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Avalanches, breathers, and flow reversal in a continuous Lorenz-96 model
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For the discrete model suggested by Lorenz in 1996, a one-dimensional long-wave approximation with
nonlinear excitation and diffusion is derived. The model is energy conserving but non-Hamiltonian. In a low-order
truncation, weak external forcing of the zonal mean flow induces avalanchelike breather solutions which cause
reversal of the mean flow by a wave-mean flow interaction. The mechanism is an outburst-recharge process
similar to avalanches in a sandpile model.
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I. INTRODUCTION

In 1996 Lorenz suggested a nonlinear chaotic model for
an unspecified observable with next- and second-nearest-
neighbor couplings on grid points along a latitude circle [1].
Due to its scalability, the model is a versatile tool in statistical
mechanics [2–5] and meteorology [6–8]. The nonlinear terms
have a quadratic conservation law and satisfy Liouville’s
theorem. For strong forcing the model shows intermittency [9].

The Lorenz-96 equations for the variable Xi are a surrogate
for nonlinear advection in a periodic domain

d

dt
Xi = Xi−1[Xi+1 − Xi−2] − γXi + Fi, (1)

where γ characterizes linear friction (γ = 1 in [1]) and F is a
forcing.

In this paper a continuous long-wave approximation of
the Lorenz-96 model is derived. A surprising finding is that
the nonlinear terms in the Taylor expansion are associated
with a sequence of similar antisymmetric dynamic operators.
Furthermore, the dynamics in a truncated version reveals
avalanches, breatherlike excitations, and flow reversals which
mimic various physical processes in complex systems in a
simplistic way.

Lorenz [10] has analyzed the linear stability of the mean
m of Xi in (1) and found that long waves with wave numbers
k < 2π/3 are unstable for a positive mean m.

II. LONG-WAVE APPROXIMATION

A continuous approximation is derived for a smooth
dependency of Xi on the spatial coordinate x = ih in the limit
h → 0. The variable Xi is replaced by a continuous function
u(x,t), which is interpreted as velocity. In the following the
equations for γ = 0 are considered.

The expansion of the nonlinear terms in (1) up to order
O(h2) yields, for the rescaled coordinate x ′ = −x/3h (the
prime is dropped below),

ut = −uux − 1
3

(
u2

x + 1
2uuxx

) + f, (2)

with an advection and further nonlinear terms which are due
to the noncentered definition of the interaction in (1). For an
algebraic derivation of a hierarchy of additional continuous
equations, see the Appendix.

The total energy for the velocity u(x,t) is

H = 1

2

∫
u2dx, (3)

which is conserved for f = 0.
The nonlinear terms are associated with the following

antisymmetric evolution operators:

O(h) : J1 = − 1
3 (u∂x + ∂xu), (4)

O(h2) : J2 = − 1
6 (ux∂x + ∂xux). (5)

Thus the evolution equation (2) can be written as

ut = J δH
δu

, J = J1 + J2, (6)

with the functional derivative δ/δu with respect to u. Note that
the O(h3) expansion in (2) is represented by a third operator
J3 = −(1/18)(uxx∂x + ∂xuxx); here we are restricted to the
O(h2) expansion (2).

The evolution equation (2) has a conservation law for
f = 0 :

∂t

(
1
2u2

) = ∂xφ, (7)

φ = − 1
3u3 − 1

6u2ux, (8)

with the conserved current φ, which leads to the conservation
of total energy (3). Further conservation laws could not be
found. In particular, momentum given as the mean flow

U = 〈u〉 =
∫

udx (9)

is not constant.
In the following we consider a constant and positive forcing

f (note that the system is not dissipative). In the presence of
perturbations v to the mean flow, u = U + v, the mean flow
energy H̄ = U 2/2 changes according to

∂

∂t
H̄ = −U

6

〈
v2

x

〉 + Uf. (10)

The perturbation energy,

E′ = 1
2 〈v2〉, (11)

grows for positive U,

∂

∂t
E′ = U

6

〈
v2

x

〉
. (12)
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Thus mean flows with U > 0 (U < 0) are unstable (stable) as
in the discrete system (1) analyzed in Ref. [10].

Equations (10) and (12) represent a coupling between
perturbations and the mean flow. A forcing drives the mean
flow towards positive values, which allow the growth of
perturbations. When the perturbation gradients are sufficiently
intense, they reduce the flow to negative values, causing a
decay of their intensities.

