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Stochastic theory of an optical vortex in nonlinear media
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A stochastic theory is given of an optical vortex occurring in nonlinear Kerr media. This is carried out by starting
from the nonlinear Schrödinger type equation which accommodates vortex solution. By using the action functional
method, the evolution equation of vortex center is derived. Then the Langevin equation is introduced in the pres-
ence of random fluctuations, which leads to the Fokker-Planck equation for the distribution function of the vortex
center coordinate by using a functional integral. The Fokker-Planck equation is analyzed for a specific form of
pinning potential by taking into account an interplay between the strength of the pinning potential and the random
parameters, diffusion and dissipation constants. This procedure is performed by several approximate schemes.
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I. INTRODUCTION

The propagation of light waves in various refractive media
has long been a central subjects in optics and electromagnetic
theory [1,2]. In particular, wave propagation in a nonlinear
medium has been thoroughly investigated for the last half cen-
tury (see the general Refs. [3,4]). Among other observations,
a notable one is that there appears a soliton-like excitation
in the Kerr medium, which was originally pointed out in [5].
Following this seminal idea, a theory of optical vortex was
developed [6,7], which is alternatively called the “dark soliton”
in defocusing Kerr media. This shares the idea with a superfluid
vortex, the vortex that occurs in superfluid He [8]; namely,
the basic equation is described by the nonlinear Schrödinger
equation. The occurrence of the optical vortex (OV) is of
significance from an actual point of view; for example, it
may realize a formation of “optical wave guides” in a bright
background, without being builtin from the outset (see, e.g.,
[6]). Besides the spacial formation of an OV [7], its evolutional
aspect [9,10] has been also investigated.

Apart from the optical vortex soliton inherent in the
nonlinear Schrödinger equation, we also mention the works on
the Gaussian-Laguerre optical vortex (or twisted modes) [11],
which may be relevant to our attempt that will be discussed
below.

In this note we explore a quite different aspect of the
evolution of the optical vortex inherent in the nonlinear media.
What we are concerned with here is a random behavior of the
OV that is naturally expected to occur following the analogy
with the random theory of quantum vortex [12]. Indeed, it is
generally known that optical substances suffer from various
sorts of impurities of a random nature caused by, e.g., the
process of fabrication of the substances, which is not well
controllable. Thus we need to understand how to deal with such
irregularity. So far, a random approach has been investigated
in the context of birefringence [13–15], for which stochastic
equations (the Langevin and Fokker-Planck equation) for the
Stokes parameters are considered. In this way, it is quite
intriguing to consider the random effect for the case of optical
vortex.
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The main purpose here is to develop a stochastic theory of
optical vortex in the framework of the Langevin and Fokker-
Planck (FP) equations. To carry out this, we start with the
nonlinear Schrödinger-type equation, which is derived from
the Maxwell-Helmholtz equation using the so-called envelope
approximation [16].

The first task is to find out the vortex solution for
the nonlinear Schrödinger equation in such a form that it
incorporates the vortex center coordinate in a parametric form.
By applying the action functional method to this parametric
form of solution, the equation of motion of the coordinate of
the “vortex center” is constructed in the presence of a pinning
potential that represents the interaction between the vortex and
embedded impurities.

The next task is to convert the equation of motion to the
Langevin equation by adding the random forces. Then this is
converted to the Fokker-Planck equation for the distribution
function of the vortex center coordinate by adopting a
functional integral technique [17,18]. The FP equation has
a peculiar structure, and a special technique is required to
handle it. Taking account of this feature, we try to solve the
FP equation while paying special attention to the mutual role
between the pinning potential and the stochastic parameters,
dissipation and diffusion. As for the random analysis that
shares the similar spirit as the present attempt, we mention
the article which deals with the reduced random equation
starting from the nonlinear Schrödinger equation with additive
noises [19] (see also the argument in Sec. IV A).

The paper is organized as follows. In the next section, we
set up the nonlinear Schrödinger equation. In Sec. III, the
profile of OV is given together with the equation of motion of
the vortex center. In Sec. IV, the Langevin and Fokker-Planck
equations are constructed. In Sec. V, the analysis of the FP
equation is presented. The last section is a summary.

