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Path selection rules for droplet trains in single-lane microfluidic networks
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We investigate the transport of periodic trains of droplets through microfluidic networks having one inlet, one
outlet, and nodes consisting of T junctions. Variations of the dilution of the trains, i.e., the distance between drops,
reveal the existence of various hydrodynamic regimes characterized by the number of preferential paths taken by
the drops. As the dilution increases, this number continuously decreases until only one path remains explored.
Building on a continuous approach used to treat droplet traffic through a single asymmetric loop, we determine
selection rules for the paths taken by the drops and we predict the variations of the fraction of droplets taking
these paths with the parameters at play including the dilution. Our results show that as dilution decreases, the
paths are selected according to the ascending order of their hydrodynamic resistance in the absence of droplets.
The dynamics of these systems controlled by time-delayed feedback is complex: We observe a succession of
periodic regimes separated by a wealth of bifurcations as the dilution is varied. In contrast to droplet traffic in
single asymmetric loops, the dynamical behavior in networks of loops is sensitive to initial conditions because
of extra degrees of freedom.
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I. INTRODUCTION

A laminar, steady, and Newtonian flow in a rigid pipe
is described by the Hagen-Poiseuille equation, which states
�P = RQ, with Q the volumetric flow rate, �P the pressure
drop between the pipe’s inlet and outlet, and R a constant
having units Pa s m−3 whose value solely depends on the fluid
viscosity and the geometry of the pipe [1]. Because of the
analogy between this equation and the classical Ohm’s law
for the analysis of electric circuits, relationships analogous to
Kirchhoff’s laws for the electrical current and voltage drop can
be written for Q and �P , respectively [1–3]. Hence, obeying
the combination rules of resistors, R is known in the literature
as the hydrodynamic resistance of the pipe [4].

Now considering a fluidic network made of numerous
interconnected branches, the determination of the flow rates
in each branch can be difficult. For monophasic Newtonian
flows, this problem has a unique solution easily derived using
the analogy between fluidic networks and electric circuits
mentioned above. For two-phase flows, however, e.g., flows in
(droplet-based) digital microfluidic applications [5,6], strong
nonlinearities arise and the problem becomes challenging. In-
deed, the transport of discrete elements or information through
networks, such as droplet traffic in single-lane microchannels
having lateral dimensions comparable to the drop size, road
traffic [7], blood microcirculation [8], and cell signaling [9],
are all regulated by time-delayed feedback and nonlinear
couplings. When reaching a node, a droplet generally flows
in the channel having the largest instantaneous volumetric
flow rate [10,11]. Since the hydrodynamic resistance of a
channel depends on the presence of flowing drops [12], the path
selection of a drop at a node is monitored by the entrance and
exit of the preceding drops in all the branches of the network.
Even in the simple case of two bifurcating channels, the traffic
of drops or bubbles can be amazingly complex and yields
a rich variety of dynamics including periodic and multistable
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traffic patterns [11,13–16]. However, so far investigations have
mostly focused on trains of bubbles or droplets flowing through
a single loop [11,13–22], while a few have dealt with more
complex geometries [23,24].

Here we investigate droplet traffic in complex single-lane
networks to determine whether the approaches and simple
rules employed to rationalize experimental findings for a single
loop are still valid. The paper is organized as follows. In Sec. II
we briefly present the phenomena observed when studying
droplet traffic in the most studied configuration, an asymmetric
loop [10,11,13–18], and we give the basic elements used in
the continuous [10,11,15–18] and the discrete [13,14] models
that rationalize observations. In addition, we provide complete
derivations of the analytical results obtained using discrete
models [13]. In Sec. III, building on these theoretical grounds,
we study droplet traffic through networks having one inlet and
one outlet that can be connected using more than two different
ways: The nodes of the networks are T junctions. We model the
flow and validate the resulting predictions with microfluidic
experiments.

II. TRAFFIC THROUGH A SINGLE-LANE ASYMMETRIC
LOOP

A. Background

The basic elements necessary to describe the transport of
droplets in single-lane microfluidic conducts having lateral
dimensions of the order of the drop size and through an
asymmetric loop are the following [10,11,13–18,25].

(a) The hydrodynamic resistance R of a pipe of length L

and constant cross section S varies linearly with the number
N of drops it contains, R = α(L + NLd ). In this expression,
α has units Pa s m−4 and is a function of the viscosity of the
continuous phase and of the geometry of the channel cross
section [1] and Ld is a parameter having the dimension of a
length that corresponds to the effective resistive length each
droplet adds to the pipe in terms of hydrodynamic resistance.
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(b) The velocity V of droplets flowing in such a pipe
varies as V = β Q

S
, where Q is the total flow rate and β is a

dimensionless number characterizing the mobility of the drops
in the pipe.

(c) At a T junction, a droplet always flows in the pipe having
the larger total flow rate.

