange calculation. As a
result, the particle motion may be affected by the interior fluid,
and the model is limited to relatively heavy particles if explicit
update of the particle dynamics is employed [6—10]. Although
the implicit update scheme can relax the restriction of heavy
particles [10,11], the shell model may still have difficulties
in certain situations such as employing interpolation-based
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curved boundary conditions or simulating particle suspensions
in a multicomponent fluid [12].

Aidun et al. [8] excludes the interior fluid used in Ladd’s
shell model, and the momentum exchange calculation now
involves only the exterior fluid. In addition, an impulse force
is proposed to apply to the particle whenever the particle moves
to cover or uncover a lattice node. The physical meaning of this
impulse force has not been well explained, and the use of this
impulse force is also questioned [13]. Once the impulse force
is applied, the total fluid force acting on the particle fluctuates
significantly, which may reduce the stability of the simulation.
Wen et al. [14] confirm that this impulse force is necessary
to obtain correct particle dynamics for the nonshell particle
model.

During the last two decades, several interpolation-based
curved boundary conditions have been developed [15-18].
Compared with the midway bounce-back boundary condition,
these curved boundary conditions are second-order accurate
for arbitrary surface and ensure smoother force transition
when the particle moves. The curved boundary conditions
have been applied to LB simulations of particle-fluid inter-
actions [5,14,19-21]. The interior fluid is excluded in these
simulations, and force evaluation is via the stress integration
method [5,19,20] or the momentum exchange method with the
impulse force correction [14,21].

The stress integration method requires a huge amount of
extrapolations of fluid information off grid and becomes even
more complex and costly in three-dimensional simulations.
The conventional momentum exchange method is easy to
implement and has high efficiency; however, the benefit of
curved boundary conditions may be compromised if the
impulse force is applied, which results in a fluctuating
hydrodynamic force on the particle. In this paper we reveal the
physical cause of the inaccurate particle dynamics obtained by
using the conventional momentum exchange method without
correction, which is also responsible for breaking Galilean
invariance. A simple corrected momentum exchange method
is then proposed, and the impulse force is no longer required.
As a result, the simplicity of the momentum exchange method
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remains, and the force obtained by our method is as smooth
as the force by the stress integration method. Numerical
simulations of sedimentation of a single elliptical particle
are carried out to evaluate different lattice Boltzmann-based
methods, and simulation results of the finite element method
are adopted for comparison. A shear flow test is also performed
to examine the Galilean invariance of these methods.

The rest of the paper is organized as follows. Section II
introduces the numerical algorithms for particle-fluid interac-
tions, including a brief review of the lattice Boltzmann method,
nonslip boundary treatments, force evaluation methods, and
particle dynamics. Numerical simulations of sedimentation
of a single elliptical particle are carried out to demonstrate
problems and difficulties of the existing lattice Boltzmann-
based methods in Sec. III. In Sec. IV we propose a corrected
momentum exchange method. Numerical validation of our
new method will be provided in Sec. V, as well as further eval-
uation of other lattice Boltzmann-based methods. Section VI
concludes the paper.

0,

e = { c(cos[(i — D)rr/4], sin[(i — 1)m/4]),
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where ¢ = §x /8t and 8x is the lattice spacing. The equilibrium
distribution is
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where wg =4/9, w; = 1/9,fori =1, 3,5,7,and i = 1/36,
for i =2, 4, 6, 8. For simplicity, we set ¢, 6x, and &t to be
unity in the rest of the paper. The macroscopic density and
momentum density are defined as

p=> 1 5)

ou = Z fiei. (6)

The pressure is obtained by

p=cp. (7

B. Nonslip boundary treatments

In this paper we mainly focus on the link-based nonslip
boundary conditions, which are most widely used in LB
simulations of particle-fluid interactions. Figure 1 shows the
typical link-based boundary model. In link-based boundary
models, fluid interacts with solid through boundary links, such
as link AC in Fig. 1, which connects a fluid node A and a solid
node C.

Classic particle suspension models employ the midway
bounce-back boundary condition, as it is very easy to
implement and requires no interpolations or extrapolations,
which becomes critical when particles are densely packed
as there may not be sufficient fluid information available
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II. NUMERICAL METHODS FOR
PARTICLE SUSPENSIONS

A. Lattice Boltzmann method

The main variable in LBM is the discretized velocity
distribution function f;, and the governing equation with the
popular BGK model [22-25] is

fi(x 4+ e;6t,t +6t) = fi(x,t) —

1)

where f; is the distribution function associated with the
ith discrete velocity direction e;, £ is the corresponding
equilibrium distribution function, §¢ is the time increment,
and t is the relaxation time, which relates to the kinematic

viscosity by

fie,t) = fx,0)
. ;

v = (1 — 1/2)c?5t, )

where c; is the speed of sound. For the two-dimensional, nine-
speed LB model (D2Q9) [22], we have

i=0
i =135, 3)
i =2,4,6,8,

for interpolations or extrapolations. The midway bounce-back
means that fluid particles traveling from a fluid node towards a
solid node will be bounced back on the midpoint of the bound-
ary link, such as point E in Fig. 1, regardless of the physical
position of the wall. If the wall is still, then the bounce-back
procedure is

falx it + A1) = folx 1), ®)

where x ; is the location of the fluid node just outside the solid
surface as shown in Fig. 1, e, is the lattice direction from a
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FIG. 1. A schematic illustration of link-based lattice Boltzmann
boundary model.
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fluid node to solid node, e is the opposite direction, and f is

the postcollision distribution function. If the wall is moving,

then an additional term is added into Eq. (8) [6]:

€o - Uy
SO

s

falx st + At) = fo(x7,1) — 20,0

where u,, is evaluated on the midpoint of the boundary
link. The drawback of the midway bounce-back boundary
condition is that the resulting nonslip boundary is a zigzag-type
boundary as shown in Fig. 1 and is only first-order accurate
for arbitrary surface. If accurate particle dynamics is the
primary objective, and the particles are not densely packed,
higher-order interpolation-based curved boundary conditions
should be employed instead of the midway bounce-back

boundary condition.
|
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The main idea of the curved boundary conditions is to take
the exact wall position (point W in Fig. 1) into consideration
and interpolate required information from nearby fluid nodes.
In this paper we employ the curved boundary condition
proposed by Mei et al. [16,26]. However, the new momentum
exchange method proposed in Sec. IV is not limited to the
curved boundary condition used in this paper. The formula of
Mei’s curved boundary condition is

€y - Uy

Jalent) = (1 =0 ful® 1.0) + X f F0s) = 200 p =5,

(10)

where x}, is the solid node just inside the solid surface as shown
in Fig. 1, and f{(x},1) is obtained by

1 1 1
f9xp,t) = wa,o(xf,t)[l + € Wiy + — (e, -us) — Ll -uf]. (11)

s

4
2c 2

Differently from the midway bounce-back condition, u,, is evaluated on the exact intersecting point of the boundary link and the
physical wall. u y = u(x f,t) is the fluid velocity near the wall, and u, is given by [26]

(A—1.5u;/A, x =Q2A—1)/(x +05) for A

u =

T ug o x = @A -1/ - 2) A
[

where u;r =u(x; —e,,t), and A is the fraction of an
intersected link in the fluid region:
N |xf — Xyl

- . (13)
[xfp — xp]

C. Force evaluation methods

To obtain accurate hydrodynamic force and torque on the
solid object immersed in a fluid flow is a matter of critical
importance. There are mainly two kinds of force evaluation
methods used in lattice Boltzmann simulations, namely,
the momentum exchange method and the stress integration
method [27].

1. Momentum exchange method

The momentum exchange (ME) method is unique to LBM.
First proposed by Ladd [6], this method is very simple and
easy to implement. The hydrodynamic force acting on the solid
surface is obtained by calculating the momentum exchange on
each boundary link (as shown in Fig. 1):

SF (X .€0) = —[falxp.0)eq — falxp)eq].  (14)

The total hydrodynamic force on a solid object is the sum of
8F,(x,,e,) computed from each boundary link of the solid
object surface:

Fi, =) 8F,(xy.eq), (15)
and the total torque is
T, = Z(xw - R) X aFw(xwaeot)v (16)

where R is the mass center of the solid object. In Ladd’s shell
model [6], F,, is the sum of the momentum exchange from

>0.5
(12)
for < 0.5,

both exterior fluid and interior fluid:

Fw — Fiur)lterior + F(:,;(terior' (17)

2. Stress integration method

For the stress integration (SI) method, the hydrodynamic
force on a solid object is obtained by integration of the stresses
on the surface (d€2) of the object:

Fu,=/ o-ndS, (18)
aQ

and the torque on the object is

Tw=/ rx(o-n)dSs, (19)
aQ

where n is a unit outward normal vector on the object surface
0€2 and r is a vector from the center of the object to 9€2. The
stress tensor o for two-dimensional incompressible flow can
be expressed as

0ij = —pdij + pv(diu; + d;u;). (20)

In Eq. (20), pressure p is known to us as provided by Eq. (7). In
order to avoid computing the macroscopic velocity gradient,
Mei et al. [28] propose the following formula to calculate the
stress:

1
0ij = —pdij — (1 - E) ol fo = 1]

1
X (ea,iea,j — Eea . eac?ij). (21)

Inamuro et al. [29] propose a different form of o;; based on
asymptotic analysis. The difference between the simulation
results of the two forms is very small, and we present only
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the results of Eq. (21) in the rest of the paper. The fluid
distribution functions in Eq. (21) are evaluated on the physical
surface 9€2; thus, extrapolations from nearby fluid lattice
nodes are required. In this work, we follow the extrapolation
scheme introduced by Li ez al. [19] to compute the distribution
functions on 9€2.

The midway bounce-back boundary condition results in a
zigzag nonslip surface, which is different from the physical
solid surface. In this case, stress integration on the physical
surface may cause significant error. Inamuro et al. [29]
suggest integrating the stress on a slightly larger surface
which is apart from the physical one. However, due to the
high computation cost of the SI method compared to the
boundary condition treatment, it is not reasonable to apply the
midway bounce-back boundary condition when the SI method
is adopted for force evaluation. When the curved boundary
condition is applied, the resulting nonslip surface and the
physical surface should coincide, and the integration surface
0€2 used in Egs. (18) and (19) is the physical surface.

D. Particle dynamics

The motion of a particle is obtained by solving Newton’s
equations [8]:

dU(r)
M 7 =F,+f, (22)
I- ds;t(t) + Q) x [I-0)]=T,, (23)

where f is the body force, such as gravity.

In Ladd’s shell model, an effective shell mass M, =
M — Miperior Should be used to update the particle motion
in Egs. (22) and (23), where M, denotes the mass of the real
solid particle and Miyerior denotes the mass of the fluid inside
the shell. As aresult, for explicit update of particle motion, the
solid-fluid density ratio is constrained by [3,9]

o4 10 (24)
P r
which limits the use of the shell model.

For particle suspension model without interior fluid, some
lattice nodes originally inside the solid particle will enter
the fluid region when the particle moves. In this case, fluid
information in these newly created fluid lattice nodes has to
be extrapolated from nearby fluid nodes. Here we use the
same extrapolation method based on the direct extrapolation
of distribution functions introduced in Ref. [5].