II. NONLINEAR SCHRÖDINGER EQUATION

We start with a description of the light wave traveling
through the nonlinear substance. Although the following
argument shares the central idea with the preceding papers
[6,7], we use several simplifications and refinements in order
to develop the stochastic idea in a concise way.
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The basic field equation with which we are concerned is the
Maxwell-Helmholtz equation for the electric field E written in
a complex form [2]

∂2 E
∂z2

+ ∇2 E +
(

ω

c

)2

ε E = 0. (1)

Here we adopt a slab geometry; namely, (x,y) means the
coordinate that is perpendicular to propagation direction
designated by z and ∇ = ( ∂

∂x
, ∂
∂y

). The symbol ε means the
dielectric constant

ε = ε̄ + g|E|2, (2)

where ε̄ denotes the linear dielectric constant and the second
term represents the one induced by the Kerr effect character-
ized by the coupling constant g. For the case of a weak field,
E can be written in the form

E(x,y,z) = ψ(x,y,z) exp[ikn0z], (3)

namely, ψ gives the modification from the plane wave of the
wave number k = ω

c
, which propagates along the z direction in

the vacuum with the refractive index n0(≡√
ε0). The amplitude

ψ is described by a single component, namely, ψ is regarded
as a scalar wave. Here we note that ψ is in general a two-
component wave that takes into account polarization, but for
the case of isotropic medium it is not necessary to consider the
polarization effect.

We now adopt the envelope approximation; namely, by
substituting Eq. (3) into Eq. (1) and noting the slowly varying
nature of ψ , i.e., | ∂2ψ

∂z2 | � k| ∂ψ

∂z
|, we can derive the equation

for the amplitude ψ ; namely, we keep only the first-order
derivative ∂ψ

∂z
as well as the Laplacian with respect to (x,y).

We thus have the Schrödinger-type equation for ψ :

iλ
∂ψ

∂z
=

(
−λ2

n0
∇2 + m + g|ψ |2

)
ψ ≡ Ĥψ, (4)

with m = ε̄ − n2
0 (which is chosen to be positive) and λ is the

wavelength divided by 2π . The remaining term, which comes
from the linear refractive index, is put aside for the moment.
Equation (4) is just the so-called nonlinear Schrödinger
equation for which the potential is given by V = g|ψ |2. In
what follows we consider the case that g is negative; we put
g → −g(g > 0). This fact corresponds to the dark soliton;
namely, the core part of the vortex forms a hollow which looks
like a spot in the bright region [6,7]. Here, in connection with
the above formulation, we mention typical analytic treatments
for two-dimensional vortices (or quasisolitons) in defocusing
media [20] and Bose-Einstein condensates [21].

III. EVOLUTION OF VORTEX

A. Action functional form

We now introduce the “quantum” action leading to the
Schrödinger-type equation (4):

I =
∫ [

iλ

2

(
ψ∗ ∂

∂z
ψ − c.c.

)
− ψ∗Ĥψ

]
d2x dz

≡
∫

(LC − H ) dz. (5)

The nonlinear Schrödinger equation is derived from the
variational equation, δI = 0. By writing the field ψ in a
polar form ψ = F exp[iφ], the Lagrangian (L ≡ LC − H ) is
expressed in a form of fluid-dynamical form. The first term
LC , which is called the canonical term, is given as

LC = λ

∫
F 2 ∂φ

∂z
d2x, (6)

and the Hamiltonian term consists of the kinetic energy term
HT and the nonlinear interaction potential, which is written in
terms of the amplitude F and phase angle φ:

H = HT + V, V =
∫

(mF 2 − gF 4) d2x,

HT = λ2

n0

∫
∇ψ†∇ψ d2x

= λ2

n0

∫ [
(∇F )2 + F 2(∇φ)2 + n0m

λ2
F 2

]
d2x. (7)

The second term is the fluid kinetic energy if we define
the “velocity field “as ∇φ = v. In this way, if the wave
function parametrically includes some collective coordinate,
the variational equation derives the evolution equation for this
coordinate (see below).

