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Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene
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We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis
of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later,
we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and
doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation,
we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding
that the family of representative wave (2 + 1)-vectors, which satisfies the quadrature, reconstructs a honeycomb
lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent
agreement with other numerical models. In addition, we have extended the Riemann problem to the case of
different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases
its effective viscosity.
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I. INTRODUCTION

Since its discovery [1,2], graphene has shown a series
of wonderful electrical and mechanical properties, such as
ultrahigh electrical conductivity, ultralow viscosity, and excep-
tional structural strength, combined with mechanical flexibility
and optical transparence. Due to the special symmetries of
the honeycomb lattice, electrons in graphene are shown to
behave like massless chiral ultrarelativistic quasiparticles,
propagating at a Fermi speed of about vF ∼ 106 m/s [3,4]. This
places graphene as an appropriate laboratory for experiments
involving relativistic massless particles confined to a two-
dimensional space [5].

Electronic gas in graphene can be approached from a hydro-
dynamic perspective [6–9], in the regime of low doping (i.e.,
Fermi energy lower than thermal energy), high temperatures
(where the carriers are mostly due to thermal excitations),
and low drift velocities. Under such conditions, electrons in
graphene behave as a nearly perfect fluid reaching viscosities
significantly smaller than those of superfluid helium at the
λ point. This has suggested the possibility of observing
preturbulent regimes, as explicitly pointed out in Ref. [6]
and later confirmed by numerical simulations [10]. All these
characteristics in graphene open up the possibility of studying
several phenomena known from classical fluid dynamics, e.g.,
transport through disordered media [11] and Kelvin-Helmholtz
and Rayleigh Bénard instabilities, just to name a few. However,
the study of these phenomena needs appropriate numerical
tools, which take into account both the relativistic effects and
the Fermi-Dirac statistics.

Recently, a solver for relativistic fluid dynamics based on
a minimal form of the relativistic Boltzmann equation, whose
dynamics takes place in a fully discrete phase-space lattice
and time, known as relativistic lattice Boltzmann (RLB), has
been proposed by Mendoza et al. [12,13] (and subsequently
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revised in Ref. [14] enhancing numerical stability). This model
reproduces correctly shock waves in quark-gluon plasmas,
showing excellent agreement with the solution of the full
Boltzmann equation obtained by Xu and Greiner [15] and
Bouras et al. [16] using BAMPS (Boltzmann approach multi-
parton scattering). In order to set up a theoretical background
for the lattice version of the relativistic Boltzmann equation
for the Boltzmann statistics, Romatschke et al. [17] developed
a scheme for an ultrarelativistic gas based on the expansion
in orthogonal polynomials of the Maxwell-Jüttner distribution
[18] and, by following a Gauss-type quadrature procedure, the
discrete versions of the distribution and the weight functions
were calculated. This procedure was similar to the one
used for the nonrelativistic lattice Boltzmann model [19–25].
This relativistic model showed very good agreement with
theoretical data, although it was not compatible with a lattice,
thereby requiring linear interpolation in the free-streaming
step. Another model based on a quadrature procedure was
developed recently in order to make the relativistic lattice
Boltzmann model compatible with a lattice [26]. However, all
these models are based on the the Maxwell-Jüttner distribution,
which is based on the Boltzmann statistics, and therefore their
applications to quantum systems is limited.

In this work, we construct a family of orthogonal poly-
nomials by using the Gram-Schmidt procedure using as the
weight function the ultrarelativistic Fermi-Dirac distribution
at rest. By applying a Gauss-type quadrature, we find that
the family of discrete (2 + 1)-momentum vectors needed to
recover the first three moments of the equilibrium distribution
are fully compatible with a hexagonal lattice, avoiding any type
of linear interpolation. This result is very convenient, since
the crystal of graphene shares the same geometry, facilitating
the implementation of boundary conditions, allowing for
instance having a good approximation for the electronic
transport in nanoribbons with armchair or zigzag edges [27,28]
by implementing the typical bounce-back rule for lattice
Boltzmann models.
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The paper is organized as follows: in Sec. II, we describe
in detail the expansion of the Fermi-Dirac distribution in an
orthogonal basis of polynomials and perform the Gauss-type
quadrature. In this section, we also explain the discretization
procedure. In Sec. III, we implement the validation of our
model by simulating the Riemann problem, and in Sec. IV, we
perform additional simulations for doped graphene. Finally, in
Sec. V, we discuss the results and future work.