Aidun et al. [8] suggest an impulse force should be applied
to the particle whenever the particle moves to cover or uncover
a lattice node, as the fluid momentum of the corresponding
node is gained or lost by the particle, respectively:

Z F (xcover) = ZPU, (25)
CN CN
D T e(reover) = ) [Xeower — R] X Fe(Xeoer),  (26)
CN CN
Z Fu(xuncover) = - Z PU, (27)
UN UN
D Tuluncover) = Y [Xuncover — R X Fu(Xuncover),  (28)
UN UN
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where CN and UN denote lattice nodes being covered or
uncovered by the particle during one time step, respectively.

There is still lack of detailed interpretation of the above
impulse force, which may cause confusion about the use of
the impulse force. Furthermore, the impulse force may reduce
the stability of simulation, especially when the particle is much
lighter than the fluid. When the higher-order curved boundary
condition is employed, the force and torque are evaluated
on the exact intersecting point of the boundary link and the
physical wall in the ME method. Thus, one may argue that
the above impulse force may be unnecessary in this case.
However, simulation results of Wen et al. [14] confirm that the
impulse force is necessary to obtain correct particle dynamics
even when the curved boundary condition is employed, if
force evaluation is via the momentum exchange method. In
Sec. III we also perform simulations of sedimentation of a
single elliptical particle to examine the necessity of the impulse
force.

III. PROBLEMS FOUND IN THE NUMERICAL
SIMULATION OF SEDIMENTATION
OF A SINGLE ELLIPTICAL PARTICLE

Direct numerical simulations of particle sedimentation have
been presented in many papers [3,5,30-32], using either the
finite element method or the lattice Boltzmann method. Thus,
there are sufficient data available for benchmark comparison.
The benchmark case used in Ref. [5], numerical simulation
of the settling process of a single elliptical particle in a
long channel, is chosen to evaluate the accuracy of different
methods introduced in Sec. II. There are mainly three reasons
why we choose this case for benchmark comparison. First,
there are available simulation results obtained by both the
finite element method and the lattice Boltzmann method for
comparison [5]; second, elliptical particle is more sensitive to
simulation errors compared to a circular particle; and, third,
direct numerical simulation of particle sedimentation is also
of practical importance [5,30].

Table I shows the notations for different lattice Boltzmann-
based methods used in this paper. Although the link-based
boundary conditions are most widely used in LB simulations
of particle-fluid interactions, several node-based models have
also been developed [33,34], in which the fluid-solid coupling
is through the direct alteration of fluid nodes adjacent to the
solid surface [1], and it is worth comparing the node-based
models with the link-based models. Thus, a volume fraction
LB model proposed by Nobel and Torczynski [33], one
of the node-based models, is also added in the benchmark
simulations, denoted as VF as shown in Table I. In the VF
model, like Ladd’s shell model, fluid exists in the whole
computation domain, including the solid region, and, instead
of an explicit boundary treatment, the collision term in the
LB governing equation, Eq. (1), is modified according to the
solid volume fraction of a lattice cell to distinguish the solid
phase and the fluid phase. Force evaluation is based on the
momentum transfer that occurs over the lattice nodes covered
by solid [35], which is unique to the VF model.

The geometry of the benchmark case is shown in Fig. 2. a
and b are the length of the semimajor axis and semiminor axis,
respectively. L is the width of the channel. Gravity is along the
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TABLE I. Notations for different lattice Boltzmann-based methods used in this paper.

Method Boundary condition Force evaluation Impulse force Interior fluid
CB-SI Curved boundary Stress integration No No
CB-SI-IMP Curved boundary Stress integration Yes No
CB-ME Curved boundary Momentum exchange No No
CB-ME-IMP Curved boundary Momentum exchange Yes No
BB-SI Midway bounce-back Stress integration No No
BB-ME Midway bounce-back Momentum exchange No No
BB-ME-IMP Midway bounce-back Momentum exchange Yes No
BB-ME-shell Midway bounce-back Momentum exchange No Yes
VF LB volume fraction model [33] No Yes

x axis in the positive direction. 8 represents the orientation of
the particle. In physical units, a = 2b = 0.05 cm, L is 0.4 cm,
gravity is 9.8 m/s?, and the kinematic viscosity of the fluid
is 1.0 x 107% m?/s. The density ratio of the solid particle and
fluid is 1.1. A uniform grid with a resolution of 260 grid cells
per cm is used, which is identical to the fine grid used in
Ref. [5]. The relaxation time 7 in Eq. (1) is set to be 0.6.
The terminal particle Reynolds number is determined by the
terminal settling velocity of the particle,
U,a

Re (29)

v
where U, is the terminal velocity of the particle. In this case,
the terminal particle Reynolds number is 6.6, and we will
refer this sedimentation case as the Re = 6.6 case. As shown
in Ref. [5], the difference between simulation results from
channel with a closed wall and with an open boundary is
negligible, as long as the closed channel is long enough. For
simplicity, we use a closed channel in this work. The channel
length is 30L. The particle is initially placed in the middle of
the channel with & = 0.257 and is 3L away from the end of

FIG. 2. The geometry of the particle sedimentation benchmark
case. a and b are the length of the semimajor axis and semiminor
axis, respectively. L is the width of the channel. Gravity is along the
x axis in the positive direction. 6 represents the orientation of the
particle.

the channel in the negative direction of the x axis. We have
performed simulations in a longer channel, but the difference
is negligible.