The validity of the expressions for R and V in points (a) and
(b) has been demonstrated by both millifluidic and microfluidic
experiments in channels having circular and rectangular
cross sections, respectively [10,12,18]. Such equations can
be derived using a phenomenological model considering that
the droplets are sufficiently far apart so that they do not
interact hydrodynamically [12]. The value of Ld depends on
the geometry of the cross section, the viscosity ratio between
dispersed and continuous phases, and the droplet confinement
ρ defined as the ratio between the drop size and the lateral
dimension of the channel [12]. The modeling of the flow
described above is valid for confinements typically varying in
the range 0.7–1 for which Ld increases with ρ. For smaller ρ,
the hydrodynamic resistance appears to be nearly independent
of the presence of droplets, Ld � 0. For larger values of ρ,
nonlinearities may arise because of capillary effects [11]. The
mobility β is a decreasing function of ρ that varies between
2 and 1 for circular cross sections; β can be either larger or
smaller than 1 in the case of rectangular cross sections [12,26]
because of corner flows that exist only in this geometry. The
path selection rule at a node given in point (c) has a limited
range of validity since experiments have shown that collisions
between successive drops can occur at a node and regulate
traffic when droplets are close enough [21,25]. In what follows,
we consider only situations for which the distance λ between
drops reaching a junction is sufficiently large to prevent such
collisions from occurring.

So far, most studies have considered one-dimensional (1D)
trains of monodisperse droplets produced at a constant rate
f and flowing through a single asymmetric loop (Fig. 1).
The reason for considering periodic 1D trains is threefold.
First, their production is easy using robust geometry-based
methods such as T junctions [27,28] or flow focusing de-
vices [29]. Second, most digital microfluidic high-throughput
applications in chemistry [30], biotechnology [31,32], and
material sciences [33] require one to index the drops and/or
to use a space-to-time conversion, two characteristics that are
inherent to 1D trains. Finally, the use of such trains makes
the modeling easier. We consider that both arms of the loop

arm (1)
length L1

droplets

arm (2)
length L2 

flow
direction

λ

FIG. 1. Schematic of the flow model for a single-lane asymmetric
loop defining λ, L1, and L2 > L1.

have the same constant cross section S but different lengths
L1 and L2 > L1 (Fig. 1). The other parameters at play are
β, Ld , and λ, the velocity of the droplets being V = λf .
More details on microfluidic and millifluidic setups able to
monitor independently Ld , f , and λ can be found in [10,12].
Note, however, that Ld and β, which depend on the droplet
confinement, can never be set independently.

The problem can be addressed numerically using a simple
algorithm [11,12,17,20,34]. At each time step τ = 1

f
a droplet

whose physical volume is neglected reaches the inlet node of
the loop. One computes the numbers of droplets Ni present in
each arm (i) (i = 1 or 2) and the hydrodynamic resistance of
this arm Ri . The drop at the inlet node is then injected in the
arm having the smaller hydrodynamic resistance. Afterwards,
Ni and Ri are updated. In each arm (i), the velocity of the
drops Vi is computed using the conservation of the total flow
rate and the relationships describing the transport of droplets
in a pipe of constant cross section. The droplets present in each
arm (i) are then moved until Ni changes, i.e., until the exit of
a drop or the entrance of a new drop. Whenever a droplet exits
the system, the values of Ni , Ri , and Vi are updated so that the
displacements of all droplets are reevaluated. For a given set
of parameters (Ld ,L1,L2), when λ is varied, experimental and
numerical findings share the following features.

(i) At high dilutions, all droplets flow in the shorter
arm. For smaller λ, partitioning of the drops between both
arms is observed. The transition between these two regimes,
respectively known as the filter and repartition regimes, occurs
at λ = λf (see Fig. 2). In the latter regime, periodic patterns
of droplets partitioning are obtained.

(ii) When droplets take both paths at the junction, the total
flow rates Q1 and Q2 in the arms, hence V1 and V2, fluctuate
in time around equal mean values.

(iii) In the repartition regime, at a given λ, a periodic pattern
is characterized by three invariants that are independent of the
initial conditions, i.e., the number and the positions of the
droplets initially present in the loop: the cycle time Tcyc of the
pattern (i.e., the number of drops per cycle), the fraction of
drops F2 flowing in the longer arm, and the number of “packs”
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FIG. 2. Numerical fraction of droplets F2 versus λ for L1 = 100,
L2 = 150, and Ld = 2. The lengths have arbitrary units. The solid
line is a prediction calculated using Eq. (1a).
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FIG. 3. (a) Shown is Tcyc versus λ for L1 = 100, L2 = 150, and
Ld = 2. The lengths have arbitrary units. The solid line is calculated
using the discrete model. Closed circles stand for numerical results.
(b) Bifurcation diagrams of Tcyc/T1 as a function of λ/λf shown in
the range λ/λf = 0.5–0.8.

Npack per cycle; a pack is the number of drops flowing in the
shorter arm between two successive drops taking the longer
arm.