II. MODEL DESCRIPTION

The electronic gas in graphene can be considered as a
gas of massless Dirac quasiparticles obeying the Fermi-Dirac
statistics in a two-dimensional space. Thus, we define the
single-particle distribution function f (xμ,pμ) in phase space,
with xμ = (x0,x1,x2) and pμ = (p0,p1,p2) being the time-
position and energy-momentum coordinates, respectively.
Here x0 denotes time, �x = (x1,x2) the spatial coordinates,
p0 the energy, and �p = (p1,p2) the momenta of the particles.
In the ultrarelativistic regime, we get pμpμ = 0 (in this paper
we use the Einstein notation; i.e., repeated indexes denote
summing over such indexes). In our approach, we assume that
the distribution function f evolves according to the relativistic
Boltzmann-Bhatnagar-Gross-Krook (BGK) equation [18],

pμ∂μf = −pαUα

v2
F τ

(f − feq), (1)

where τ is the relaxation time and feq the equilibrium
distribution, which in our case, is the relativistic Fermi-Dirac
distribution defined by

feq(xμ,pμ) = 1

e(pαUα−μ)/kBT + 1
, (2)

with T being the temperature, kB the Boltzmann constant, Uμ

the macroscopic (2 + 1)-velocity of the fluid [18,29,30], and
μ the chemical potential. The relation between the Lorentz-
invariant Uμ and the classical velocity �u = (u1,u2) is given
by Uμ = γ (vF ,u1,u2), with vF being the Fermi speed and

γ = 1/

√
1 − �u2/v2

F .

A. Moment expansion

Here, we perform an expansion of the Fermi-Dirac dis-
tribution, Eq. (2), in an orthogonal basis of polynomials. In
our case, since we are interested in the hydrodynamic regime,
we truncate the expansion preserving only the polynomials
up to second order, although achieving higher orders is also
possible by using the same procedure. In particular, we need
to reproduce the first three moments of the equilibrium Fermi-
Dirac distribution, namely, 〈1〉(eq), 〈pα〉(eq), and 〈pαpβ〉(eq),
for α,β = 0,1,2. The angular brackets denote expectation
values using the distribution f via 〈Q〉 = ∫

dμQf , with
dμ = d2p/2p0(2π )2, and the subscript (eq) indicates that the
equilibrium distribution feq is taken instead of f .

This method was originally introduced by Grad [31] who
expanded the Maxwell-Boltzmann distribution in Hermite
polynomials, based on the fact that they are orthogonal, using
as the weight function the Maxwellian distribution at rest.
In this spirit, we derive a new basis of polynomials that

are orthogonal with respect to the Fermi-Dirac distribution
at rest,

w(p0) = 1

ep0/kBT + 1
. (3)

Note that for the nonrelativistic case, the Maxwell-
Boltzmann distribution corresponds to the generating function
of the Hermite polynomials. However, this is not the case
in relativity with the Fermi-Dirac distribution, since due to
the Lorentz transformation and the Fermi-Dirac statistics the
weight function w(p0) evaluated at a moving frame leads to
a non- relation, w(pμUμ), which cannot be written easily
in the form of a known generating function. Indeed, the
Maxwell-Jüttner distribution can be written as the generating
function of the Laguerre polynomials, but for the Fermi-Dirac
statistics this does not apply.

