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We present a reduced model for the energy transfer via coupled collective modes in two-temperature plasmas
based on quantum statistical theory. The model is compared with exact numerical evaluations of the coupled-mode
(CM) energy transfer rate and with alternative reduced approaches over a range of conditions in the warm dense
matter (WDM) and inertial confinement fusion (ICF) regimes. Our approach shows excellent agreement with
an exact treatment of the CM rate and supports the importance of the coupled-mode effect for the temperature
and energy relaxation in WDM and ICF plasmas. We find that electronic damping of collective ion density
fluctuations is crucial for correctly describing the mode spectrum and, thus, the energy exchange. The reduced
CM approach is studied over a wide parameter space, enabling us to establish its limits of applicability.
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I. INTRODUCTION

Warm dense matter (WDM) and high-energy density (HED)
plasmas have become the focus of intense experimental and
theoretical investigations dedicated to inertial confinement
fusion (ICF) [1–3], properties of extreme states of matter
[4–6], and laboratory astrophysics [7,8]. The WDM regime
may be loosely characterized by temperatures and densities
in the ranges of T ∼ 1–100 eV and n ∼ 1022–1026 cm−3. In
this regime, the ion-ion coupling parameter is often on the
order of unity or above, �ii = Z2

i e
2βi/4πε0ai � 1, and the

electrons may be partially or even strongly degenerate, such
that De = ne�

3
e � 1. Here, ai = (3/4πni)1/3 is the mean

ion separation, �e = √
2πh̄/pe is the thermal de Broglie

wavelength, and pe = (me/βe)1/2 is the thermal momentum.
As usual, β−1

a = kBTa denotes the temperature in energy units
for species a = e,i.

Creating matter at the temperatures and densities in the
WDM and HED regimes using optical lasers, free electron
lasers, intense charged particle beams, or shock waves in-
evitably leads to strongly nonequilibrium states [4,9–12]. The
energy absorbed into a particular subsystem, i.e., the electrons
or the ions, is then thermalized via ultrafast processes,
leading to the establishment of a two-temperature system
[13]. Naturally, full thermodynamic equilibrium is eventually
reached due to the exchange of energy between the different
species [14–17]. This may occur by means of collisions and
the interaction of collective excitations in the fully coupled
multicomponent system.

Energy transfer and temperature evolution are coupled via
the partial equation of state, which determines the states of
matter accessible in experiments studying dielectric [18–20]
and transport properties [21,22]. Quantities that critically
depend on energy transfer rates are furthermore the relaxation
time and the timing for equilibrium measurements [23–25].
Experimental platforms designed to investigate these prop-
erties rely heavily on large-scale radiation hydrodynamics
simulations for design and optimization, and thus accurate
models for the thermodynamic evolution are important.

Fully numerical approaches to modeling energy relax-
ation are often extremely computationally expensive, and

are thus unfeasible to be run in line, i.e., within larger host
codes such as hydrodynamics simulations. Instead, simple
analytic models, e.g., those of Spitzer [26] or Brysk [27],
are often implemented for simplicity. Deficiencies in the
physics of these simple models can be mitigated to some
extent using ad hoc corrections, such as modified Coulomb
logarithms [28].

In this paper, we investigate the energy exchange rate
between electrons and ions in a two-component plasma within
a quantum statistical framework. This ensures the correct
description of the particle kinetics in the dense, partially
degenerate systems of interest. Following a similar approach to
previous work [29–34], a reduced description of the coupled-
mode (CM) theory derived by Dharma-wardana and Perrot
[14], and later by Vorberger et al. [16,36], is developed in order
to produce quick, robust, and highly accurate calculations
suitable for implementation in hydrodynamics codes. We
find excellent agreement with full numerical calculations for
a very wide range of temperatures and densities, with a
strong coupled-mode effect becoming apparent in high-density
systems with Te � Ti . In contrast, only a small effect is
observed in more rarefied plasmas. As expected, for Te < Ti ,
the rate tends to agree well with the Fermi golden rule (FGR)
unless electron degeneracy becomes important, which again,
results in a CM effect that acts to reduce the equilibration rate.