(iv) When plotted versus λ, each invariant presents series
of plateaus separated by discontinuous transitions (see Fig. 3
through Fig. 5).

The results presented in Figs. 2–5 are outcomes of numeri-
cal simulations and predictions of the continuous and discrete
models that are discussed in details in Secs. II B and II C,
respectively.

B. Continuous model

To rationalize some of these findings and derive analytical
expressions for F2 and λf , one can use a continuous approach
[12]. This description neglects the temporal fluctuations of the
number of drops present in each arm and postulates, in the
repartition regime, the equality of the total flow rates in both
arms [10,12,14,16]. Hence the rate fi of the passing drops in
the arm (i) and the distance λi between two successive drops
are assumed to be constant. In the repartition regime, using the
conservations of the total flow rate and dispersed phase and
writing the two relationships given in Sec. II A [points (a) and
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FIG. 4. Shown is Npack versus λ for L1 = 100, L2 = 150, and
Ld = 2. The lengths have arbitrary units. The solid line is calculated
using the discrete model. Closed circles stand for numerical results.

(b)] for each arm, one obtains an analytically solvable system
of four equations satisfied by λi and fi (see [12] for details).
With the resulting expressions for λi and fi , one finds that
F2 = f2

f
linearly decreases with λ:

F2 = 1

�2 + 1

(
1 − λ

�2 − 1

2Ld

)
, (1a)

where �2 = L2
L1

. Hence F2(λ = λ̃f ) = 0 gives

λ̃f = 2Ld

�2 − 1
. (1b)

This prediction for the transition between filter and repar-
tition regimes correlates with numerical results (̃λf ∼ λf

in Fig. 2). Expressions for the mean number of droplets
〈Ni〉 = Li/λi in each arm (i) can also be found.

The fluctuations of Ri , which are due to the exit and
entrance of droplets in the loop, remain small compared to
the resistances’ mean values when working with long enough
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FIG. 5. Shown is F2 versus λ for L1 = 100, L2 = 150, and
Ld = 2. The lengths have arbitrary units. Numerical results (circles)
are compared with the prediction of the discrete model (solid line),
calculated using F2 = Npack/Tcyc.
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arms. In that case, the model concurs well with numerical
results as shown in Fig. 2 [12,14,16]. However, the model
does not explain the plateaus observed numerically in the
variations of F2 with λ (see Fig. 2). This limitation results from
the discrete nature of the drops, which a continuous approach
cannot account for. Another limitation of this approach resides
in the impossibility of describing the dynamics of the system.

C. Discrete model

1. Introduction

To account for the discrete nature of the droplets, one
can introduce an approximation for Vi , making the problem
tractable and allowing for a complete theoretical description
of the dynamics [13,14]. This approach neglects the temporal
fluctuations of the hydrodynamic resistance of the arm (i),
Ri = α(Li + LdNi). One assumes that the temporal variation
of Ni does not significantly affect Vi . This mean-field approach
is reasonable when the mean number of drops present in
each arm is large or when the lengths of both arms are
large compared to Ld . As shown in Sec. II C2, neglecting the
nonlinear couplings between Ni and Qi , one can demonstrate
that Qi is nearly constant and equal to one-half of the incoming
total flow rate in the repartition regime so that Vi ∼ V/2
[13,14].

The time is discretized in τ units within this ideal model.
Each time step, a new droplet reaches the inlet node of the
loop and is injected in one of its arm. At any time step,
the positions of the drops present in each arm are multiple
of λ

2 , the origin of space being located at the inlet node.
Because of the finite number of possible configurations and the
deterministic nature of the model, only periodic patterns are
expected. A drop located in the arm (i) at a position k λ

2 from
the origin (k ∈ N) has therefore reached the inlet node and
selected this arm a time k earlier in τ units. Since the droplets
make a binary “choice” at the inlet, if a droplet is located at
k λ

2 from the origin in the arm (2), a “hole” (that is, the absence
of a droplet) is necessarily located at the same distance from
the origin in the arm (1) and vice versa. Hence the maximum
number of droplets that can be accommodated in each arm is
Ti = ceil( 2Li

λ
). Using the space-to-time conversion, Ti , which

corresponds to the number of drops that have reached the inlet
node between the entrance and exit of a given drop in the arm
(i), is the discrete time in τ units elapsed between these two
events. In what follows, τ is the unit of time (i.e., τ = 1) and
we use the superscripts − and + to respectively denote the
functions evaluated just before or after injecting a new drop
in the loop. The values of N1 and N2 just before and after the
entrance of the nth droplet in the loop respectively read

N−
1 (n) =

n−1∑
k=n−T1+1

H [δ−(k)],

N−
2 (n) =

n−1∑
k=n−T2+1

H [−δ−(k)]

= T2 − 1 −
n−1∑

n−T2+1

H [δ−(k)]

and

N+
1 (n) =

n∑
k=n−T1+1

H [δ−(k)],

N+
2 (n) =

n∑
k=n−T2+1

H [−δ−(k)]

= T2 −
n∑

n−T2+1

H [δ−(k)].