For the following derivations it is useful to choose natural
units, c = kB = h̄ = 1. In addition, we consider only the case
for μ = 0, although a general approach is straightforward. By
introducing a reference temperature, T0, we define θ = T/T0,
p̄ = p0/T0, �v = �p/| �p|, and using p0 = | �p|, we rewrite the
equilibrium distribution as

feq,E(t,�x,p̄,�v) = 1

ep̄γ (1−�v·�u)/θ + 1
, (4)

where the subscript E stands for “exact.” The distribution feq,E

is expanded using tensorial polynomials P (n), for the angular
contribution, and F (k), for the radial dependence, such that

feq,E(t,�x,p,�v) = 1

ep̄ + 1

∞∑
n,k

a
(nk)
i (t,�x)P (n)

i (�v)F (k)(p̄). (5)

Here, the (2 + 1)-momentum vectors have been expressed
in polar coordinates, pμ = (p̄,p̄ cos φ,p̄ sin φ) with �v =
(cos φ, sin φ) being a unit vector that carries the angular
dependence φ, and the index i denotes a family of indices
i1, . . . ,in ∈ {1,2} whose total number equals the order n of
the tensor for the angular dependence, i.e., P

(n)
i and a

(nk)
i are

tensors of rank n. Such an ansatz has been used by Romatschke
et al. [17] to expand the Maxwell-Jüttner distribution. Employ-
ing the Gram-Schmidt procedure, the radial polynomials F (k)

are constructed satisfying the orthogonality relation∫ ∞

0

dp̄

4π
w(p̄)F (k)(p̄)F (l)(p̄) = �

(k)
F δkl, (6)

and the angular ones are constructed by satisfying∫ 2π

0

dφ

2π
P m

i (φ)P n
j (φ) = �

(m)
P,ij δmn. (7)

The resulting polynomials and � constants up to second order
are given in Appendix A. With these polynomials and taking
into account Eq. (5), one can show that up to second order in
n and k, we get

a
(nk)
i = g(n)

�
(k)
F

T0

∫
dp̄

4π

dφ

2π
feq,EP

(n)
i F (k), (8)

with g(0) = 1, g(1) = 2, and g(2) = 4. The explicit form of a(nk)

is given in Appendix B. Using Eq. (5), the definitions of the
polynomials, and their orthogonality relations it can be easily
shown that the moments up to second order can be written in
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FIG. 1. (Color online) Comparison between the expanded Fermi
dirac distribution feq and the full version feq,E as a function of the
angular component φ, for p̄ = 0 (a and c) and p̄ = 3.5 (b and d),
with θ = 1.0 (a and b) and θ = 1.5 (c and d), u1 = 0.0, u2 = 0.05.

terms of the coefficients a
(nk)
i with n,k � 2 (see Appendix B),

and therefore, the truncated expansion of the distribution feq

up to second order becomes

feq = 1

ep̄ + 1

2∑
n=0

2∑
k=0

a
(nk)
i P

(n)
i F (k). (9)

This is sufficient to recover the moments

〈pα〉(eq) = nUα, (10a)

〈pαpβ〉(eq) = (ε + P )UαUβ − Pηαβ, (10b)

of the full Fermi-Dirac distribution, Eq. (4). In Eq. (10b), we
have introduced the Minkowski metric tensor ηαβ , the particle
density n = π

48T 2, the pressure P = 9ζ (3)
π2 nT , and the energy

density ε = 2P , where ζ denotes the Riemann ζ function,
ζ (3) ≈ 1.202.

Figure 1 shows that the quality of the matching between
the truncated feq and the exact feq,E , for p̄ ∼ 0, is very
poor, in contrast with the case p̄ ∼ 3.5. However, this is not
surprising, since we are dealing with a gas of ultrarelativistic
particles which are always moving at the Fermi speed, and
therefore none of them has energy p̄ = 0. On the other hand,
the matching is reasonable for θ = 1, while being off for θ > 1.
Thus, we conclude that θ = 1 offers the best approximation,
and therefore we work with that value. In addition, we have
found that θ cannot be chosen far below unity because feq can
present negative values. The fact that θ = 1 implies that the
reference temperature T0 should be equal to the temperature
of the electronic gas T .