Figure 3 shows the comparison of particle trajectories and
orientations obtained by FEM [5] and LBM with the curved
boundary condition. CB-SI and CB-ME-IMP agree well with
FEM, which is considered to be accurate. Without the impulse
force correction, CB-ME deviates significantly from FEM.
For the stress integration method, the impulse force should not
be applied as CB-SI-IMP deviates significantly from FEM.
VF also deviates from FEM in this case. Figure 4 shows the
comparison of particle trajectories and orientations obtained
by FEM [5] and LBM with the midway bounce-back boundary
condition. Although the bounce-back boundary condition is
not as accurate as the curved boundary condition, results
from BB-SI and BB-ME-IMP deviate only slightly from FEM
as the particle approaching to the terminal settling state in
the middle of the channel when grid resolution becomes
important. Similarly, without the impulse force correction,
BB-ME deviates significantly from FEM.

Figure 5 shows the comparison of fluid force acting
on the particle during the terminal settling state. There is
no significant difference between the results from SI and
ME, as long as the impulse force is not applied. However,
without the impulse force correction, the trajectories and
orientations obtained by CB-ME and BB-ME are inaccurate.
Force obtained by LBM with the curved boundary condition
is smoother than the force obtained by LBM with the midway
bounce-back boundary condition. Once the impulse force is
applied, force obtained by either boundary condition fluctuates
significantly.

The simulation using shell model is unstable in this case, as
the solid-fluid density ratio of this case is 1.1, which violates
the constraint of Eq. (24). In Sec. V, a high-density ratio case
will be performed to evaluate the shell model.

From the above results, we can conclude that the impulse
force proposed by Aidun et al. [8] is necessary if the interior
fluid of the particle is excluded and the ME method is used
to evaluate the force on the particle, regardless of whether the
midway bounce-back boundary condition or the higher-order
curved boundary condition is employed. The benefit of using
the curved boundary condition is compromised due to the
impulse force, which results in a noisy total force, as shown
in Fig. 5. When using the SI method for force evaluation, the
impulse force should not be applied and the obtained force is
very smooth. However, the computation cost of the SI method
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FIG. 3. (Color online) Comparison of particle trajectories and
orientations for the Re = 6.6 case obtained by FEM [5] and LBM
with the curved boundary condition. CB-ME, CB-SI-IMP, and VF
deviate significantly from FEM, while CB-ME-IMP (with the impulse
force correction) and CB-SI agree well with FEM. Thus, the impulse
force proposed by Aidun et al. [8] is necessary to obtain correct
particle dynamics if force evaluation is via the momentum exchange
method, even though the curved boundary condition is employed. In
contrast, for the stress integration method, the impulse force should
not be applied.

is very high compared to the ME method. Results of VF are
not accurate in this particular case. Further comparisons will
be performed in Sec. V.

IV. CORRECTED MOMENTUM EXCHANGE METHOD

Simulation results in Sec. III show that, for particle
suspension models without interior fluid, if the impulse force
proposed by Aidun et al. is not applied, the simulation results of
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FIG. 4. (Color online) Comparison of particle trajectories and
orientations for the Re = 6.6 case obtained by FEM [5] and LBM
with the midway bounce-back boundary condition. BB-ME (without
the impulse force correction) deviates significantly from FEM, while
BB-ME-IMP (with the impulse force correction) agrees well with
FEM. Thus, when the midway bounce-back boundary condition is
employed, the impulse force proposed by Aidun et al. [8] is also
necessary to obtain correct particle dynamics.

LBM with the ME method deviate from both FEM results and
results of LBM with the SI method. This conclusion is valid
for either the midway bounce-back boundary condition or the
higher-order curved boundary condition. A similar conclusion
can also be found in Ref. [14]. As shown in Fig. 5, the fluid
force on the particle fluctuates significantly due to the impulse
force, which may reduce the simulation stability, especially
for light particles.

The ME method for still walls is proved to be as accurate
as the SI method [27,28]. Also, the impulse force is not
required for LBM with the SI method for force evaluation.
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FIG. 5. (Color online) Comparison of fluid force acting on the
particle during the terminal settling state for the Re = 6.6 case
obtained by LBM. When the impulse force is applied, the total
fluid force obtained by CB-ME-IMP and BB-ME-IMP fluctuates
significantly, which may reduce the simulation stability.

The problem then lies in the ME calculation in the moving
boundary treatment.

In LBM, the lattice velocity of fluid particles is discretized
[24] and fixed during the simulation, as shown in Eq. (3).
When the fluid particles collide with a still wall, the simplest
way to ensure nonslip boundary condition is the bounce-back
procedure. However, when the wall is moving, fluid particles
colliding with the wall will gain additional momentum due
to the moving wall. Since the lattice velocity of the fluid
particle is fixed, the additional momentum has to be adjusted
by modifying the reflected distribution function in the bounce-
back procedure, as shown in Eq. (9), which results in a net mass
transfer through the physical boundary [1,6,10]. In Ladd’s shell
model, this net mass transfer is canceled out by applying the
same moving boundary treatment for both the interior fluid
and exterior fluid. For models without interior fluid, the net
mass transfer through the boundary exists.

Nguyen and Ladd [10] show that the mass transfer across
the solid surface in a time step At is recovered when the particle
moves to its new position. Our simulations also confirm that
although the total mass of the fluid is fluctuating, the total fluid
mass drift is very small from a long-term view.