B. Vortex profile

Now we shall examine a profile of vortex. Let us put an
ansatz for the phase function,

φ = tan−1 y

x
. (8)

Using this ansatz, it is natural to assume that the density
profile is a function of r =

√
x2 + y2; F = F (r). Thus the

Hamiltonian is written as

H = λ2

n0

∫ [(
dF

dr

)2

+ F 2

r2
+ n0m

λ2
F 2 − gn0

λ2
F 4

]
r dr

≡ λ2

n0

∫
H dr. (9)

From the variation equation d
dr

( ∂H
∂F ′ ) − ∂H

∂F
= 0, we obtain the

equation for F [8]:

d

dr

(
r
dF

dr

)
− F

r
+ 2gn0

λ2
r

(
F 3 − m

2g
F

)
= 0. (10)

This has the asymptotic form for F (r): F 2(∞) = m
2g

≡ ρ0,
which should coincide with the strength of light that is fixed
as the condition imposed from the outset. By using the scaling

r = ξ

√
λ2

n0
,F = √

m/2gG, it follows that [22]

d2G

dξ 2
+ 1

ξ

dG

dξ
− G

ξ 2
− G(1 − G2) = 0. (11)

The behavior of the solution will be given by imposing the
boundary condition at the origin G(0) = 0. The asymptotic
behavior at ξ = 0 and ξ = ∞ is as follows: near ξ = 0, we
get the modified Bessel function G(ξ ) ∼ I1(ξ ) if neglecting
the nonlinear term. On the other hand, at ξ = ∞, by ex-
panding G = 1 + g, we obtain d2g

dξ 2 + 2g � 0, which leads to
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FIG. 1. Vortex profile plotted in a dimensionless form using
[ξ,G(ξ )]. This indicates an oscillatory convergence to the asymptotic
value at infinity.

g(ξ ) � exp[i
√

2ξ ] with arbitrary small amplitude. Taking into
account this asymptotic behavior, the numerical solution is
given and the result is depicted in Figs. 1 and 2. Apart from the
numerical profile of the vortex, we can simulate the solution by
a simple guess, which may be given as G(ξ ) � 1 − exp[−ξ ].
This may be used later for the solution of the Fokker-Planck
equation.

C. Equation of motion

Having constructed an explicit form for the vortex solution,
we now consider the evolutional behavior for a single vortex
with respect to the propagation distance z. Following the proce-
dure used in the case of superfluid vortex [23], let us introduce
the coordinate of the center of vortex, R(z) = (X(z),Y (z)),
by which the vortex solution is parameterized such that
F (x − R(z)) and φ(x − R(z)). By using this parametrization,
the canonical term LC is written as

LC = λ

∫
ρv · Ṙ d2x, (12)

where we put ρ = F 2 and use the relation ∂φ

∂z
= ∂φ

∂ R Ṙ,
∂φ

∂ R =
−∇φ with Ṙ ≡ d R

dz
. With the aid of the Euler-Lagrange

equation, we obtain the equation of motion for the cen-
ter of vortex [23]. The procedure is given in what fol-
lows. By differentiating Eq. (12) under the integral symbol,
we get

d

dz

(
∂Lc

∂Ẋ

)
− ∂Lc

∂X
= λ

∫ {
∂

∂x
(ρvy) − ∂

∂y
(ρvx)

}
d2xẎ ,

0.001 0.1 10 1000
10 4

0.001
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0.1
1
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FIG. 2. Vortex profile: log-log plot of Fig. 1. The vortex core is
magnified by this plot.

where we use ∂(ρv)
∂X

= − ∂(ρv)
∂x

. In vector notation, it is written
as [ ∫

{∇ × (ρv)}d2x

]
× Ṙ. (13)

The integral is converted to the line integral∫
{∇ × (ρv)}d2x =

∫
C

ρv · ds,

which turns out to be, if choosing the contour C as sufficiently
large, ∫

C

ρv · ds = ρ0

∫
C

v · ds = ρ0

∫
{∇ × v}d2x. (14)

To describe the evolution of the vortex, we need to include
the Hamiltonian term ∂H̃

∂R with H̃ = ∫
ψ∗Ĥψd2x, where Ĥ

is settled in such a way that the interaction on the vortex is
included. (The concrete form will be given below.) In this way,
we arrive at the equation of motion [24]:

ρ0λσ (k × Ṙ) = −∂H̃

∂R
, (15)

with k being the unit vector perpendicular to (x,y) plane.
Furthermore, σ is defined as

σ =
∫

R2

(
∂vy

∂x
− ∂vx

∂y

)
d2x, (16)

which is nothing but the vorticity. The above equation of
motion is rewritten in the form

μṘ = k × ∂H̃

∂R
, (17)

with μ ≡ ρ0λσ . Here we have used k · ∂H̃
∂R = 0.