III. LOW-ORDER MODEL

The nonlinear energy cycle represented by the exchange
between zonal flow and wave energy in (10) and (12) is
analyzed in a spectral model for the unstable long waves by
Fourier expansion in a periodic domain [−π,π ]:

u =
N∑

n=0

an sin(nx) + bn cos(nx). (13)

Here we are restricted to the low-order system N = 2:

ḃ0 = − 1
12

(
a2

1 + b2
1

) − 1
3

(
a2

2 + b2
2

) + f, (14)

ȧ1 = b0b1 + 1
6b0a1 + 1

2 (a1a2 + b1b2)

+ 1
4 (a1b2 − b1a2) , (15)

ḃ1 = −b0a1 + 1
6b0b1 − 1

4 (a1a2 + b1b2)

+ 1
2 (a1b2 − b1a2) , (16)

ȧ2 = 2b0b2 + 2
3b0a2 + 1

2

(
b2

1 + a1b1 − a2
1

)
, (17)

ḃ2 = −2b0a2 − a1b1 + 1
4

(
b2

1 − a2
1

) + 2
3b0b2. (18)

The mean flow is U = b0, which is subject to a constant
forcing f in the numerical experiments (14). The truncated
system conserves energy for f = 0 as follows:

Htot = H0 + H1 + H2, (19)

H0 = 1
2b2

0, H1 = 1
4

(
a2

1 + b2
1

)
,

H2 = 1
4

(
a2

2 + b2
2

)
. (20)

The Liouville theorem is not satisfied:
2∑

n=0

(
∂ȧn

∂an

+ ∂ḃn

∂bn

)
= 5

3b0. (21)

The expansion and contraction of the state space volume is
controlled by the sign of the mean flow.

For N = 1 the equations (14)–(16) possess a constant of
motion for finite forcing f (see Fig. 1 for f = 0.1):

Hf = H0 + H1 − 3f log H1, (22)

which reduces to the total energy for f = 0. A corresponding
conservation law including the N = 2 modes could not be
found.

IV. FORCED EXPERIMENTS

Numerical experiments are performed for different
forcings and truncations (all use the identical initial
conditions b0 = 1.13,a1 = 3.4,b1 = 6.8, and for N = 2:
a2 = 11,b2 = 17).

FIG. 1. (Color online) Contour plot of the constant of motion Hf

in Eq. (22) for the forcing f = 0.1. The asterisk (*) shows the initial
condition chosen in the numerical experiments.

(i) Weak forcing with f = 0.1 in the N = 1 truncation
reveals periodic flow reversals (Fig. 2). A mean flow increases
gradually to positive values, where it becomes unstable due
to the excited waves, denoted as breathers in the following.
These breathers drive a rapid flow reversal towards a negative
flow which initiates their collapse. Dynamics proceeds coun-
terclockwise along the conservation law Hf = const (Fig. 1).
The avalanche process is most distinct for initial conditions
reaching regimes with small wave energy. The process is
energy conserving (Htot = const) on short time scales. The total
energy increases (decreases) when the mean flow is positive
(negative).

For N = 1 with the amplitudes b0,a1,b1, the energy cycle
is for f = 0 [compare (10), (12)]:

∂tH0 = − 1
3b0H1, ∂tH1 = 1

3b0H1, (23)

which is controlled by the mean flow. The solution for the
mean flow is for b0(0) = 0,

b0 = −6a tanh(at), (24)

and the perturbation energy is

H1 = 18a2

cosh2(at)
, (25)

where a is related to the total energy H = 18a2. H1 attains
its maximum during flow reversals when U = 0. These
approximations are compared to the forced simulation in
Figs. 2(b) and 2(c), centered at a single flow reversal.

In the presence of forcing f and for a small wave energy
H1, the mean flow b0 grows linearly in time, b0(t) ≈ f t , up
to a value b0, max. This defines an interarrival time scale of
flow reversals, τ = 2b0, max/f . In this range the wave energy
evolves rapidly according to H1(t) ∼ exp(f t2/6).

The described flow reversal mechanism is retained for
viscous dissipation represented by a linear damping of the
wave amplitudes a1 and b1.

For the N = 2 truncation with all modes b0,a1,b1,a2, and
b2, flow reversals occur on a time scale roughly twice as for
N = 1 [Fig. 2(d)]. Due to the weak forcing the energy cascades
to mode 2 with negligible amplitudes a1,b1 and energy H1

[Figs. 2(d) and 2(e)]. Neglecting the modes 1, the energy cycle
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FIG. 2. (Color online) Weak forcing f = 0.1: (a) amplitudes
b0,a1,b1 for N = 1, intervals ≈110, (b) amplitudes during a flow
reversal with Eq. (24) for b0 (dashed), (c) energies H0,H1 and Eq. (25)
for H1 (dashed), (d) amplitudes b0,a2,b2 for N = 2, (a1,b1 vanish),
and (e) energies (H1 vanishes).

for interactions among b0,a2, and b2 is

∂tH0 = − 4
3b0H2, ∂tH2 = 4

3b0H2. (26)
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FIG. 3. (Color online) Intermediate forcing f = 1: energy distri-
butions for (a) N = 1, intervals ≈13, and (b) N = 2.
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FIG. 4. (Color online) Strong forcing f = 10: energy distribu-
tions for (a) N = 1, intervals ≈3, and (b) N = 2.

This corresponds to a rescaling of the H0 − H1 cycle (23) by
t̃ = 2t for time and b̃0 = 2b0, etc., for the amplitudes, and
hence the energies quadruple.