In these expressions, δ(t) = L2−L1
Ld

+ N2(t) − N1(t) is the
normalized difference between the hydrodynamic resistances
of the two arms and H is the Heaviside function. We next
replace N+

i by Ni for readability.
Using the previous relationships, one can derive two

equations. A balance on N1 and N2 over τ between the
entrances of the nth drop and the (n + 1)th one gives the first
equation, that is, a recursive relationship

δ−(n + 1) = δ−(n) − 2H [δ−(n)] + H [δ−(n + 1 − T1)]

+H [δ−(n + 1 − T2)]. (2)

During τ , H [δ−(n + 1 − T1)] and 1 − H [δ−(n + 1 − T2)]
drops respectively exit the loop via arms (1) and (2), whereas
H [δ−(n)] and 1 − H [δ−(n)] drops enter these two respective
arms. Initial conditions over a time interval are necessary
to integrate the recursive relationship and to describe the
dynamics of the system; this feature is common to any
time-delayed system. In our study, the positions of the drops
initially present in the loop define such initial conditions. We
next consider that the loop does not initially contain any drop.

Using the expression of the number of holes in the arm (1),
NH

1 (n) = T1 − N1(n) = ∑n
k=n−T1+1 H [−δ−(k)], it is possible

to show that
T1∑

j=1

N2(j ) =
T1∑

j=1

j∑
k=j−T2+1

H [−δ−(k)]

=
T2∑

j=1

j+T1−T2∑
k=j−T2+1

H [−δ−(k)]

=
T2∑

j=1

NH
1 (j + T1 − T2)

=
T1∑

j=1+T1−T2

NH
1 (j ).

It is worthwhile noticing that this relationship is valid for any
n and can be written in the following form:

T2∑
j=1−T1+T2

N2(j + n) =
T2∑

j=1

NH
1 (j + n). (3)

2. Repartition regime: The flow rate’s equipartition rule

In the repartition regime, as observed in both numeri-
cal simulations and experiments [10,12,14,16], the system
naturally tends to balance the hydrodynamic resistances of
both arms. As shown below, a stability analysis permits
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us to understand this phenomenon. When δ−(n) > 0, one
easily shows using Eq. (2) that δ−(n + 1) = δ−(n) − 2 +
H [δ−(n + 1 − T1)] + H [δ−(n + 1 − T2)]. Hence δ−(n) −
2 � δ−(n + 1) � δ−(n), so that δ− either decreases or re-
mains constant. Conversely, when δ−(n) < 0, one shows
that δ−(n + 1) = δ−(n) + H [δ−(n + 1 − T1)] + H [δ−(n +
1 − T2)]. Thus δ−(n) � δ−(n + 1) � δ−(n) + 2, i.e., δ− in-
creases or remains constant.

We now aim to show that δ+ can take only two values
after a transient regime. Distinguishing the values taken by δ

before and after the entrance of the nth droplet in the loop,
respectively denoted δ−(n) and δ+(n), we use the following
relations characterizing (a) the entrance of a new drop in the
loop and (b) the exits of drops from the loop.

(a) δ+(n) = δ−(n) − 1 when δ−(n) > 0 and δ+(n) =
δ−(n) + 1 when δ−(n) < 0.

(b) δ−(n + 1) = δ+(n) when none of the drops exit or two
drops exit, each one passing through each arm (such cases are
possible since the residence times of the drops in the loop are
different); δ−(n + 1) = δ+(n) + 1 if a drop exits via the arm
(1); and δ−(n + 1) = δ+(n) − 1 if a drop exits via the arm (2).

After a transient regime, δ−(n + 1) = δ−(n) for all n only
if all drops exit the loop by taking either the short arm while
δ−(n) > 0 or the long arm while δ−(n) < 0. The first case
implies that the hydrodynamic resistance of the short arm
filled with drops is always smaller than that of the long
arm: This is the filter regime. The latter situation cannot be
encountered since it requires the number of drops in the long
arm to be larger than that of the short arm. Hence, in the
repartition regime, δ−(n + 1) < δ−(n) when δ−(n) > 0 and
δ−(n + 1) > δ−(n) when δ−(n) < 0. For any initial conditions,
after a transient regime in which δ− evolves monotonically,
its sign changes when δ− reaches either ε or ε − 1 with
ε = L2−L1

Ld
− floor(L2−L1

Ld
); with Ni being integers, ε or ε − 1,

which have opposite signs, are the two closest values to 0
that δ− can possibly reach. After the transient regime, one can
verify that δ+ necessarily fluctuates between these two values.
A strict balance between the hydrodynamic resistances of the
two arms is unfeasible because of the discrete nature of the
drops. As a result, N1 − N2 is a function of time that can
take only two values: F = floor(L2−L1

Ld
) or C = ceil(L2−L1

Ld
).