We shall now consider the interaction arising from the
“pinning center” embedded in the medium. That is realized
as additional linear refractive indices, which give rise to
the modification of the wave function. We describe it as a
pinning potential, which can be expressed by a localized form;
namely, it may be plausible to ideally choose the delta function
form vpin = v0δ(r − a) with v0 being the strength of the
interaction and from its meaning it should be negative (v0 < 0).
This serves as a contribution to the Hamiltonian of the
form H̃ ≡ Vpin = ∫ |ψ |2v0δ(r − a)d2x = v0ρ(|R − a|). Here
a slight modification is needed; namely, we have to take into
account the fact that Vpin(∞) → 0. So we modify it such that

Vpin = v0ρ̃ ≡ v0{ρ(|R − a|) − ρ0}. (18)

Further if there are several pinning centers located at ai(i =
1 ∼ n), then vpin = ∑n

i=1 vi0δ(r − ai) leading the potential
Vpin = ∑n

i=1 v0i ρ̃(|R − ai |).

IV. STOCHASTIC EQUATIONS

A. Langevin equation and functional integral

We now come to the main body of the paper: the random
behavior of the optical vortex. First we start with a modification
of the equation of motion. Namely, there is room to include
the dissipative force. This comes from the fact that the optical
substances under consideration suffer from energy absorption
due to various causes during the propagation in the absorptive
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media; e.g., the resonant absorption of light. In the present
context of vortex dynamics, it is sufficient to adopt the
phenomenological form [25], because the precise mechanism
behind the dissipation is rather complicated to pin down. That
may be realized by replacing ∂H̃

∂R → ∂H̃
∂R + ηṘ, hence we have

two equations which are the modifications of Eqs. (15) and
(17); that is,

μ
dR
dz

= k ×
(

∂H̃

∂R
+ η

dR
dz

)
. (19)

and

μk × dR
dz

= −
(

∂H̃

∂R
+ η

dR
dz

)
. (20)

From the above two equations, Ṙ is solved to yield

dR
dz

+ A = 0, (21)

with

A = 1

μ2 + η2

{
η
∂H̃

∂R
− μ

(
k × ∂H̃

∂R

)}
. (22)

The first term of Eq. (22) represents the “gradient force,”
whereas the second term gives the gyration term, which is
analogous to the Lorentz force acting on a charged particle in
the uniform magnetic field k. The gradient force has a meaning
of dissipation by considering the quantity

dH̃

dz
= ∂H̃

∂R
· dR

dz
= − η

η2 + μ2

(
∂H̃

∂R

)2

� 0,

which suggests the dissipation with respect to the direction of
wave propagation.

We now take into account the fluctuations coming from
the linear refractive index that is randomly distributed. To
derive the equation of motion including the random force,
we follow the same argument as the previous section [26].
Namely, we consider the modified action functional of Eq. (5),
which includes the random term that should be added to the
Hamiltonian: ∫

Hd2x ≡ H̃ → H̃ + Z.

Here the random term Z is a functional of (ψ,ψ∗), though
the explicit form is not given. Then we see that the variation
equation leads to the equation of motion including the random
force:

μṘ = k ×
(

∂H̃

∂R
+ ζ

)
,

where ζ = ∂Z
∂R . Furthermore, if the dissipative term is added

as ∂H̃
∂R → ∂H̃

∂R + ηṘ, we arrive at the Langevin equation:

dR
dz

+ A = c, (23)

with c being the reduced random force

c = 1

μ2 + η2
(ηζ − μk × ζ ). (24)

Note that Eq. (23) just corresponds to the Langevin equation
for the parameters that are built in the soliton solution, which

is derived directly from the nonlinear Schrödinger equation
with additive noises [19].