By making the expansion in polar coordinates, some
questions naturally arise. While in the nonrelativistic case,
where the Maxwell-Boltzmann distribution is expanded in
Hermite polynomials, the projection coefficients are directly

mapped to the moments of the distribution, in the relativistic
case, the relation of the coefficients of the expansion with
physical quantites is not straightforward. In our expansion, the
coefficients due to the radial expansion [polynomials F (k)(p̄)]
can be mapped on the 0th component of the moments of
the Fermi-Dirac distribution, while the angular expansion
[polynomials P

(k)
i (�v)] coefficients contain the information

on how these 0th components, normally containing limiting
quantities like the Fermi speed or the total energy of the fluid,
are distributed over the spatial components and directions of
motion. Note that in the relativistic regime the components
of the moments of the distribution are not independent like
in the nonrelativistic case, e.g., for the first moment of the
distribution we have 〈p0〉 =

√
n2 + 〈p1〉2 + 〈p2〉2.

Another aspect that needs to be discussed is the convergence
of the expansion. The expansion introduced here is valid
if

∫
f 2

eq,E/w(p̄)dμ < ∞ [31]. By manipulating this integral
and studying the limiting cases, we arrive at the conclusion
that the condition 2γ (1 − |�u|)/θ > 1 needs to be satisfied.
By matching the Fermi-Dirac distribution we already found
that θ = 1 offers the best fitting. Therefore, the convergence
condition can be written as 2

√
(1 − |�u|)/(1 + |�u|) > 1, ob-

taining |�u| < 0.6vF . This relation is satisfied automatically
since the hydrodynamic approach in graphene is valid only for
small velocities (|�u| 	 vF ). Temperature variations around
θ = 1 are also allowed as long as the convergence condition
is satisfied and the expanded distribution remains positive.

B. Momentum space discretization

We now need to discretize the momentum space into a
finite number N of discrete momentum vectors, p

μ
q (with

q = 0, . . . ,N), such that we can replace integrals in the
continuum momentum space by sums over a small number
of discrete momentum (2 + 1)-vectors. In order to do that, we
use the Gaussian quadrature [32]. As an example, for the radial
dependence of the expansion, in order to satisfy

∫ ∞

0

dp̄

4π
w(p̄)F (k)(p̄)p̄l =

N∑
q ′=0

ω
(p̄)
q ′

w(p̄q ′)
w(p̄q ′)F (k)(p̄q ′)p̄l

q ′ ,

(11)

for k,l � 2, we should calculate the discrete p̄q ′ and respective
radial weights ω

(p̄)
q ′ . By using the Gaussian quadrature theorem,

we found the following values:

p̄1 = 0.484, ω
(p̄)
1 = 0.0369,

p̄2 = 2.447, ω
(p̄)
2 = 0.0176,

p̄3 = 6.424, ω
(p̄)
3 = 0.000719.

Note that in fact, p̄ is always larger than zero, as expected for
ultrarelativistic particles (see Appendix C for numerical values
with higher precision).

On the other hand, by following a similar procedure, we
can calculate the N ′ discrete angles φq ′′ and angular weights
ω

(φ)
q ′′ (with q ′′ = 1, . . . ,N ′), such that, for the angular integrals
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FIG. 2. (Color online) The populations fq are moved between the
nodes of a hexagonal lattice which are linked by the vector �eqδt .

over P (n)(vi)l(vj )m, one gets

∫ 2π

0

dφ

2π
P (n)(vi)

l(vj )m =
N ′∑

q ′′=0

ω
(φ)
q ′′ P

(n)(vi,q ′′ )l(vj,q ′′ )m,

(12)

where vi,q ′′ denotes vi(q ′′). The above expression is required
to be an exact quadrature formula for n � 2 and l + m � 2.
The results for the discrete angles and weight functions are
φq ′′ = π

2 + (q ′′ − 1)π
3 and ω

(φ)
q ′′ = 1

6 with N ′ = 6.
By combining the radial and angular dependence of the

discrete momentum (2 + 1)-vectors we get a total of 18 discrete
lattice vectors p

μ
q = p

μ

(q ′,q ′′) = T0(p̄q ′ ,p̄q ′ cos φq ′′ ,p̄q ′ sin φq ′′ ),
where we have introduced the index q = (q ′,q ′′). This lattice
cell configuration is shown in Fig. 2, where we can observe
that, for recovering hydrodynamics in graphene, we need
a hexagonal lattice. This is a very convenient result, since
due to the fact that it possesses the same honeycomb lattice
symmetries of graphene we can reproduce with good accuracy
boundary conditions when modeling nanoribbons or other
complex structures.