Our model is also compared with other reduced approaches
to the energy relaxation and highlights several important
issues that have led to differing interpretations concerning
the role of collective modes in electron-ion equilibration. In
particular, we unambiguously demonstrate the critical role
played by dynamic electronic damping and screening in
the determination of the collective-mode structure, and its
subsequent impact on the relaxation rate.

To focus solely on the relaxation physics rather than the
differences in models of strong coupling [37], only the weakly
coupled limit, i.e., the random phase approximation (RPA),
is studied here. The theoretical description is, however, kept
sufficiently general for strong coupling to be included, e.g.,
via local field corrections (LFCs) in the response functions
[38–40].
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II. THEORETICAL MODEL

The energy exchange rate for a plasma of electrons and
multiple species of ions, distinguishable by both their masses
ma and charges Zae, can be derived in a quantum statistical
framework [14,16,41] by considering the balance equation of
the total mean energy,

∑
b

Zab(t) = ∂

∂t
[〈Ka (t)〉 +〈Va(t)〉], (1)

where the kinetic and potential energy operators, K̂a(t) and
V̂a(t), respectively, are evaluated using the time-dependent
reduced density operators in second quantization [16]. The
general result for the energy transfer rate is

Zab(t)=−2h̄V
∫

dk
(2π )3

∫ ∞

0

dω

2π
ωVab(k) Im{iL<

ab(k,ω; t)}.
(2)

V is the volume, Vab(k) = ZaZbe
2/ε0k

2 is the Coulomb
interaction, and L<

ab(k,ω; t) is the Fourier transform of the
correlation function of density fluctuations between species
a and b with respect to the microscopic variables. The time
dependence in Eq. (2) is retained in a local approximation
only, requiring that the energy exchange occurs over times
much greater than the microscopic correlation times. For
WDM states, one may expect relaxation times on the order
of picoseconds, such that the local approximation is always
well-fulfilled.

Using real-time nonequilibrium Green’s functions, one
obtains a self-consistent integral equation for the density
response function on the Keldysh contour K,

Lab(12) = 	ab(12) +
∑
cd

∫
K
d(34)	ac(13)Vcd (34)Ldb(42),

(3)

with 1 ={r1,t1,σ1}, where σ1 is the spin of the particle
located at r1 at time t1. This yields an algebraic system of
linear equations in Fourier space in terms of the polarization
	ab(k,ω). The latter measures the density response to the total
effective potential, including the dynamic screening of the
mean Coulomb field. We consider the polarization function
in an approximation where cross species terms are neglected.
This is justified for many WDM systems as such cross-species
contributions are of second order in the interaction. Before
taking into account such terms, higher-order correlations
within the separate subsystems have to be considered, e.g.,
via LFCs. Presently, we do not explicitly account for LFCs,
although they can be easily inserted (see, e.g., Refs. [14,16]).

Upon application of the Langreth-Wilkins rules [42] for
functions defined on the Keldysh time contour, one finds
the imaginary part of the appropriate density response of an
electron-ion plasma in Fourier space [16]

Im{iL<
ei(k,ω; t)} = 2

[
ne

B(ω; t) − ni
B(ω; t)

]

× Vei(k)ImLR
ee(k,ω; t)ImLR

ii(k,ω; t)∣∣1 − V 2
ei(k)LR

ee(k,ω; t)LR
ii(k,ω; t)

∣∣2 ,

(4)

with

LR
aa(k,ω; t) = 	R

aa(k,ω; t)

1 − Vaa(k) 	R
aa(k,ω; t)

. (5)

Here, the retarded density response and polarization functions
for the species a = e,i have been introduced. The time
evolution of the Bose functions, na

B(ω) = [exp(βah̄ω) − 1]−1,
is given by their temperature dependency. Furthermore, the
retarded polarization functions for weakly coupled systems
can be taken in RPA, whereby they have a well-known form
[41].