Now we adopt the assumption of white noise for the reduced
random force c = (c1,c2), which is given as

〈ci(z)〉 = 0, 〈ci(z)cj (z + u)〉 = hδij δ(u). (25)

If the variance of c is chosen as 〈c2〉 = 2h, the probability
distribution of c is given by the Gaussian functional form

P [c(z)] = exp

[
− 1

2h

∫ z

0
c2(z) dz

]
. (26)

Here h means the diffusion constant that is a close analogy
with the Planck constant in quantum mechanics. Using this
distribution, the propagator K between two different points is
given by the functional integral [17,18]

K[R(z)|R(0)] =
∫ ∏

z

δ[F(R(z)) − c(z)]

× exp

[
−

∫
c2(z)

2h
dz

]
DRDc(z), (27)

with δ the Dirac functional. By carrying out the Gaussian
integral over the field c(z), we obtain the following reduced
form of the propagator:

K[R(z)|R(0)] =
∫

exp

[
− 1

2h

∫ z

0

(
dR
dz

+ A
)2

dz

]
D[R].

(28)

The above form is analogous to the path integral for a particle in
vector potential A together with the scalar potential V = A2

2 .
This functional integral can be transcribed to the quantum
mechanical path integral by putting z = iτ ,

K =
∫

exp

[
i

h

∫ (
1

2
Ṙ2 + iA · Ṙ − V

)
dτ

]
D[R]. (29)

B. Fokker-Planck equation

Using the analogous way with a procedure to obtain the
Schrödinger equation from the path integral expression, we
can derive the Fokker-Planck equation. Namely, let us consider
the probability distribution P (R), which satisfies the integral
equation:

P (R,z) =
∫

K(R,z|R′,0)P (R′,0) dR′. (30)

Hence following the usual procedure of path integral, we get

ih
∂P

∂τ
=

[
h

2

(
−ih

∂

∂R
− iA

)2

+ V

]
P, (31)

which is just the Schrödinger equation for a particle moving in
the vector potential and the potential (A,V ). Now going back
to the real variable and by noting the relation i ∂

∂τ
= − ∂

∂z
, we

obtain

∂P

∂z
= h

2

∂2P

∂R2
+ ∂(A(R)P )

∂R
. (32)

This is the Fokker-Planck equation of the standard form [27].
This can be rewritten in a form of continuity equation for the
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probability current

∂P

∂z
+ divJ = 0, (33)

with the current

J = −h

2

∂P

∂R
− AP. (34)

Here we look for an equilibrium state for the distribution
function; for this purpose we put it in a form of the Boltzmann
distribution: namely, P = exp[−βH ] (β means an inverse of
effective temperature), and substituting this form into Eq. (33),
we have(

hβ

2
− η

η2 + μ2

){
∂2H̃

∂R
− β

(
∂H̃

∂R

)2}
= 0. (35)

For this relation to be held for arbitrary H̃ , it follows the
equation

hβ

2
= η

η2 + μ2
. (36)

This relation is just the fluctuation-dissipation relation. From
this relation, one can define effective temperature in terms
of the diffusion and dissipation parameters as well as vortex
charge. The effective temperature is used as a comparison
parameter to characterize the strength of the vortex pinning as
will be seen below.

V. ANALYSIS OF THE FOKKER-PLANCK EQUATION

As is seen from the above argument, the structure of the
FP equation has a peculiar form and we need to invoke a
special technique in order to extract the solutions. For this aim,
we pay attention to a mutual interplay between the stochastic
parameters and the strength of pinning potential.

In what follows we consider the case that the pinning center
is placed at the origin; a = 0. From the geometrical aspect,
this forms a “pillar” penetrating through the origin of the (x,y)
plane. The vortex drifts around this pillar driven by the random
effect (see Fig. 3).