The additional term in Eq. (9) can be interpreted as the fluid
mass being covered (or uncovered) at each time step along a
boundary link and being injected back to (or down from) the
fluid field via Eq. (9). As shown in Fig. 6, after one time step,
the wall moves towards the fluid region and arrives at its new
position. A small amount of fluid area at t = £, is covered by
solid at t = 79 + At, while the solid-fluid node map has not
changed (for example, node B remains a solid node and node E
remains a fluid node). The original fluid in this newly covered
area is injected back to the fluid region via the mass flux term,
—2wy p 2% by Eq. (9) or (10). More specifically, a unit length

c
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FIG. 6. A schematic illustration of a moving wall in the lattice grid.

wall covers a fluid area of Uy,—, during one time step, and
the fluid mass of this area is p s Uyan—. The net mass transfer
along link BD, BE, and BF is 60 ;ws(Uyai—x + Uwall—y),
6pfwluwall—xv and 6pfw8(Uwall—x - Uwall—y)7 respectively.
Thus, the total net fluid mass transfer through the wall from
node B during one time step is p f Uyan—x, which is exactly the
amount of fluid mass of the fluid area being covered by the
unit length wall during one time step. The analysis of the fluid
node uncovering process is similar to the analysis of the above
fluid node covering process.

With the above observation in mind, the problem in the
conventional ME method is obvious. The actual momentum
exchange along each boundary link is obtained by calculating
the momentum difference of the outgoing fluid particles and
ingoing fluid particles. The initial macroscopic velocity of the
net mass transfer, —2w, p “3*, is approximately the velocity
of the solid wall but not zero as long as the wall is moving.
The conventional ME method does not count in the initial
momentum of the net mass transfer, (—2wq 0“3 )u,,. As a
result, the impulse force has to be applied to the conventional
ME method as a correction. This could also be the cause of
nonshell models with the conventional ME method breaking
Galilean invariance.

Then it is straightforward to correct the conventional ME
method by simply accounting for the initial momentum of the
net mass transfer,

SF y(xy.e0) = —{ fa(x r.0)eq — [ fu(x r.)eq + AM]},
(30)

where AM is the initial momentum of the net mass transfer,

€y - U
AM = <—2a)a,o — “’)uw. €)))
CS
The mass flux term —2aw, p “3*
in the nonslip boundary condition procedure, and thus the extra
computation cost of AM is negligible.

in Eq. (31) is already obtained

013303-7



CHEN, CAI, XIA, WANG, AND CHEN

PHYSICAL REVIEW E 88, 013303 (2013)

TABLE II. Notations of additional lattice Boltzmann-based methods used in particle sedimentation simulations in Sec. V.

Method Boundary condition Force evaluation Impulse force Interior fluid
CB-CME-present Curved boundary CME present No No
CB-CME-Caiazzo Curved boundary CME in Ref. [36] No No
BB-CME-present Midway bounce-back CME present No No
BB-CME-Caiazzo Midway bounce-back CME in Ref. [36] No No

The impulse force proposed in Ref. [8] then can be ex-
plained. As shown in Fig. 6, after one time step, the sum of the
corrected term AM in Eq. (30) from node B is 0 f Uyaii—x U wait,
which is exactly the initial momentum of the fluid being
covered by the unit length wall during one time step. When the
wall moves from node B to node E, and the wall velocity and
fluid density are assumed to be constant, then the total initial
momentum of the newly coved fluid area by a unit length wall
during this period is o s U wan. Thus, the total impulse generated
from the impulse force defined in Egs. (25) and (27) is equal
to the total initial momentum of the fluid mass that the unit
length wall covers or uncovers during the period that the wall
moves from one lattice node to a neighboring lattice node as
shown in Fig. 6. By using our method, Eq. (30), the above
initial momentum is smoothly accounted for, which is more
physical and stable compared to the impulse force correction.

Caiazzo and Junk [36] proposed an alternative modified
ME method based on asymptotic analysis,

SFw(xw»ea) = 6F11)(xw»ea) - zwaea

lew - ul* —ulleq,  (32)

— PWy cs_2 {c
where § F w(Xy,ey) is the force obtained by Eq. (14). Clausen
and Aidun [37] derived a similar formula and correct the
method by creating an internal boundary node so that the
effect of the error term in the conventional ME method
could be canceled out. The second term in the RHS of
Eq. (32) simply represents the hydrostatic pressure [37]. Their
method, Eq. (32), was proved to be Galilean invariant via
a numerical simulation of a single particle crossing Lees-
Edwards boundary [38] and a shear flow test [37], while the
improvement in more practical simulations, such as particle
sedimentation, was not shown. In the following section, their
method will also be compared with our method.

V. RESULTS AND DISCUSSION

In this section the corrected ME methods are put into
test. In Table II CME-present stands for the corrected ME
method proposed in this paper, and CME-Caiazzo stands for
the corrected ME method proposed in Ref. [36]. The notations
of other methods are shown in Table 1.

A. Accuracy tests
1. A moderate Reynolds number case with Re = 6.6

The Re = 6.6 sedimentation case in Sec. III is once again
adopted to validate our new momentum exchange method.
In Sec. III, we find that the results from CB-ME, BB-ME,
CB-SI-IMP, and VF are inaccurate, and those results will not
be presented here.

We can see from Fig. 7 that both CB-CME-present and
CB-CME-Caiazzo agree well with FEM and CB-SI. A similar
conclusion can be made for the methods using the midway
bounce-back boundary condition, as shown in Fig. 8. Com-
pared with CB-ME-IMP and BB-ME-IMP, the impulse force is
no longer required in our corrected ME method, thus the force
acting on the particle is much smoother and comparable with
force obtained by the SI method, as shown in Fig. 9. Figure 9
also shows that the advantage of using the curved boundary
condition is preserved, as the force obtained by the curved
boundary condition is smoother than the force obtained by the
midway bounce-back boundary condition. Although VF does
not produce accurate trajectory and orientation of the particle
in this case, VF does produce the smoothest force in all the
methods tested in this paper. The difference between results
of our method (CME-present) and the corrected ME method
(CME-Caiazzo) proposed in Ref. [36] is negligible.