For an isotropic, spatially homogeneous system, all func-
tions depend only on the wave number k =|k|. From Eqs. (4)
and (5), one thus finds the coupled-mode (CM) energy
exchange rate to be

ZCM
ei (t) = h̄V

π3

∫ ∞

0
dk k2

∫ ∞

0
dω ω

[
ni

B(ω; t) − ne
B(ω; t)

]

× Imεee(k,ω; t) Imεii(k,ω; t)

|ε(k,ω; t)|2 . (6)

The Bose functions determine the occupation of the collective
modes whose spectral functions are given by the imaginary
parts of the dielectric functions of the subsystems, εaa(k,ω) =
1 − Vaa(k) 	R

aa(k,ω). On the other hand, the coupling of
the electron and ion modes, and the subsequent formation
of the ion acoustic excitation, is determined by the full
dielectric function, ε(k,ω) = 1 − ∑

a Vaa(k) 	R
aa(k,ω), in the

denominator.
Treating the electrons and ions individually in an uncoupled

electron-ion system, one obtains the Fermi golden rule (FGR)
rate

ZFGR
ei (t) = h̄V

π3

∫ ∞

0
dk k2

∫ ∞

0
dω ω

[
ni

B(ω; t) − ne
B(ω; t)

]

× Imεee(k,ω; t)

|εee(k,ω; t)|2
Imεii(k,ω; t)

|εii(k,ω; t)|2 . (7)

Equations (6) and (7) have been obtained on the basis that
all species interact via the Coulomb interaction, such that
Vei(k) Vie(k)=V 2

ei(k)=Vee(k) Vii(k), which is consistent with
our approximation for the polarization function.

III. EXISTING APPROACHES TO REDUCED MODELS

Although Eqs. (6) and (7) can be evaluated numerically,
this may be extremely computationally intensive for cer-
tain conditions, since a sharp plasmon peak exists when
Reεaa(k,ω) = 0. This makes direct numerical calculations
unsuitable for implementation in hydrodynamic codes.

In the case of the FGR rate (7), much of the ef-
fort expended on resolving the plasmon modes can be
circumvented using a number of approximations [29–34].
Specifically, one notices that the dynamic behavior of the
integrand of Eq. (7) is modulated by the spectral function of
the ions, Imε−1

ii (k,ω) = −Imεii(k,ω) /|εii(k,ω)|2. This decays
over significantly smaller frequency scales than that of the
electrons due to the large mass difference mi � me, and thus
Taylor expanding the electronic term about ω = 0 is justified,
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i.e.,

Imε−1
ee (k,ω) ≈ ω

[
∂

∂ω
Imε−1

ee (k,ω)

]
ω=0

. (8)

Additionally, the Bose functions are often also expanded on
the basis that the energy transferred with each electron-ion
interaction is small compared to the mean thermal energy,

ni
B(ω) − ne

B(ω) ≈ kB

h̄ω
(Ti − Te) . (9)

The above is always appropriate for the classical ions but
does not hold for highly degenerate electrons, or at moderate
frequencies [35].

Applying Eqs. (8) and (9) to the FGR (7) leaves an integral
over frequency that can be performed analytically using the
f -sum rule for the ions,∫ ∞

−∞
dω ω Imε−1

ii (k,ω) = −πω2
pi . (10)

Here, ωpi = (Z2
i e

2ni/ε0mi)1/2 is the ion plasma frequency.
If one assumes only static electronic screening, then the
derivative in Eq. (8) may be simplified further by taking
Imε−1

ee (k,ω) ≈ Imεee(k,ω) /|εee(k,0)|2. Subsequently, Eq. (7)
becomes [30]

ZRFGR
ei (t) = 2V Z2

i e
4nim

2
ekB

(2πh̄)3ε2
0mi

[Ti(t) − Te(t)]

×
∫ ∞

0

dk

k

k4fe(k; t)[
k2 + κ2

e (t)
]2 , (11)

in which fe(k) = [exp(h̄2k2/8p2
e − ηe) + 1]−1 is the Fermi

distribution. Here, the dimensionless chemical potential ηe is
defined by F1/2(ηe) = De/2 and Fj (η) is the Fermi integral
of order j , as given in Ref. [41]. Furthermore, in Eq. (11) the
inverse screening length κe is determined by

−Vee(k) 	R
ee(k,0)

k→0= κ2
De

k2

F−1/2(ηe)

De/2
= κ2

e

k2
, (12)

with κDa = (Z2
ae

2naβa/ε0)1/2 being the classical Debye wave
number for species a.