In our study, we do not consider the case for which L2−L1
Ld

is an

integer as it is irrelevant experimentally. Since R2(t)
R1(t) = Q1(t)

Q2(t) =
1 + δ(t)/(N1 + L1

Ld
) and |δ(t)| < 1, within the limit N1 → ∞

or L1 → ∞, our analysis implies that

Q1(t)

Q2(t)
→ 1.

Hence, within one of the above limits, an equipartition of
the flow rates Q1 and Q2 occurs in steady state as observed
numerically and experimentally [12,13].

3. Repartition regime: Stationary solutions

Here we aim to determine the existence of stationary
solutions for which the numbers of droplets in both arms
remain constant over time. Mathematically, such solutions
correspond to N+

i (n + 1) = N+
i (n) for any integer n. Using

the expressions of N+
i (n) given in Sec. II C1, it is straight-

forward to show that H [δ−(n + 1)] = H [δ−(n − Ti + 1)].

Hence, when Ni is constant over time, δ is a Ti-periodic
function. Conversely, a Ti-periodic system implies a constant
Ni . Both N1 and N2 being constant over time, the system is
simultaneously T1 and T2 periodic. Therefore, T1 and T2 are
multiples of the system’s period. Furthermore, since in this
case H [δ−(n + 1)] = H [δ−(n − T1 + 1)] = H [δ−(n − T2 +
1)], the system is also T2 − T1 periodic. Such a situation is
possible only when T1 and T2 are multiples of T2 − T1.

Stationary solutions exist, but are witnessed only for
specific conditions over the parameters of the problem. Since
N1−N2 is constant over time, it is therefore equal to either F

or C. Using Eq. (3) one can then write

T1∑
j=1

N2(j ) =
T1∑

j=1+T1−T2

NH
1 (j ) so that T1N2 = T2N

H
1 .

Using previously established relations, one finds

T1N2 = T2[T1 − F − N2] or T1N2 = T2[T1 − C − N2].

Consequently,

N2 = T2

T1 + T2
[T1 − F ] or N2 = T2

T1 + T2
[T1 − C].

(4)

To summarize, a stationary regime occurs whenever either
T2

T1+T2
[T1 − F ] or T2

T1+T2
[T1 − C] is an integer. When such

a condition is fulfilled, all the quantities remain constant
over time and can easily be expressed using the relationships
derived above.

4. Repartition regime: Nonstationary solutions

Usually N1 and N2 evolve over time. However, after a
transient regime, numerical simulations show that at least one
of these quantities is constant. Since N1 − N2 explores only
two consecutive values, so does the sum N1 + N2. We assume
that N1 + N2 and N1 − N2 respectively equal S or S + 1 and
F or F + 1, where S is an integer and F = floor(L2−L1

Ld
).

Writing the integers N1 and N2 as N1 = N1+N2
2 + N1−N2

2 and
N2 = N1+N2

2 − N1−N2
2 , one shows the following.

(i) When S and F have the same parities, N1 fluctuates
between S+F

2 and S+F
2 + 1 while N2 = S−F

2 remains constant
over time.

(ii) When F and S have different parities, N1 = S+F+1
2

remains constant over time and N2 fluctuates between S−F+1
2

and S−F−1
2 .

To summarize, for nonstationary regimes, the number of
drops in one of the two arms is independent of time, the other
number fluctuating over time between two consecutive values.
With Ni being constant over time, the dynamics of the system
are Ti periodic. We have shown that after an initial transient
state, periodic dynamics are always obtained, the period being
either T1, T2, or T2 − T1.

5. Repartition regime: Selection of the cycle time

Here we derive the selection rules that determine the
values taken by one of the invariants of the system, the cycle
time Tcyc of the binary series. We begin by considering a
T2-periodic regime for which N2 = S−F

2 is constant. Using
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∑T2
j=1 NH

1 (j ) = T1N2 established in Sec. II C3, one finds

t

(
T1 − S + F

2

)
+ (T2 − t)

(
T1 − S + F

2
− 1

)
= T1N2,

where N1 = S+F
2 during a cumulative time t and N1 = S+F

2 +
1 during T2 − t . Hence t = (T1 + T2) S−F

2 − T2(T1 − F − 1)
with 0 � t � T2; stationary solutions are obtained when t = 0
or T2, both N2 and N1 remaining constant over time in those
cases. The inequality yields

0 � T2

T1 + T2
(T1 − F ) − N2 � T2

T1 + T2
< 1.

With N2 being an integer, the occurrence of a T2-periodic
solution therefore requires the fractional part of T2

T1+T2
(T1 − F )

to be smaller than T2
T1+T2

. Then N2 reads

N2 = floor

(
T2

T1 + T2
(T1 − F )

)
.

Following a similar approach for T1-periodic regimes in
which N1 = S+F+1

2 remains constant over time, one finds

0 � T1

T1 + T2
(T1 − F ) − (T1 − N1) � T1

T1 + T2
< 1.