The exact quadrature relations, Eqs. (11) and (12), ensure
that the moments up to second order are still represented
exactly:

〈pα〉(eq) =
∑

q

ωq

w(p̄q)
f(eq),qp

α
q , (13a)

〈pαpβ〉(eq) =
∑

q

ωq

w(p̄q)
f(eq),qp

α
qpβ

q . (13b)

We have expanded and discretized the Fermi-Dirac equi-
librium distribution for ultrarelativistic particles. Note that
the Grad-Schmidt procedure described here for the Fermi-
Dirac distribution allows one to perform the expansion to
higher orders without any problem, since the integrals in
polar coordinates can be written with a recurrence formula
for a given nth order. However, their analytical expressions
become more difficult to manipulate due to the large number
of terms. Now, we proceed to discretize the Boltzmann
equation and find the evolution equation for the nonequilibrium
distribution.

C. Lattice Boltzmann algorithm

With the expanded distribution functions and the discretiza-
tion of momentum space at hand, we may use the following
discrete Boltzmann equation [13,17,21],

fq(t + δt,�x + �eqδt) − fq(t,�x)

= −pαUα

p0τ
[fq(t,�x) − feq,q(t,�x)], (14)

where we have introduced the notations �eq = �pq/p
0 and

fq(t,�x) = f (t,�x,pq). Note that �eq are unit vectors, which
means that there are effectively six different �eq. The discrete
Boltzmann equation is now embedded into a lattice, and
each time step of δt = 1 corresponds to one execution of the
following steps:

(1) Calculate the equilibrium distributions feq,q(t,�x) from
Eq. (9) using the macroscopic variables n = n(t,�x), �u =
�u(t,�x), and T (t,�x). At t = 0, n(t = 0,�x), T (t = 0,�x), and
�u(t = 0,�x) are imposed as initial conditions.

(2) Collision: Introducing the postcollisional distributions
f ′

q, calculate

f ′
q(t,�x) = fq(t,�x) − pαUα

p0τ
[fq(t,�x) − feq,q(t,�x)].

At t = 0, take fq = feq,q.
(3) Streaming: Move the f ′

q along �eq:

fq(t + 1,�x + �eq) = f ′
q(t,�x).

(4) Calculate the new macroscopic variables. First we com-
pute the energy density of the system by solving the eigenvalue
problem, 〈pαpβ〉Uα = εUβ , according to the Landau-Lifshitz
decomposition [18]. From this, we get ε and Uα . Next, we
use the relation n = 〈pα〉Uα = n to obtain the particle density.
Here, the average values, 〈pα〉 and 〈pαpβ〉, are simply

〈pα〉 =
∑

q

ωq

w(p̄q)
fqp

α
q ,

〈pαpβ〉 =
∑

q

ωq

w(p̄q)
fqp

α
qpβ

q .

The streaming step indicates that if we discretize the real space
based on a hexagonal lattice where the sites are linked by �eqδt ,
as shown in Fig. 2, the values of fq will be moved between
these sites exactly. This is known as “exact streaming” and is
crucial for the computational efficiency and accuracy of the
lattice Boltzmann methods.

In summary, we have developed a (2 + 1)-dimensional
relativistic lattice Boltzmann scheme with the remarkable
feature that it takes into account the Fermi-Dirac statistics,
while recovering all the moments up to second order. The
discretization is realized on a hexagonal lattice such that
exact streaming is achieved. The fact that the quadrature
corresponds to a hexagonal lattice allows one to represent
complex boundaries more precisely in graphene applications.
This will be studied in more detail in future works.