The long-wavelength limit of the static dielectric screening
due to electrons, εee(k,0) = 1 + κ2

e /k2, is expected to be
appropriate for De � 1 due to the step function-like decay
of the Fermi distribution. Accordingly, the wave numbers that
contribute to the k integral in Eq. (11) will be restricted to
small k values only.

In light of the simple way in which the FGR may be reduced,
it is tempting to follow a similar approach to the CM energy
transfer rate (6). With these approximations, one can derive a
similar expression to that of Daligault and Mozyrsky [33]

ZDM
ei (t) = 2V Z2

i e
4nim

2
ekB

(2πh̄)3ε2
0mi

[Ti(t) − Te(t)]

×
∫ ∞

0

dk

k

k4fe(k; t)(
k2 + κ2

e (t)
)2 IDM

ω (k; t) , (13)

with the integral term

IDM
ω (k) =

∫ ∞

−∞

dω ω

πω2
pi

Im

{
Vii(k)	R

ii(k,ω)

1−V D
ii (k)	R

ii(k,ω)

}
, (14)

where V D
ii (k) = Vii(k)/εee(k,0) is the statically screened De-

bye potential. The f -sum rule holds for all systems for which
the interaction part of the Hamiltonian commutes with the
density operator. This is certainly true for a Coulomb system
but also for a system with a Debye-type screened interaction.
Therefore, the frequency integral in Eq. (14) yields unity, and
the RFGR result is recovered exactly.

This result suggests that a CM effect does not exist
within the scope of these simple, although often well-fulfilled,
approximations. Indeed, it was pointed out in Ref. [33]
that the structure of strongly coupled ions is manifest only
via the electron-ion scattering rate, which was taken to be
Ziman-like and included in 	R

ee(k,ω) using the relaxation-time
approximation [43]. Accordingly, upon comparison with the
rates given by Dharma-wardana and Perrot [14], the effect is
to increase the energy transfer rate rather than reduce it. It is
essential to understand the origin of this apparent discrepancy.

We also mention the approach of Gregori and Gericke [32].
Here, the same approximations are made and again one arrives
at Eq. (13). However, in this model the form of the ion
polarization function is explicitly considered with the poles
at the correct RPA excitation energies. In the classical and
long-wavelength limits, one has the well-known expression

−Vii(k)	R
ii(k,ω) = κ2

Di

k2

[
1 − 2xiD(xi) + i

√
πxie

−x2
i

]
, (15)

where xa = ω/
√

2kva , va = (kBTa/ma)1/2 is the thermal speed
of species a, and D(x) = e−x2∫ x

0 dt et2
is the Dawson function

of the first kind [44].
Under a limited set of conditions, the mode structure of

the ion acoustic waves occupies a frequency range where the
damping is weak and the peak shape is dominated by the
imaginary part of Eq. (15). It is then possible to approximate
the ionic contribution to the screening by expanding about
ω = ∞ to obtain −Vii(k) 	R

ii(k) ≈ −κ2
Di/2k2x2

i . The resulting
frequency integral can be performed analytically and yields a
k-dependent correction factor to the integrand of the RFGR
Eq. (11),

ZGG
ei (t) = 2V Z2

i e
4nim

2
ekB

(2πh̄)3ε2
0mi

[Ti(t) − Te(t)]

×
∫ ∞

0

dk

k

k4fe(k; t)(
k2 + κ2

e (t)
)2 IGG

ω

(
cs(k; t)√

2vi(t)

)
, (16)

with the analytic integral term

IGG
ω (x) = |1 − 2x2(x2 − 2) + 2x3(2x2 − 5)D(x)

+ i
√

πx3(2x2 − 5)e−x2 |. (17)

Here, cS(k) is a generalized sound speed, which may be left as
a free fitting parameter.