We here use polar coordinates X = R cos θ,Y = R sin θ .
As a functional form of ρ(R), we choose this in such a form
that it extrapolates between ρ(0) = 0 and ρ(∞) = ρ0 (instead
of the one that is obtained by numerical solution), namely,
ρ(R) = ρ0U (R) with

U (R) = 1 − exp[−αR], (37)

x

y

z

FIG. 3. (Color online) Conceptual image of fluctuation of vortex
around a pinning center penetrating through the origin of (x,y) plane
(indicated by shaded area).

which leads to

A = − v0ηα

η2 + μ2
exp[−αR]r̂ + 2αv0μ

μ2 + η2
exp[−αR](k × r̂).

It is easy to see that the distribution function P is written by a
function of radial variable only, hence we have

divJ = − 1

R

∂

∂R
(RJr ), (38)

where Jr is the radial component, and the FP equation turns
out to be

∂P

∂z
= 1

R

∂

∂R

[
R

(
h

2

∂P

∂R
+ v0η

η2 + μ2
U ′(R)P

)]
(39)

with U ′(R) ≡ dU
dR

. Now we try to look for solutions of the
eigenvalue problem of the form;

P (R,z) = exp[−Ez]f (R). (40)

Substituting this into Eq. (33), it follows that

d

dR

[
R

(
df

dR
+ κU ′(R)f

)]
= −ERf. (41)

Here we make the scaling E → 2E
h

and introduce the
parameter

κ = 2v0 ρ0 η

h(η2 + μ2)
≡ v0 ρ0 β, (42)

This means the ratio between the effective temperature and
the pinning strength, where we use the fluctuation-dissipation
relation (36).

A. Weak and strong coupling approximation

We examine the eigenvalue equation (41). To carry out
this procedure, we note the role of the parameters κ that has
been introduced above. Namely, according to the magnitude
of κ , we have two approaches: the weak and strong coupling
schemes; the former can be treated by perturbation, whereas
the latter by a nonperturbational way.

(i) First we consider the weak coupling scheme, for which
|κ| � 1 holds, namely, v0 ρ0 � (β)−1. The physical meaning
of this inequality is that the strength of pinning multiplied by
the power of light ρ0 is very weak relative to the effective
temperature. For this case we can use perturbation: Let us
consider an expansion with respect to κ , i.e., f (R) = f0(R) +
f1(R) + · · · and E = E0 + E1 + · · ·. The 0th order satisfies

d2f0

dR2
+ 1

R

df0

dR
= E0f0,

which gives the Bessel function of 0th order: f0(R) =
J0(

√
E0R). Here the boundary condition is imposed such that

f0 vanishes at R = a. Here a is a sort of “regularization param-
eter” [28]. Hence J0(

√
Ea) = 0, from which the eigenvalues

En
0 are obtained as well as the corresponding eigenfunctions

f
(n)
0 ≡ J0(

√
EnR). The first-order term is determined by

d

dR

(
R

df1

dR

)
+ κ

d

dR
(RU ′(R)f0) = E0f1 + E1f0. (43)
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Here we select the 0th order function as f0(R) = J0(
√

EnR) ≡
f

(n)
0 (R) for a particular label n. By multiplying f

(n)
0 (R) for

both sides of Eq. (43) and integrating by part, we obtain the
first-order correction for E

E1 = κ
∫ a

0 f
(n)
0 (R) d

dR

(
RU ′(R)f (n)

0

)
dR∫ a

0 f
(n)
0 (R)2dR

. (44)

The first-order correction for the eigenfunction can be ex-
panded as f1(R) = ∑

m amf
(m)
0 (R) with the expansion param-

eter:

am =
∫ a

0
f

(m)
0 f1(R) dR = κ

∫ a

0 f
(m)
0

d
dR

(
RU ′(R)f (n)

0

)
dR

Em
0 − En

0

for m �= n. In this way the procedure may be continued to the
higher orders up to one’s desire though the step becomes more
and more complicated.

(ii) Next we consider the strong coupling scheme, for which
|κ| � 1 holds. The physical meaning of this is that the value
v0 ρ0 is comparable to or of the same order as the effective
temperature, in contrast to the weak coupling case. First we
try to find the eigenfunction with zero eigenvalue E = 0 for
Eq. (41), is written as

df

dR
+ κU ′(R)f = 0 (45)

where we choose the integral constant is set to be zero. Hence
we get

f0(R) = exp[−κU (R)], (46)

which is nothing but the Boltzmann distribution. In this
way, the Boltzmann distribution becomes the eigenfunction
correspond to the zero eigenvalue. This is consistent with the
equilibrium distribution given in the above.