Up to now, we have been working with undoped graphene,
μ = 0. However, by using the same orthogonal polynomials,
we can easily integrate the Fermi-Dirac statistics for the doped
case, obtaining the extended formulation. In this work, we use
μ = 0, in order to compare the results with previous models
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in the literature that use the Maxwell-Jüttner distribution,
since transport theory shows that, in the case of undoped
Fermi-Dirac statistics, the transport coefficients, namely shear
viscosity and thermal conductivity, have the same expressions
as for the Boltzmann statistics [18]. Therefore, the shear
viscosity takes the value of η = (3/5)P (τ − δt/2) [33]. Later,
we use the doped case to study the Riemann problem, which
to best of our knowledge has never been studied before.
However, it is present when, for instance, laser beams are
pointed to the graphene sheet in order to measure transport
coefficients [34].

III. VALIDATION: RIEMANN PROBLEM

In order to validate our model, we solve the Riemann
problem for the ultrarelativistic Fermi-Dirac gas. The Riemann
problem is a standard test for both relativistic and nonrela-
tivistic hydrodynamic numerical schemes, because it involves
the evolution of two states of the fluid initially separated
by a discontinuity. In our case, we set up an effectively
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FIG. 3. (Color online) Density (a), pressure (b), and velocity (c)
profiles for the solution of the Riemann problem. Here ξ = η/(P0δt)
is a dimensionless number. The expected results were calculated using
the model in Ref. [26].

one-dimensional system of Lx × Ly = 3000 × 2 nodes, us-
ing periodic boundary conditions in x and y components.
Initially, there are two regions with particle densities, n0 =
1 (3Lx/4 > x > Lx/4) and n1 = 0.41 (x � Lx/4 and x �
3Lx/4), creating a rectangular plateau of nonzero particle
density in the center of the simulation zone. Here we consider
an initial constant temperature, T0 = 1. The initial velocity
is set to zero and the value of the relaxation time τ is
calculated for two different values of ξ = η/(P0δt), with
P0 = 9ζ (3)

π2 n0T0. The evolution of the system is displayed in
Fig. 3 after 470 time steps, showing the generated shock
wave. We have only plotted the region x > Lx/2 since the
other one does not give additional information. Note that
there is excellent agreement with the solutions provided
by the model proposed in Ref. [26] for the same initial
conditions.

IV. RIEMANN PROBLEM WITH μ �= 0

Let us now consider the case when the chemical potential
μ is different from zero. For this purpose, we follow the same
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FIG. 4. (Color online) Density (a), pressure (b), and velocity (c)
profiles of the solution of the Riemann problem, for different values
of the chemical potential μ.
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procedure described before but this time we keep μ �= 0. The
development is straightforward, and therefore does not deserve
a full explanation. The polynomials are the same as described
in Appendix A, and the coefficients a

(nk)
i are calculated by

using Eq. (8).
The hydrodynamic approach of electrons in graphene works

for low doping, μ/kBT 	 1 [7–9]. Therefore, we can expand
the discrete equilibrium distribution in powers of μ/kBT up
to third order, neglecting errors of the order of (μ/kBT )4. We
perform additional simulations of the Riemann problem with
the same parameters as before, but now varying the chemical
potential. As we can observe from Fig. 4, increasing the
chemical potential tends to increase also the effective viscosity
of the system, smoothing the profiles of the velocity, pressure,
and density. This result is very interesting because it suggests
that, in fact, impurities with soft potentials (small μ/kBT ) in
graphene samples can be treated as local modifications in the
effective viscosity of the electronic fluid. In other words, this
result suggests a promising way to include impurities in the
hydrodynamic approach of electrons in graphene. Note that in
this figure there is a noise in the profile of the particle density.
This numerical instability remains with the same amplitude
and is always located at the boundary when n = n0, and
therefore, it does not destroy the stability of the simulation.
It can be due to the relevance of higher-order terms which are
not recovered by our expansion.