A T1-periodic solution can therefore be obtained when the
fractional part of T1

T1+T2
(T1 − F ) is smaller than T1

T1+T2
. The

number of holes in the arm (1), NH
1 = T1 − N1, which is

constant over time, is then given by

NH
1 = floor

(
T1

T1 + T2
(T1 − F )

)
.

As shown below, the two conditions required for the
respective occurrence of T1-periodic and T2-periodic regimes
are incompatible. By noting p = T1

T1+T2
and q = T2

T1+T2
, any

integer M can be written as M = pM + qM since p + q = 1.
With Ip and εp denoting the integer and fractional parts of
pM , the integer and fractional parts of qM being Iq and εq ,
one obtains M = Ip + εp + Iq + εq .

Two different cases can then be distinguished. When εp

and εq are both different from zero, εp + εq = 1 = p + q. It
is then straightforward to derive that q < εq < 1 when 0 <

εp < p and p < εp < 1 when 0 < εq < q. Note that when
εp = p and εq = q, both p(M − 1) and q(M − 1) are integers.
The latter situation corresponds to the condition on q(T1 − C)
given Eq. (4) required for a (T2 − T1)-periodic regime. When
εp (or εq) is equal to zero, then εq (or εp) is also equal to
zero. This particular case corresponds to the other condition
on q(T1 − F ) for the occurrence of a (T2 − T1)-periodic regime
[see Eq. (4)].

6. Repartition regime: Selection of the number of packs

As previously discussed, for a given set of parameters
(Ld ,L1,L2,λ), numerical simulations show that Npack is an in-
variant of the problem being independent of initial conditions.
For T1-periodic regimes, the number of holes in the arm (1) is
constant. Since T1 is the residence time of a drop or a hole in
the arm (1), Npack is given by

NH
1 = floor

(
T1

T1 + T2
(T1 − F )

)
.

Similarly, for T2-periodic regimes, Npack is given by the
constant value of

N2 = floor

(
T2

T1 + T2
(T1 − F )

)
.

For (T2 − T1)-periodic regimes, the period is shorter than
T1 and T2, the residence times in the short and long arms,
respectively. Using the space-to-time conversion, the emerging
cyclic pattern is observed over a portion of the arm (2) having
a length (T2 − T1) λ

2 . The number of drops in this portion is
N2−NH

1 , both being constant in time. Then Npack is given by
either T2−T1

T2+T1
(T1 − F ) or T2−T1

T2+T1
(T1 − C).

7. Selection rules

We summarize below the rules established in previous
sections that govern the dynamics of the system. Four cases
are identified depending on x = T2

T2+T1
(T1 − F ).

(i) When x is an integer,

Tcyc = T2 − T1, Npack = T2 − T1

T2 + T1
(T1 − F );

(ii) when the fractional part of x is strictly bounded by 0
and T2

T2+T1
,

Tcyc = T2, Npack = floor

(
T2

T1 + T2
(T1 − F )

)
;

(iii) when the fractional part of x is equal to T2
T2+T1

,

Tcyc = T2 − T1, Npack = T2 − T1

T2 + T1
(T1 − C);

(iv) when the fractional part of x is strictly bounded by
T2

T2+T1
and 1,

Tcyc = T1, Npack = floor

(
T1

T1 + T2
(T1 − F )

)
.

The invariants are indeed independent of the number and
positions of the drops initially present in the loop and solely
depend on Ld , L1, L2, and λ. As shown in Figs. 3 and 4,
these theoretical predictions for the evolutions of Tcyc and
Npack concur well with numerical simulations. They predict
the occurrence of the various plateaus obtained numerically
and the numerous bifurcations between these plateaus as λ

varies [13]. Between two successive plateaus, we note the
emergence of singular periodic regimes with very long cycle
times. These regimes, which are not predicted by our model,
exist only for very narrow ranges of λ, narrower than the
experimental stochastic noise of λ, and are not observable
experimentally [13].

Using these predictions, one may also derive analytical
expressions for the third invariant of the system, F2 = Npack

Tcyc
,

the fraction of droplets flowing through the long arm. When
comparing predictions of the continuous (Fig. 2) and discrete
(see Fig. 5) models, the numerical results are better described
by the latter model.

A simple criterion permits one to predict the values of λ for
which a bifurcation between different periodical regimes may
occur [13]. As λ varies, one expects a change of dynamical
behavior whenever the integers T1 or T2 change by 1. This
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occurs whenever λ = λc(i,k) with

2Li

λc(i,k)
= floor

(
L2 − L1

Ld

)
+ k, (5)

where i = 1,2 and k ∈ N�. Although this simple criterion
overestimates the number of observed bifurcations [13], it
predicts the exact value of λ = λf at which the transition
between filter and repartition regimes occurs:

λf = 2L1

floor
(

L2−L1
Ld

) + 1
. (6)

8. Connections between the two models

When L1, L2, and L2 − L1 are large compared to Ld , one
can write F ∼ C ∼ L1(�2−1)

Ld
and Ti ∼ 2Li

λ
. Within this limit,

using Eq. (6) and the selections rules previously established, it
is straightforward to show that λf ∼ 2Ld

�2−1 and F2 ∼ 1
�2+1 [1 −

λ�2−1
2Ld

]. These mathematical expressions for the predictions of
λf and F2 are identical to those found using the continuous
model [12].