2. Two relatively low Reynolds number cases with Re = 0.31
and Re = 0.82, respectively

In order to further evaluate the methods, the Re = 0.82 and
the Re = 0.31 cases are carried out. These two cases have
also been adopted in Ref. [3], and FEM data are available
in Ref. [31].

The geometries of the Re = 0.82 and Re = 0.31 cases are
the same and shown in Fig. 2. The computation domain is
a closed channel. In the lattice unit, the channel width L is
100, and the channel length is 30L. The particle is initially
placed at the center of the channel and is 3L away from the
end of the channel in the negative direction of the x axis,
with & = 135°. a = 1.5b = 10 and  is chosen to be 0.6. The
solid-fluid density ratio is 1.005 and 1.0015 for the Re = 0.82
case and Re = 0.31 case, respectively.

The physical parameters are not available for the two cases
here, while only the solid-fluid density ratio, terminal Reynolds
number, and initial and terminal particle orientation are known.
Thus, gravity (in lattice units) is adjusted to ensure the terminal
Reynolds number and orientation match with the FEM data.
Our simulations show that g = 1.355 x 1073 is good for all
the methods tested here, except for LBM with the SI method,
in which g = 1.375 x 1073, However, for these two low
Reynolds number cases, the actual differences of simulation
results obtained by the two gravity values is relatively small
and have no significant influence on the final conclusion. Thus,
only results of g = 1.355 x 103 are shown here.

In Fig. 10 both CB-ME-IMP and VF agree well with
FEM, while CB-SI slightly deviates from FEM and all other
LBM results in the Re = 0.31 case, which indicates that the
stress integration method is not accurate in this particular low
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FIG. 7. (Color online) Comparison of particle trajectories and
orientations for the Re = 6.6 case obtained by FEM [5] and LBM
with the curved boundary condition. Results of the two corrected ME
methods, CB-CME-present and CB-CME-Caiazzo, are included and
show good agreement with the FEM data. The difference between
results of our method (CB-CME-present) and the corrected ME
method (CB-CME-Caiazzo) proposed in Ref. [36] is negligible.

Reynolds number case. The results by CB-CME-present and
CB-CME-Caiazzo are shown in Fig. 11, both of which are
almost identical to CB-ME-IMP and agree well with FEM.

3. A relatively high density ratio case with Re = 11

Inthe Re = 6.6,Re = 0.82, and Re = (.31 cases, the solid-
fluid density ratio is relatively small, which is not suitable for
the shell model. Here we use the same simulation setup in the
Re = 6.6 case, except that the density ratio is raised to 3.0
instead of 1.1 in the Re = 6.6 case, and the fluid viscosity is
also raised to 3.0 x 107% m?/s. Under this setup, the terminal
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FIG. 8. (Color online) Comparison of particle trajectories and
orientations for the Re = 6.6 case obtained by FEM [5] and LBM
with the midway bounce-back boundary condition. Results of the two
corrected ME methods, BB-CME-present and BB-CME-Caiazzo, are
included and show good agreement with the FEM data. The difference
between results of our method (BB-CME-present) and the corrected
ME method (BB-CME-Caiazzo) proposed in Ref. [36] is negligible.

Reynolds number is 11 (the Re = 11 case), which is valid for
either using the ME method or the SI method.

Since there are no FEM data available in this case, in order
to obtain an accurate result for comparison, we refine the grid
so that the resolution becomes 520 grid cells per cm, compared
with 260 grid cells per cm before grid refining. Figure 12 shows
the fine grid results. All the methods tested here show very
good agreement with each other, except VF, which deviates
significantly from other methods. In the Re = 6.6 case, VF also
deviates from other results including FEM and is considered
to be inaccurate. Thus, the fine grid CB-CME-present data
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FIG. 9. (Color online) Comparison of fluid force acting on the
particle during the terminal settling state for the Re = 6.6 case
obtained by LBM. Results of the two corrected ME methods are
included and comparable with the results of the SI method in terms
of smoothness. Forces obtained by BB-CME-present and BB-CME-
Caiazzo still fluctuate in some degree mainly due to the midway
bounce-back boundary condition. Readers should keep in mind that
the scale of F, in this figure is different from the one in Fig. 5.

is adopted as the benchmark for comparison in the following
normal grid resolution (260 grid cells per cm) test.

Figure 13 shows results obtained by the curved boundary
condition and the volume fraction model with normal grid
resolution. VF again deviates from other methods. Due to
reduced grid resolution, as the particle approaches the terminal
state in the middle of the channel, results of different methods
begin to deviate a little from each other and the fine grid
result but still in an acceptable range. Figure 14 shows results
obtained by the midway bounce-back boundary condition
with normal grid resolution. The result by Ladd’s shell
model is also included for comparison. The midway bounce-
back boundary condition is first-order accurate for arbitrary
surface, and the Reynolds number in this case is relatively
high. However, results obtained by the midway bounce-back
boundary condition still agree well with the fine grid result
from CB-CME-present, although not as well as the curved
boundary condition results when the particle approaches to
the terminal state in the middle of the channel. The shell
model is as accurate as other methods that employ the midway
bounce-back boundary condition in this case.

B. Galilean invariance

Several papers have studied the Galilean invariance of the
particle suspension models [36-38]. The benchmark case in
Ref. [37] is adopted to evaluate our new corrected momentum
exchange method, as well as other methods used in this
paper. For simplicity, the benchmark case is modified into
two-dimensional case.