V. CONCLUSIONS

We have derived a new family of orthogonal polynomials
using as the weight function the Fermi-Dirac distribution for
ultrarelativistic particles in two dimensions. By applying the
Gaussian quadrature we have calculated the set of representa-
tive momentum (2 + 1)-vectors, which allows us to replace the
integrals over the continuum momentum space by sums over
such vectors. As a very interesting result, we have found that
those vectors possess the same symmetries as the honeycomb
lattice of carbon atoms in graphene, making possible the
accurate implementation of complex boundary conditions in
future applications, such as point defects and nanoribbons. The
derivation has been performed by imposing that the expanded
distribution should fulfill at least the first three moments of
the equilibrium distribution, which are needed to recover the
appropriate hydrodynamics. However, higher-order moments
can also be recovered by using the same procedure in this
paper.

In addition, we have developed a new lattice kinetic scheme
to study the dynamics of the electronic flow in graphene. The
model is validated on the Riemann problem, which is one
of the most challenging tests in numerical hydrodynamics,
presenting excellent agreement with previous models in the
literature. By increasing the chemical potential, we have found
that the profiles of the velocity, the particle density, and the
pressure change similar to the case when the viscosity is
increased, and we conclude that increasing the Fermi energy
results in increasing the effective viscosity of the electronic
fluid. This result suggests that soft impurities in graphene
samples can be treated as local modifications of the viscosity;

however, further studies must be performed in order to confirm
this statement.

The fact that we can propagate the information from one site
to another in an exact way, avoiding interpolation, removes any
kind of round-off errors during the streaming. This property
also implies a negative momentum diffusivity, ∝Pδt/2, also
known as propagation viscosity [35], which needs to be added
to the collisional viscosity (3/5)Pτ to form the effective
viscosity of the fluid. We expect this model to be appropriated
to study many problems in electronic transport in graphene in
the framework of the hydrodynamic approach, e.g., turbulence
and hydrodynamical instabilities in graphene flow, just to name
a few.

Extensions of the present model to take into account higher-
order moments of the Fermi-Dirac equilibrium distribution as
well as the inclusion of the distribution and dynamics of holes
will be a subject of future research.
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APPENDIX A: POLYNOMIALS AND � CONSTANTS

In this section, we write explicitly the family of polyno-
mials, which are orthogonal using as the weighting function
the Fermi-Dirac distribution at rest, with their respective
normalization factors. For the case of the angular dependence,
we have

P (0)(�v) = 1,

P
(1)
i (�v) = vi,

P
(2)
ij (�v) = vivj − 1

2δij ,

with the following normalization factors:

�
(0)
P = 1,

�
(1)
P,ij = 1

2δij ,

�
(2)
P,ijkl = 1

8 (δilδjk + δikδjl − δij δkl).

For the case of the radial dependence, we have the
polynomials

F (0)(p̄) = 1,

F (1)(p̄) = p̄ − c10,

c10 = π2

12 log(2)
,

F (2)(p̄) = p̄2 − c21p̄ − c20,

c21 = −6[7π4 log(2) − 15π2ζ (3)]

5[π4 − 216 log(2)ζ (3)]
,

c20 = 7π6 − 3240ζ (3)2

10[π4 − 216 log(2)ζ (3)]
,
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with ζ denoting the Riemann ζ function. The normalization
factors for these polynomials are

�
(0)
F = log(2)

4π
, �

(1)
F = − π3

576 log(2)
+ 3ζ (3)

8π
,

�
(2)
F = 1

400π

(
49π8 log(2) − 210π6ζ (3) + 48 600ζ (3)3

π4 − 216 log(2) ζ (3)

+ 2250ζ (5)

)
.