III. COMPLEX NETWORKS: TWO EMBEDDED LOOPS

A. Numerical algorithm and steady state results

We now study the flow of a periodic train of droplets in
two embedded loops made of four arms of different lengths
and two inlet nodes A and B (Fig. 6); channels have identical
widths and L1 < L2.

Our simulations are based on an algorithm similar to the
one used in the study of a single asymmetric loop described
in Sec. II. Drops periodically feed the inlet node A at a rate
f . Whenever a drop reaches either A or B, the number of
drops Ni and the hydrodynamic resistance Ri are computed.
The drop located at one of the inlet node is then injected
in the branch having the largest flow rate. Afterwards, the
values of Ni , Ri , and Vi are updated and all drops are moved
until Ni changes. The whole network does not contain any
drops when simulations begin. After a transient state, several
hydrodynamic regimes are observed when λ varies. As shown
below, an important parameter is the hydrodynamic resistance
of the branch formed by arms (1), (2), and (4). This resistance

arm (1)
length L1

droplets

arm (3)
length L3 

flow
direction

arm (4)
length L4 

arm (2)
length L2 

A

B
λ

FIG. 6. Schematic of the flow model for two imbedded loops
having two inlet nodes A and B. Defined are λ and Li , with i = 1, 2,
3, and 4, and L1 < L2.
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f

FIG. 7. Variations of F1 (◦), F2 (�), and F3 (•) with λ.
The parameters expressed in arbitrary units are L1 = L3 = 100,
L2 = 125, L4 = 60, and Ld = 2.7 (Leq > L3). The solid lines are
predictions calculated using the continuous model (see Sec. III B).
R, PF, and F respectively denote the repartition, partial filter, and the
filter regimes.

is identical to that of a single arm having a length Leq =
L4 + L1L2/(L1 + L2). For a given λ, the observed regime
depends on whether Leq > L3.

When Leq > L3, we observe the following sequence of
regimes when λ decreases (see Fig. 7): In λ > λ

(1)
f , all droplets

flow through the arm (3); in λ
(1)
f > λ > λ

(2)
f , drops explore both

arms (3) and (1); and in λ
(2)
f > λ, the droplets flow through all

the arms. When Leq < L3, we observe the following sequence
(Fig. 8): In λ > λ

(1)
f , all droplets flow through the arm (1); in

λ
(1)
f > λ > λ

(2)
f , drops only flow in arms (1) and (2); and in

λ
(2)
f > λ, the droplets explore all arms.

0

0.2

0.4

0.6

0.8

1

10 20 30 40

λ

F
i R PF F

λ(2)
f λ(1)

f

FIG. 8. Variations of F1 (◦), F2 (�), and F3 (•) with λ. The
parameters expressed in arbitrary units are L1 = L3 = 100, L2 =
125, L4 = 25, and Ld = 2.7 (Leq < L3). The solid lines are calculated
using the continuous model (see Sec. III B).
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The critical dilutions λ
(1)
f and λ

(2)
f separating the three

observed hydrodynamic regimes depend on the parameters
of the problem [Li,Ld ]. As shown below, mathematical
expressions for these quantities depend on whether or not
Leq > L3, both cases presenting similar features.

As λ decreases the number of selected paths increases until
λ < λ

(2)
f , a region where all possible paths are explored: This

is the repartition regime (denoted R in the figures). When
λ

(1)
f < λ, only one path is taken: This is the filter regime

(denoted F) in which all drops flow in the arm having the
smallest hydrodynamic resistance in the absence of drops. For
intermediate dilutions, that is, for λ

(2)
f < λ < λ

(1)
f , the droplets

explore only two out of the three possible paths; we refer
to this regime as the partial filter regime (denoted PF). As λ

decreases, the paths in which drops flow are selected according
to the ascending order of their hydrodynamic resistances in the
absence of drops.

At any node of the network where the drops divide between
two arms, the total flow rates in each of these arms are
nearly equal (Figs. 9 and 10). Such features seem inherent
to any dynamics of droplet traffic in single-lane microfluidic
networks since they can be observed in other complex circuits
(results not shown here).

B. Interpretation using the continuous approach

Our numerical findings can be understood using the
continuous approach employed for single asymmetric loops
(Sec. II B). Similarly to that case, we define the mean frequency
fi characterizing the entrance (or exit) of drops in the arm (i)
and the mean distance λi between two consecutive drops in
this arm; we use the variable Xi = 1/λi for readability.