Having this form in mind, we write the solutions of Eq. (41)
in the form

f (R) = exp[−κU (R)]g(R), (47)

where g(R) satisfies

d

dR

(
R exp[−κU ]

dg

dR

)
= ER exp[−κU ]g. (48)

For E = 0, we have dg

dR
= 0 leading to g0(R) = k (constant).

This settles that E0 = 0 is the lowest eigenvalue.
We examine how to get the higher-order eigenfunctions in

a successive way. To carry this out, we adopt the variational
procedure. By multiplying g to both sides of Eq. (48) and
integrating up to the boundary R = a, and using an integration
by part, we obtain

∫ a

0
R exp[−κU ]

(
dg

dR

)2

dR = E

∫ a

0
R exp[−κU ]g2 dR,

where the boundary condition for g(R) is imposed: g(a) = 0.
Hence we settle the functional

J =
∫ a

0

{(
dg

dR

)2

− Eg(R)2

}
exp[−κU ]R dR, (49)

for which we apply the variation principle δJ = 0. We
look for a trial function for g(r) as a polynomial of
R. The conditions to be satisfied for g are twofold:
(i) the normalization

∫
g2(R) exp[−κU (R)]R dR = 1 and

(ii) the orthogonality relation holds for two eigenfunctions
g and g′, that is,

∫ a

0 g(R)g′(R) exp[−κU (R)]R dR = 0.
The eigenfunctions are graded according to the order of
polynomial.

Here we try to find the first order that is next to the
zeroth-order g0 = k. Let us put g1(R) = A + BR + CR2. To
determine these coefficients, we first use the orthogonality
condition

∫
g0(R)g1(R) exp[−κU ]R dR = 0, which turns out

to be the linear relation between A,B,C; hence if eliminating
C, the remaining terms A,B are left to be determined. Next
using the normalization, one has a quadratic relation for A,B.
Finally, from the variation equation δJ = 0, we obtain two
equations for A,B as well as for E. In this way one can obtain
the first-order eigenfunction. The solutions of higher order
may be obtained by continuing the similar procedure, which
may form the orthonormal set gn(R).

Having obtained the sequence of eigenfunctions, we can
derive the distribution function in the following way:

P (R,z) =
∑

n

Cn(z)gn(R) exp[−κU ].

The expansion coefficients Cn(z) satisfy dCn/dz = −ECn

with the initial condition Cn(0) which is determined by the
initial condition

P (R,0) =
∑

n

Cn(0)gn(R) exp[−κU ]

and hence Cn = ∫
P (R,0)gn(R) exp[κU ]R dR.

Remark on the approximate scheme. Here we discuss
the physical significance of the above two approximate
procedures. The strong coupling approximation is applicable
to the case when the equilibrium state is established, which
is realized by the Boltzmann distribution, the eigenfunction
with zero eigenvalue. The existence of this fixed eigenfunction
implies a stability of the strong coupling scheme. In other
words, to maintain the equilibrium, the strength of the pinning
potential (multiplied by light strength) is needed to keep
enough magnitude.

On the other hand, the weak coupling is unstable in the
sense that the choice of starting unperturbed eigenvalues as
well as eigenstates [i.e., E0

n,fn(R)] is ambiguous. However,
this is valid even for the case when there is no equilibrium
state. Namely, there is uncontrolled fluctuation leading to
an instability that may prevent the distribution from the
equilibrium state.

B. Small diffusion limit

Now we consider the other approximate scheme on the
basis of the asymptotic analysis of a functional integral. This
uses the small diffusion limit h ∼ 0, for which we can use an
analogous way with the semiclassical approximation that is
based on the asymptotic expansion with respect to the Planck
constant.