IV. NEW APPROACH TO A REDUCED
COUPLED-MODES MODEL

The nominally well-fulfilled approximations (8) and (9)
yield reduced models for the energy exchange rate, which can
be rapidly and robustly evaluated, and hence run in line in
larger host codes. For the FGR, reasonably accurate results
are obtained except at low electron temperatures, where the
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expansion of the Bose function (9) is known to break down.
On the other hand, applying the same approach to the CM effect
yields results in stark contradiction with numerical evaluations
of the full CM (6). Indeed, the resulting relaxation rates are
then similar to, or even faster, than the FGR.

The origin of this apparent contradiction is, in fact, remark-
ably straightforward to explain. In the derivation of the reduced
models discussed previously, the electronic contribution to
the two-component dielectric function is treated in the static
limit. As such, the functions ε(k,ω) and εii(k,ω) differ only
in the real part. Therefore, the positions of the collective ion
modes, roughly given by Reε(k,ω) = 0, are correctly changed
from quasiparticle character to an acoustic dispersion relation.
However, the damping of the modes remains determined by
the ions only due to the neglect of the electronic contribution.
The immediate consequence of this is the existence of a
very weakly damped collective ion mode with a large weight
and a peak structure that grows exponentially sharper as the
resonance is shifted to higher frequencies.

Of course, the range of the frequency integration is
dominated by the decay of the ionic term Im	R

ii(k,ω) and,
thus, the electrons may always be treated in the low-frequency
limit. However, this alone does not justify neglecting the
imaginary component of εee(k,ω). For small frequencies, the
imaginary part scales roughly linearly with ω and becomes
more important to the determination of the total mode structure
as the peak is shifted to higher frequencies. Recognizing this
fact, we pursue a reduced model based on the same set of
approximations as before but explicitly retain the imaginary

contribution to the screening in lowest order. The lowest order,
nonvanishing terms of the Taylor expansion of the electron
polarization are

−Vee(k)	R
ee(k,ω) ≈ κ2

De

k2

[F−1/2(ηe)

De/2
+ i

√
πxe

fe(k)

De/2

]
. (18)

Here, the real part has been taken in the long wavelength
limit, as per Eq. (12), whereas the imaginary part is correct for
arbitrary k.

By writing κ2
De = R1κ

2
Di , with R1 = Tine/Z

2
i niTe, to map

the electron Debye wave number onto that of the ions and,
similarly, xe = R2xi , with R2 = (Time/Temi)1/2, to appropri-
ately scale the dimensionless frequency, we find the following
expression for the total dielectric function

εRCM(k,ω) ≈ 1 + κ2
Di

k2

[
1 − 2xiD(xi) + R1

F−1/2(ηe)

De/2

]

+ i
√

πxi

κ2
Di

k2

[
e−x2

i + R1R2
fe(k)

De/2

]
. (19)

Substituting Eqs. (9) and (19) into Eq. (6), we arrive at the
reduced coupled-modes (RCM) relaxation rate

ZRCM
ei (t) = 2V Z2

i e
4nim

2
ekB

(2πh̄)3ε2
0mi

[Ti(t) − Te(t)]

×
∫ ∞

0
dk fe(k; t) IRCM

ω (k; t) , (20)
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FIG. 1. (Color online) Full numerical calculations of the FGR (solid black curve) and CM (dashed red curve) energy-transfer rates compared
to the reduced FGR (dotted black curve with circles) and reduced CM (dotted red curve with diamonds) approximations, with Zi = 1 and
Ti = 104 K; (a) ne = 1022 cm−3, (b) ne = 1023 cm−3, (c) ne = 1024 cm−3, (d) ne = 1025 cm−3. The model of Gregori and Gericke [32] (labeled
as GG) is also shown for comparison (dash-dotted blue curve), in which the sound speed is taken to be cS(k) = [ZikBTe/mi(1 + k2/κ2

e )]1/2.
The changes to the rates due to the coupled-mode effect are highlighted by the gray shaded region in each panel.
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with

IRCM
ω (k) = 4√

π

∫ ∞

0
dx

x2e−x2

∣∣εRCM(k,x
) |2 , (21)

where x ≡ xi . Note that by setting Imεee(k,ω) = 0, one
recovers the RFGR Eq. (11), as expected.