The geometry of the case is shown in Fig. 15. The
periodic boundary condition is applied to the inlet and outlet
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FIG. 10. (Color online) Comparison of particle trajectories and
orientations for the Re = 0.82 case and the Re = 0.31 case obtained
by FEM [31] and LBM with the curved boundary condition. CB-SI
slightly deviates from FEM in the Re = 0.31 case, while other LB-
based methods agree well with FEM, which indicates that the stress
integration method is not accurate in this particular low Reynolds
number case. Among all the LB-based methods, VF has best match
with FEM.

of the channel. The computation domain is 100 x 500. The
two-dimensional circular particle which has a radius of 10
lattice units is initially placed in the middle of the channel
and is 100 lattice units away from the inlet of the channel.
The solid-fluid density ratio is 3.0 and t is 0.6. Initial velocity
of the fluid is U, + yH/2 — yy, where y is the shear rate
and y is the distance from the bottom wall. The particle is
also assigned with a initial translational velocity of U, and
is allowed only to move in the x direction. The physical
system of this case is Galilean invariant. Thus, the particle
should experience negligible y direction force if the numerical
simulations are Galilean invariant.
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FIG. 11. (Color online) Comparison of particle trajectories and
orientations for the Re = 0.82 case and the Re = 0.31 case obtained
by FEM [31] and LBM with the curved boundary condition.
Results by the two corrected momentum exchange methods, CB-
CME-present and CB-CME-Caiazzo, are included and show good
agreement with the FEM data.

We follow the work of Ref. [37] and vary the value of U, and
y separately. In Fig. 16 the translational velocity U, = 0.01
and is kept constant, while the shear rate y is varied. In Fig. 17
the shear rate y = 2.5 x 10~ and is kept constant, while the
translational velocity U, is varied. As shown in Fig. 9, even
without the impulse force in Eq. (25) and in Eq. (27), the fluid
force acting on the particle obtained by LBM still fluctuates to
some degree. Thus, the y direction force F, discussed below
is averaged during the period the particle moves within x =
(200,300) in the channel.

The conventional ME method without correction results in
a relatively large F, and hence breaks Galilean invariance.
The magnitude of Fy of CB-ME or BB-ME increases linearly
as U,y increases, as shown in both Figs. 16 and 17, which
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FIG. 12. (Color online) Comparison of particle trajectories and
orientations for the high-density ratio Re = 11 case obtained by
LBM with the curved boundary condition using a fine grid resolution
(520 lattice units per cm). All the methods tested here show very good
agreement with each other, except VF, which deviates significantly
from other methods.

indicates that F) is linearly related to both translational
velocity and shear rate.

With either correction proposed in this paper or in Ref. [36],
F, is two orders of magnitude smaller than the one without
correction; thus we can claim that our corrected ME method
is Galilean invariant. In the shell model, as the interior
fluid interacts with the boundary in the same way as the
exterior fluid, the consequence of not accounting for the initial
momentum of the mass transfer in Eq. (9) is canceled out,
and no correction is required. For the SI method and the
volume fraction model, force evaluation does not involve the
miscalculation of the momentum exchange in the conventional
ME equation, and thus both methods should be Galilean
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FIG. 13. (Color online) Comparison of particle trajectories and
orientations for the high-density ratio Re = 11 case obtained by LBM
with the curved boundary condition using a normal grid resolution
(260 lattice units per cm). All the LB-based methods agree well with
each other and the fine grid result, except the VF result, which deviates
from the fine grid result significantly. Thus, VF is not accurate in
this case.

invariant. Our simulations show that F, of the shell model,
volume fraction model, and LBM with the SI method is two to
three orders of magnitude smaller than F, of CB-ME, which
agrees with our analysis.

C. Efficiency

Although the SI method requires a lot of extrapolations
and, as a result, is definitely more time consuming than
the ME method, one may be interested in the exact differ-
ence of efficiency between the two methods. The Re = 6.6
sedimentation case is chosen for efficiency comparison. The
simulations are run on a desktop computer equipped with an
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FIG. 14. (Color online) Comparison of particle trajectories and
orientations for the high-density ratio Re = 11 case obtained by LBM
with the curved boundary condition using a normal grid resolution
(260 lattice units per cm). All the LB-based methods agree well with
each other and the fine grid result, although not as well as the results
obtained by LBM using the higher-order curved boundary condition.
BB-ME-shell is as accurate as other methods that employ the midway
bounce-back boundary condition in this case.

Intel 17 3770 CPU (3.4 GHz). The Turbo Boost feature of
the CPU is disabled in order to run these simulations under
the same CPU frequency. The code is written in FORTRAN
and compiled with the Intel Visual Fortran Composer XE
2013 with OpenMP disabled. Due to the execution of the ME
method being extremely fast and the ME method embedded in
the boundary condition treatment, the computation time of the
ME method is difficult to measure. A preliminary test with the
particle moving at a constant speed (hence force evaluation is
irrelevant) shows that the difference between the computation
time of the whole particle treatment segment with or without
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FIG. 15. (Color online) The geometry of the Galilean invariance benchmark case. y is the shear rate. Periodic boundary condition is applied
to the inlet and outlet of the channel. In the left figure, the translational velocity U, is zero, and the particle will rotate under shear flow with
no translational velocity. In the right figure, the whole fluid phase and solid phase system is applied with a constant translational velocity U,.
The physical system is Galilean invariant, and the particle will stay in the middle of the channel and experience no vertical fluid force.

the ME method being executed is barely noticeable. Thus, we
monitor only the stress integration segment of the code as well
as the whole particle treatment segment, which involves the
particle boundary treatment, force evaluation, and the particle
velocity and position update. The ME segment is assumed
to be negligible compared with the whole particle treatment
segment.