APPENDIX B: COEFFICIENTS FOR THE EXPANSION
OF feq AND RELATION TO MOMENTS

The coefficients of the expansion in Eq. (9) are given by

a(00) = θ, a
(10)
i = 2 θ

1

γ + 1
uiγ,

a
(20)
ij = σij 4 θ

1

(γ + 1)2

[
γ 2

(
uiuj − 1

2
δij

)
γ 2 + 1

2
δij

]
,

a(01) = α(1)θ [θγ − 1] ,

a
(11)
i = 2α(1)θ

γ + 1
[θ (γ + 1) − 1] uiγ,

a
(21)
ij = 4α(1)θ

(γ + 1)2
[(2 − δij )θ (γ + 2) − σij ]

× [γ 4(uiuj − δij /2) + δij /2],

a(02) = α(2)θ{β(2|1)(θγ − 1) + β(2|2)[(3θγ − 2) − θ ]

+β(2|3)[θ2(3γ 2 − 1) − 2]},

a
(12)
i = 2α(2)θ

γ + 1
{β(2|1)[θ (γ + 1) − 1]

+β(2|2)θ (3θγ − 2)(γ + 1)

+β(2|3)[3θ2γ (γ + 1) − 2]}uiγ,

a
(22)
ij = 4α(2)θ

(γ + 1)2
{β(2|1)[(2 − δij )θ (γ + 2) − (2δij + 1)σij ]

+β(2|2)3θ2(γ + 1)2 − 2(2 − δij )[θ (γ + 2) − 2δij σij )]

+β(2|3)[3θ2(γ + 1)2 − 2σij ]}
[
γ 2

(
uiuj − 1

2
δij

)
γ 2

+ 1
2δij

]
,

where σij = (−1)δ2,i δ2,j or

(σij ) =
(

1 1
1 −1

)
, (B1)

and

α(1) = 12π2 log(2)

216 log(2)ζ (3) − π4
,

α(2) = 5{2250ζ (5)[216 log(2)ζ (3) − π4] + 210π6ζ (3)

− 49π8 log(2) − 48 600ζ (3)3}−1,

β(2|1) = −14π6 log(2),

β(2|2) = −15π4ζ (3)2,

β(2|3) = 3240 log(2)ζ (3)2,

which are approximately α(1) ≈ 0.994, α(2)β(2|1) ≈ −1.629,
α(2)β(2|2) ≈ −0.307, and α(2)β(2|1) ≈ 0.567.

To obtain the moments from the expansion of feq, we
expressed them in terms of the a

(nk)
i using Eqs. (8) and (9) and

the expressions in Appendix A, e.g., 〈p0〉 = T 2
0 (�(1)

F a(01) +
c10�

(0)
F a(00)).

Note that for the calculation of the coefficients a
(nk)
i we

should use the integration formula

∫ ∞

0
dx

xn−1

z−1ea x + 1
= −z−1a−n�(n) Lin(−z),

which holds for n > 0, a ∈ R, and a > 0. Here, �(n) denotes
the � function, which becomes �(n) = (n − 1)! for n ∈ N.
Lin(z) is the polylogarithm which can be defined using a
power series: Lin(z) = ∑∞

k=1
zk

kn . If we consider the chemical
potential in the Fermi-Dirac distribution to be zero, we
have z = 1 and the relevant values of the polylogarithm
become Li1(−1) = − log(2), Li2(−1) = −π2

12 , and Li3(−1) =
− 3

4ζ (3). On the other hand, for μ �= 0, we take z = eμ/T .

APPENDIX C: RESULTS FOR RADIAL GAUSSIAN
QUADRATURE

When the radial Gaussian quadrature is applied, the
following values for the discrete p̄i are obtained:

p̄1 = 0.484 053 475 155 406 063 755 079 436 159 1,

p̄2 = 2.446 744 868 967 085 266 875 118 980 420 0,

p̄3 = 6.424 352 261 225 515 256 585 901 256 325 4,

with its respective weight functions

ω
(p̄)
1 = 0.036 873 061 135 963 836 010 154 242 597 8,

ω
(p̄)
2 = 0.017 566 680 177 745 899 345 375 761 739 0,

ω
(p̄)
3 = 0.000 719 158 724 453 162 993 584 103 692 7.
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