Clearly, Eq. (21) is not amenable to a simple analytic
solution and must be solved numerically. The focus of this
work now shifts to making the required numerics as efficient
and optimized as possible in order to minimize computational
effort. Although our model still requires a double integration,
the forms of the polarization functions Eqs. (15) and (18)
allow for large savings in computational intensity, making
our model feasible to run in line. In particular, the Dawson
function and Fermi-Dirac integrals of half-integer order can be
inexpensively evaluated to high accuracy using the schemes
described by Roy [45] and Lether [46].

Although a sharp peak in the integrand in Eq. (21) still
occurs for some conditions, the damping afforded by the
electrons guarantees that its amplitude increases more slowly
than its width, and hence its contribution to the integral
decreases [36]. Moreover, the position of the peak can be
estimated a priori from the dispersion relation given by the root
of the real part of Eq. (19), which is valid for small to moderate
wave numbers. A small range on either side of the root of this
function can then be finely resolved to adequately capture the
peak structure, whereas the remainder of the integrand shows
a smooth behavior.

For large wave numbers, the dispersion relation ceases
to accurately predict the peak position, potentially focusing
the finely resolved grid away from the detailed structure.
Fortunately, both components of the damping also increase

with k and grow fast enough to smooth the peak as it is
shifted away from its predicted position. In fact, when the
resonance occurs at sufficiently high frequency, the peak is
suppressed altogether, since the integrand is modulated by the
exponential decay of Im	R

ii(k,ω). Moreover, if no root exists
in the dispersion relation, i.e., Reε(k,ω) > 0 for all ω, a sharply
peaked structure does not occur at all. In both of these cases,
the entire integrand is smooth and can be evaluated quickly
and accurately on a coarse grid.

Figure 1 shows our RCM model, Eqs. (19)–(21) and the
RFGR (11) compared to fully numerical solutions of Eqs. (6)
and (7) for a fully ionized hydrogen plasma (Zi = 1) at
various densities. The ion temperature is fixed at Ti = 104 K
in all cases. For each density, we observe generally good
agreement between the RCM and CM calculations for Te > Ti ,
with a pronounced coupled-mode effect (shaded gray regions)
visible for higher densities. For example, for Te � 105 K, the
maximum relative error is <10% for all densities considered.
As Te → Ti , the agreement gets worse, with the higher
density results diverging faster. Calculations for higher ion
temperatures also show similar agreement and the same trends
in the absolute error as a function of Te/Ti .

Figure 2 shows the low-temperature behavior around
thermal equilibrium for the same range of densities. Here,
the absolute difference ranges between <20% and >570%
for the highest density. This trend of poor agreement at
high degeneracy is consistent with the breakdown of the
approximation (9) for the Bose functions. Indeed, a similar
trend can be seen comparing full and reduced approaches to
the FGR [35].

As expected, the disagreement is reduced for a range of
temperatures about equilibrium for higher ion temperatures,
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FIG. 2. (Color online) Low-temperature behavior of the energy exchange rates. All parameters are as described in the legend of Fig. 1.
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e.g., Ti = 105 K, since the temperature ratio tends to unity
for higher electron temperatures for a given density. Contrary
to this trend is the observation that the low-temperature
error seems to have a minimum for ne = 1023 cm−3, with
the agreement worsening again for decreasing density. It is
also interesting to note that a CM effect is seen for Te < Ti

for highly degenerate systems, as shown by the gray shaded
regions in Figs. 2(c) and 2(d). This is easily explained, since
for De � 1, we have kBTe < EF , and thus a CM effect may
exist provided that EF > kBTi .

In contrast to the results of the new RCM model, the
reduced model from Ref. [32] (labeled GG in Figs. 1 and 2)
does not generally give similarly accurate results, although
better agreement is seen for the highest densities considered.
Specifically, the GG model is reasonable for conditions where
the ion plasmon peak is pushed to higher frequencies, e.g., for
high density, where the expansion of Eq. (15) is appropriate.
For lower densities, the trend for the GG model is to
overestimate the rate, even giving relaxation rates in excess of
the FGR. Such behavior is a clear indication of the unsuitability
of the model, since the FGR is the maximum rate for energy
transfer via collective modes.