The averaged (averaged from ¢ = 10000 to ¢ = 60 000)
computation time of the particle treatment segment and the
SI segment per 1000 time steps is shown in Table III. The SI
segment alone costs about three times more computation time
than the whole particle treatment segment when using the ME
method. For the SI method used here, the integral of Eq. (18)
is approximated by the quadrature of 400 points, which is also
adopted in several other papers [5,19,29]. The computation
time can be reduced by using fewer points for integration;
however, the accuracy of stress integration method may also be
reduced. Nevertheless, the ME method requires significantly
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FIG. 16. (Color online) Force error for the circular particle in
the shear flow test. The translational velocity U, is kept constant at
0.01. Simulations employing the conventional ME method, CB-ME
and BB-ME, result in significant vertical force compared to other
methods.

less computation time than the SI method. The computation
of an accurate solid volume fraction of a lattice cell is time
consuming, thus the computation cost of VF is much higher
than those link-based LB methods. In Table III the computation
time of the particle treatment segment of CB-CME-present is
just about twice the computation time of BB-CME-present;
thus, the extra cost of the curved boundary condition compared
to the bounce-back boundary condition is acceptable. For
dilute particle suspensions, the curved boundary condition is
promising since it brings in subgrid resolution without too
much extra computation cost.

In summary, the two corrected momentum exchange
methods without the impulse force are promising in the
lattice Boltzmann simulations of particle-fluid interactions.
Compared with the conventional ME method with the impulse
force correction, the two corrected ME methods do not require
us to apply the impulse force whenever the particle moves to
cover or uncover a fluid node; thus, the total force obtained by
the corrected ME methods is much smoother. Compared with
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FIG. 17. (Color online) Force error for the circular particle in
the shear flow test. The shear rate y is kept constant at 2.5 x 107>,
Simulations employing the conventional ME method, CB-ME, and
BB-ME resultin significant vertical force compared to other methods.
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TABLE III. Averaged computation time of the whole particle
treatment segment and the force evaluation segment per 1000 time
steps for a single particle

Particle treatment Force evaluation

Method segment segment
CB-SI 0.288s 0.235s
CB-CME-present 0.058s <0.001s
BB-CME-present 0.030s <0.001s
VF 1.055s 0.013s

the ST method, the total force obtained by the corrected ME
methods is as smooth as the SI method, while the computation
cost is much lower than the SI method. Also, the corrected
ME methods are interpolation or extrapolation free, which
is critical for dense particle suspensions where there is not
enough information available for the extrapolations required
in the SI method.

Although the corrected momentum exchange method in
Ref. [36] has been proposed since 2008, the latest papers
on particle suspensions are still using the impulse force
correction [12,14,21]. The reason is probably that the previous
studies mainly focus on Galilean invariance [36-38], while
the impact on the real world simulations is not well presented.
Also the physical meaning of the correction term is not
well explained, which may confuse users, as the momentum
exchange method is proved to be quite accurate in the still
walls test [28]. Compared with the corrected ME method in
Ref. [36], both methods obtain almost identical simulation
results, while our method is based on the definition of the
momentum exchange, the momentum difference of the ingoing
and outgoing fluid particles along the boundary link, and
provides detailed interpretation of the correction term, which
is also helpful for the design of new lattice Boltzmann particle
suspension models. Nevertheless, both corrected momentum
exchange methods are superior to the impulse force correction
and deserve further investigation.

VI. CONCLUSIONS

In this work, the physical cause of the inaccurate particle
dynamics obtained by lattice Boltzmann simulations using the
conventional momentum exchange method without correction
is revealed. In the moving boundary treatment, a net fluid
mass transfer through the physical boundary exists due to the
fixed discretized lattice velocity. The physical interpretation
of the net mass transfer is that a small portion of fluid region
is covered (or uncovered) by the moving solid wall in each
time step and the fluid mass of this region is injected back
to (or down from) the fluid region at the same time. The
conventional momentum exchange method does not account
for the initial momentum of the net mass transfer in the
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moving boundary treatment, and the force evaluated from the
momentum exchange method is thus inaccurate once the wall
is moving towards the fluid. An impulse force was proposed
to modify the force evaluation whenever the particle moves to
cover or uncover a lattice node, but led to significant fluctuation
of force and reduced simulation stability. We propose a
corrected momentum exchange method by accounting for the
initial momentum of the net mass transfer. This method is
easy to implement with negligible extra computational costs,
and the impulse force is no longer required. Direct numerical
simulations of a single elliptical particle sedimentation are
carried out to evaluate different lattice Boltzmann-based
methods for particle-fluid interactions, including the corrected
momentum exchange method proposed in this paper, by
comparisons with results from the finite element method.
Based on the results and analysis, we conclude the following:

(1) The simulation results using our corrected momentum
exchange method agree well with the FEM data for all the
numerical cases in this paper. As no impulse force is required,
the force evaluated by our method is as smooth as that of
the stress integration method. The correction is local with
negligible additional computation costs. Our method is valid
for both the midway bounce-back boundary condition and the
curved boundary treatments and is Galilean invariant.

(2) The stress integration method for force evaluation in
LBM can lead to accurate and stable particle dynamics and
needs no impulse force correction. However, it requires a huge
amount of extrapolations, which results in high computation
costs. The implementation of the stress integration method will
be very complicated for three-dimensional simulations. Our
numerical results show that for the relatively low Reynolds
number, such as the case of Re = 0.31, the stress integration
method slightly deviates from both FEM and other LB-based
methods. Various factors may affect the accuracy of the
stress integration method, such as the extrapolation scheme
and the exact integration surface, and further investigation is
necessary.

(3) Forces on the particle obtained by the volume-fraction
LB method are the smoothest among all the methods tested in
this paper. The volume fraction model agrees well with FEM
in the relatively lower Reynolds number cases, but deviates
from that for higher Reynolds number cases. Nonrigid behav-
ior of the interior fluid may be responsible. The computation
cost to obtain accurate solid volume fraction of a lattice cell is
very high, which further limits the use of this method.
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