(ii) For intermediate forcing with f = 1, the time scale
between flow reversals decreases by an order of magnitude
in the N = 1 truncation [see Fig. 3(a)]. Thus the intervals τ

approach the duration of individual breathers. For the complete
set of modes in N = 2 [Fig. 3(b)] the system is weakly
nonlinear with a mixing of frequencies, ω/2,ω,3ω/2, and 2ω,
where ω = 2π/τ is defined by the interarrival times of the flow
reversals [11]. The lowest frequency determines the amplitude
modulation.

(iii) For strong forcing, f = 10, the flow reversals in
the N = 1 truncation are regular [Fig. 4(a)], with intervals
decreased by an order of magnitude relative to f = 1. The
dominant part of energy is accumulated in waves. In the
N = 2 truncation the dynamics become intermittent as in
the regime behavior detected by Lorenz [9] in the discrete
equations (1). The events lose their identities and the system
becomes strongly nonlinear. A positive largest Lyapunov
exponent (estimated by error growth) indicates that the system
is chaotic.

These experiments reveal a vanishing long-term means of
mean flow and wave-number amplitudes; hence the Liouville
theorem (21) appears to be satisfied in the mean. For N = 1
this is based on the symmetry of the constant of motion Hf .

V. CONCLUSIONS

In summary, a continuous dynamical equation derived from
the Lorenz-96 model is able to mimic several types of complex
processes observed in geophysics, geophysical fluid dynamics,
and solid-state physics:

(i) Avalanche processes excited by continuous driving as
in the sandpile model of Bak et al. [12]; see also the recent
observation of quasiperiodic events in crystal plasticity subject
to external stress [13]. A common characteristic property is
the weakness of the external forcing which is necessary to
cause avalanches. In the present model the flow is driven
by a constant forcing towards a state where mean flow and
wave energy interact. The intervals between the flow reversals
are approximately proportional to the inverse of the forcing
intensity, ∼1/f .
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(ii) The quasibiennial oscillation (QBO, [14]), a flow
reversal in the tropical stratosphere driven by two different
types of upward-propagating gravity waves. A common aspect
is that the driving of the mean flow by waves occurs only
for a particular sign of the mean flow. Although the QBO
is considered to be explained dynamically, the simulation in
present-day weather and climate models necessitates careful
subscale parametrizations or high-resolution models [15]. The
present model is clearly an oversimplification but can be
considered as a toy model for this phenomenon.

(iii) Rogue waves (also termed freak or monster waves)
at the ocean surface are simulated mainly by the nonlinear
Schrödinger equation (e.g., [16,17]); a Lagrangian analysis
has been published recently [18]. The breather solutions
found in the present model show characteristics such as the
rapid evolution and the high intensity in an almost quiescent
medium.

In the N = 1 truncation, a constant of motion for finite
forcings can be derived (see Hf (22)) which reduces to the
total energy for vanishing forcing. Initial conditions with a
pronounced avalanche behavior can be identified as a regime
with weak temporary wave intensity.

Due to the flow reversals, the total energy of the nondissipa-
tive system remains finite for a constant forcing. The long-term
mean of the mean flow vanishes and the Liouville theorem (21)
is satisfied in the mean. The flow reversals are insensitive to
viscous dissipation.
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APPENDIX: ALGEBRAIC DERIVATION

For γ = F = 0 the equations (1) are conservative with
the conservation law, HX = 1/2

∑
i X

2
i , denoted as energy

in the following. The dynamics in the state space of the
Xi is nondivergent, thus satisfying Liouville’s theorem,∑

i ∂Ẋi/∂Xi = 0.

The dynamics of an observable function Q(X) is given by

Qt = {Q,HX}, (A1)

with the antisymmetric bracket

{A,B} = ∂iAJij ∂jB = −{B,A}, (A2)

where ∂i = ∂/∂Xi , and the antisymmetric matrix

Jij = Xi−1δj,i+1 − Xj−1δi,j+1. (A3)

Energy HX is conserved due to the antisymmetry of the
bracket.

The conservative terms of the Lorenz-96 equations (1) are
obtained for Q = Xi . The equations are non-Hamiltonian [19]
since the Jacobi identity

∑
	

Ji	

∂Jjk

∂X	

+
∑

	

Jj	

∂Jki

∂X	

+
∑

	

Jk	

∂Jij

∂X	

= 0 (A4)

is not satisfied.
We use the infinitesimal shift operators

L± =
∞∑

k=0

(±h∂x)k

k!
(A5)

to write the bracket (A2) as

{A,B} =
∫

δA

δu
J∞

δB

δu
(A6)

with

J∞ = (L−u) ◦ L+ − L− ◦ (L−u), (A7)

where (L−u) is a multiplication operator. The bracket is
antisymmetric since the adjoint is L∗

+ = L−.
By taking nth-order truncations of the operators L±, we

can find a hierarchy of truncated antisymmetric operators

Jnm = (L−,nu) ◦ L+,m − L−,m ◦ (L−,nu), (A8)

where

L±,n =
n∑

k=0

(±h∂x)k

k!
. (A9)

To each of these truncated operators corresponds a contin-
uous Lorenz-96 model

ut = {u,H}nm, (A10)

where the indices indicate the operator Jnm. [As in Eq. (1),
periodic boundary conditions are assumed.]
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