V. IMPROVEMENT OF THE NEW MODEL

We now attempt to improve the general accuracy of our
model by considering three simple extensions: (i) including

further terms in the Taylor series (18), (ii) considering the full
k-dependence of the electronic contribution to the screening,
and (iii) the true structure of the Bose functions.

The next nonvanishing terms in the Taylor expansion of
	R

ee(k,ω) can be found to give the simple corrections

C1(k,ω) = 1 − 2x2
e

F−3/2(ηe)

F−1/2(ηe)
, (22)

C2(k,ω) = 1 − x2
e (1 − fe(k))

[
1 − 2q2

e

3
(1 − 2fe(k))

]
, (23)

where qe = h̄k/
√

8pe. Equations (22) and (23) now multiply
the appropriate components of Eq. (18), i.e.,

−Vee(k) 	R
ee(k,ω) ≈ κ2

De

k2

[F−1/2(ηe)

De/2
C1(k,ω)

+ i
√

πxe

fe(k)

De/2
C2(k,ω)

]
. (24)

As before, the real part is taken in the long wavelength limit,
whereas the full k-dependence is retained in the imaginary
part.

It can readily be shown that one recovers from Eqs. (22)
and (23) the correct terms for the expansion of the polarization
function in the nondegenerate and classical limits, respectively.
Due to their simple form, it is no additional effort to incorporate
these corrections, although we find no discernible effect for any
of the conditions considered in this work. This is not surprising
given the shape of 	R

ee(k,ω) for very small frequencies.
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FIG. 3. (Color online) Effect of improvements to the RCM model compared to full numerical CM calculations (solid black curve) around
thermal equilibrium for Ti = 104 K, in both diffuse (ne = 1022 cm−3) and dense (ne = 1025 cm−3) hydrogen plasmas. Panels (a) and (b) consider
the usual expansion of the Bose functions given by Eq. (9) and compare the cases with long wavelength, i.e., k → 0, screening only (blue
dashed curves with circles), and the full static screening (red dotted curves with diamonds), as implemented in Ref. [47]. Conversely, panels
(c) and (d) consider full static screening and compare the cases with the expanded structure (blue dashed curves with circles) and full structure
(red dotted curves with diamonds) of the Bose functions.
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Since the expansion of the Bose functions Eq. (9) is
appropriate for low degeneracy, and the higher-order correc-
tions (22) and (23) are negligible, it is reasonable to conclude
that the long wavelength approximation to the electronic
screening is responsible for the poor accuracy of our model
for Te < Ti in the low-density case. The overestimation of the
rates in this regime occurs because fe(k) is roughly Gaussian
for De � 1 and, thus, has a long tail that does not lead to the
same suppression of the integrand for large wave numbers.

Numerical evaluation of the static RPA dielectric function
for arbitrary wave numbers shows that electronic screening
decays significantly faster than the Debye-like inverse square
scaling obtained within the long wavelength limit. In order to
account for the deviation between the k → 0 limit and full
k-dependence of the static screening at large wave numbers,
we use the parametrization presented in Ref. [47], which
does not noticeably increase the computational effort of the
RCM model. Conversely, for higher degeneracies, the full
k-dependence of the screening is not important, as the Fermi
distribution tends to a step function [see Fig. 3(a)].

On the other hand, Fig. 3(b) shows that including the full
form of the Bose functions has no effect for low-density
plasmas, where the low-frequency expansion holds. However,
the expansion of the Bose functions account for nearly all the
difference to the full numerical results at higher degeneracies.