In the limit of h ∼ 0, the functional integral (28) becomes
Ksc = exp[− Scl

h
] with the classical action written in terms of
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the polar coordinate:

Scl =
∫ [

1

2

(
Ṙ + v0 η

η2 + μ2

dU

dR

)2

+ 1

2
R2

(
θ̇ + v0 ρ0 μ

η2 + μ2

dU

dR

)2]
dz. (50)

Noting that θ is a cyclic coordinate and the conjugate
momentum to θ is the constant of motion pθ = θ̇ + μdH̃

dR
= c,

the Lagrangian is given by

Lcl = 1

2

(
Ṙ + v0 ρ0 η

η2 + μ2

dU

dR

)2

+ c2

R2
. (51)

On the other hand, the equation of motion is derived by the
“Rouse function”: R = cθ̇ − L [29]. Though this looks rather
complicated, we note that c can be chosen arbitrarily small. By
virtue of this feature, the equation of motion for R becomes
simple; namely, we can set the equation such the first term
of Eq. (51) vanishes to result in the so-called the instanton
equation

Ṙ = − v0 ρ0 η

η2 + μ2

dU

dR
= −α

v0 ρ0 η

η2 + μ2
exp[−αR],

hence the transition amplitude Ksc turns out to be

Ksc = exp

[
−c2

h

∫ z

zi

dz

R2

]
. (52)

Using the form of U (R), it follows that

dz

dR
= η2 + μ2

v0 ρ0 ηα
exp[αR]

together with the parameter κ [Eq. (42)]. Here noting that v0

is negative, we obtain

Ksc(R,z|Ri,zi) = exp

[
− 2

|κ|α
(

c

h

)2 ∫ R

Ri

exp[αR]

R2
dR

]

(53)

(v0 = −|v0|). The probability distribution function is calcu-
lated from the well-known relation

P (R,z) =
∫

Ksc(R,z|Ri,zi)P (Ri,zi) dRi dzi .

If choosing P (Ri) = δ(Ri − R0)δ(zi − z0) (delta function)
and putting t = αR, we finally obtain

P (t,z) = exp

[
− 2

|κ|
(

c

h

)2

K(t)

]
, (54)

with

K(t) =
∫ Rα

R0α

exp[t]

t2
dt. (55)

Here we note that the upper and lower limits depend on the
parameter α which is the size of the vortex. The remaining
task is to estimate the expression numerically. To give a rough
estimate, we adopt the factor in front of the integral: 2

κ
( c
h

)2 ∼ 1.

FIG. 4. Profile of the distribution function exp[−K(x)] ≡ G(x),
where x runs through 1 ∼ 10.

The only remaining parameter is α, for which we choose such
that R0α ∼ 1. Noting that 1

α
means the size of the vortex, this

relation suggests that the initial vortex position R0 is chosen to
be the order of the vortex size. The numerical result is plotted
in Fig. 4 for the function P (R,z) ∼ exp[−K(Rα)].

VI. SUMMARY

A stochastic theory has been presented for the optical
vortex with the aim of exploring its behavior in the presence
of random fluctuations of the refractive index. The theory is
formulated in the framework of Langevin and Fokker-Planck
equations by using the functional integral. The attempt would
open a different facet for the traditional subject of the optical
vortex in nonlinear Kerr media [6,7,9].

In particular the Fokker-Planck equation was analyzed
while paying attention to the role of the pinning potential. This
is based on a peculiar form of the FP equation, containing the
parameter κ , the ratio between the strength of the pinning
potential and the effective temperature. According to the
magnitude of this parameter, the solutions of the FP equation
can be categorized into weak and strong coupling regimes.

We have also examined an asymptotic behavior leading to
a compact form of the distribution function. Here as for the
asymptotic analysis of path integral, which somehow shares a
similar idea with the present work, the following attempts are
mentioned: the viscous instanton for Burgers turbulence [30]
and the Gaussian vortex approximation to two-dimensional
turbulence [31], both of which are based on the general theory
of statistical dynamics of classical systems [32].

The present theory is restricted to the case that a light wave
has a single component; that is, no effect of polarization has
been considered. It is straightforward to extend the formulation
to the case that polarization is taken into account [33,34].
Indeed a preliminary study of an optical vortex incorporating
polarization has been made [35], for which the vortex for
a polarized wave results in the so-called coreless vortex.
Further study of optical vortex incorporating polarization will
be investigated elsewhere.
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