With the simple improvements to the basic model, given
by Eqs. (19)–(21), we find that the maximum absolute error
between the RCM and CM calculations is now <7% for all
temperatures and densities considered. In fact, this upper limit
mainly arises due to the imperfection of the interpolation
formula used for the full k-dependence of the static screening,
and generally we see mean absolute errors of 0.5–3% (see
Fig. 4). On the basis of this agreement, we unambiguously
demonstrate the importance of several key issues: First and
foremost, the electronic contribution to the damping is crucial
in determining the proper mode structure, in particular,
the damping of the ion wave onto an acoustic dispersion
relation. Second, non-Debye screening cannot generally be

0.0

2.0

4.0

6.0

8.0

10.0

A
b
so

lu
te

er
ro

r,
ab

s
[%

]

103 104 105 106 107 108 109

Te [K]

ne = 1022 cm−3, abs = 2.05 %
ne = 1023 cm−3, abs = 1.79 %
ne = 1024 cm−3, abs = 2.87 %
ne = 1025 cm−3, abs = 1.45 %

Ti = 104 K

FIG. 4. (Color online) Absolute percentage error between the full
CM calculations and reduced model described in this work, i.e., εabs =
100 × |(ZRCM

ei − ZCM
ei )/ZCM

ei |, as a function of electron temperature.
The full k-dependence and proper structure of the Bose functions are
both accounted for in the RCM results presented here.

ignored, especially in low-density plasmas. Finally, the correct
structures of the Bose functions are essential for describing the
rates at low temperatures in degenerate plasmas. We also find
that the improved model now runs over 300 times faster than
full numerical calculations, allowing it to be run inline within
a host hydrodynamics code.

VI. SUMMARY

We have investigated the energy transfer rate in two-
temperature plasmas using a quantum statistical framework,
allowing a full and rigorous analysis of the role played by
coupled-mode effects in WDM and dense plasmas. A number
of approximations aimed at reducing the numerical effort
required to evaluate the rates were presented, along with
several models for both the FGR and CM descriptions. In
the case of the FGR, the well-known reduced result [29,30]
was recovered.

Application of the same set of approximations to the CM
description revealed that no difference to the RFGR rates
should be present, as suggested in Ref. [33]. This fact is in
contradiction with detailed fully numerical calculations of the
CM rates. We resolved this discrepancy by considering a more
consistent model of the electronic contribution to the screening
that included all lowest order nonvanishing terms in the Taylor
expansion of 	R

ee(k,ω). We constructed a new reduced model
for the CM effect by simply keeping the imaginary part of the
electronic contribution to ε(k,ω).

The resulting ω-integration could no longer be treated ana-
lytically. Thus, we focused on minimizing the computational
cost of our calculations. In particular, we used simple analytic
parametrizations for all relevant quantities that are usually
evaluated numerically. Our results showed generally good
agreement with the full CM calculations of the relaxation
rate for Te � Ti , with better than 10% accuracy achieved
over the full range of densities considered. For Te � Ti ,
some significant deviations were observed, especially for
high degeneracies. We concluded that these errors arise from
the Bose function expansion for conditions where the mode
structure is shifted to higher frequencies. This finding is
supported by the analysis presented in Ref. [35].

Finally, we abandoned most approximations for the reduced
models in order to account for previously neglected physics.
We considered the next-lowest-order, nonvanishing terms in
the low-frequency expansion of the electronic polarization
function, which showed no discernible effect. We then
included the correct k-dependence in the static electronic
screening by means of a simple parametrization, valid for
arbitrary degeneracy, and also the true form of the Bose
functions. None of these extensions noticeably increased the
computational intensity of our model. We found that for low
degeneracies the screening was the most important effect,
while for higher degeneracies the expansion of the Bose
functions constituted the most significant difference to the
full CM calculations. The extended model gave results with
an overall mean absolute error of ∼2% over the full range of
temperatures and densities considered.

With the analysis presented, we have elucidated the critical
role played by the electrons to not only change the dispersion
relation of the ion density waves from plasmon-like to
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acoustic but also to crucially change the damping of the
collective ion mode, which directly leads to the CM effect.
Moreover, we have shown that electron damping need only
be considered to first order in frequency to reproduce the
full rates in two-component plasmas. Finally, our model has
been made efficient enough to be incorporated in large-scale
hydrodynamics simulations. This will enable estimates of the

importance of the CM effect for simulations of systems such
as imploding ICF capsules.
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