In the repartition regime, using the equipartition of the
total flow rate and the conservation of the dispersed phase at
nodes A and B, one derives two equations: X3 + X4 = 2/λ

and X1 + X2 = 2X4. Writing the equality of the pressure

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40

λ

Q
i/

Q R PF F

λ(2)
f λ(1)

f

FIG. 9. Variations of Qi/Q with λ, Qi , and Q being the total flow
rates in the arm (i) and in the whole circuit. The symbols ×, •, �,
and ◦ respectively correspond to i = 4, 3, 2, and 1. The parameters
expressed in arbitrary units are L1 = L3 = 100, L2 = 125, L4 = 60,
and Ld = 2.7 (Leq > L3).

0.25

0.3

0.35

0.4

0.45

0.5
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λ

Q
i/

Q R PF F

λ(2)
f λ(1)

f

FIG. 10. Variations of Qi/Q with λ, where Qi and Q are the total
flow rates in the arm (i) and in the whole circuit. The symbols ×, •,
�, and ◦ respectively correspond to i = 4, 3, 2, and 1. The parameters
expressed in arbitrary units are L1 = L3 = 100, L2 = 125, L4 = 25,
and Ld = 2.7 (Leq < L3).

drops between the ends of arms (1) and (2) and between
the extremities of the arm (3) and the ends of the branch
formed by arms (4) and (1) and using the equipartition of the
total flow rate at the two nodes, two other equations can be
obtained: �2(1 + LdX2) = 1 + LdX1 and �3(1 + LdX3) =
�4(1 + LdX4) + (1 + LdX1)/2, where �i = Li

L1
. By solving

this set of four linear equations, one finds the mathematical
expression for Xi . Then analytical expressions for both fi and
the fractions Fi = fi/f of drops flowing in the arm (i) are
obtained by using the equipartition of the total flow rate at the
nodes A and B. One easily finds f4 = X4λf/2, f3 = X3λf/2,
f1 = X1λf/4, and f2 = X2λf/4; fi is independent of Leq/L3.

The analytical expression for Fi can also be found in the
partial filter regime using the continuous approach. However,
these expressions, which we derive next, depend on whether
Leq > L3 or Leq < L3, as the two selected paths are different
in the two cases.

When Leq < L3, for λ
(1)
f > λ > λ

(2)
f , all drops flow in either

arm (1) or arm (2), i.e., F3 = 0, and all drops reaching node A

flow in arm (4) (see Fig. 6). The droplets are therefore fed in the
asymmetric loop made of arms (1) and (2) at the rate f . Then
the train of drops reaching node B is also periodic in space,
but its period λ̃ is no longer λ since some continuous phase
flows in arm (3) at node A. Hence the expressions derived for
F2 and F1 = 1 − F2 when drops divide in single asymmetric
loops are still valid provided one replaces λ by λ̃ in Eq. (1a). In
what follows, we determine the needed relation between λ̃ and
λ. The total flow rates at nodes A and B are Q = Sλf/β and
q = Sλ̃f/β, respectively. Using the equipartition rule at node
B, the total flow rate in arm (1) is q/2. Writing the equality
of the pressure drops of arm (3) and the serial association of
arms (1) and (4) and using the conservation of the total flow
rates at node A, one finds

λ̃

(
�4 + �3 + �2

1 + �2

)
= �3λ − Ld

(
�4 + �2

1 + �2

)
.

(7)
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When Leq > L3, F2 = 0 in the partial filter regime, so that
all drops flow in either arm (1) or arm (3) and f1=f4 (see Fig. 6).
Using the equipartition rule at node A and the conservation of
the total flow rate at node B, one finds the total flow rates
in arms (3) and (4), Q/2 = Sλf/2β = Sλ4f4/β = Sλ3f3/β.
Also, in arms (1) and (2), the flow rates are q = Sλ1f1/β

and Q/2 − q, respectively. Using the equality of the pressure
drops of arm (1) filled with droplets and arm (2) in the absence
of drops, one shows λ1 = (λ4�2 − Ld )/(1 + �2). By using
the equality of the pressure drops of arm (3) and the serial
association of arms (1) and (4), the conservation of the total
flow rate, as well as the conservation of the dispersed phase at
the node A, F1 reads

F1 = 2Ld�3 − λ[�4 − �3 + �2/(1 + �2)]

2Ld [�3 + �4 + �2/(1 + �2)]
. (8)

One then easily finds F3 = 1 − F1 and F4 = F1. As shown
in Figs. 7 and 8, the predictions concur well with numerical
results for both Leq < L3 and Leq > L3.

C. Dynamics: A restricted discrete approach

We now study the dynamical properties of the system. The
drops are indexed when entering the network (node A) and
their successive path selections are coded into series of −1, 0,
and 1 when they flow in arms (3), (2), and (1), respectively.
Our numerical simulations reveal that in the repartition regime,
in contrast to the partial filter regime, the cycle time of the
corresponding signals depends on initial conditions, i.e., the
number and positions of droplets initially present in the circuit.
For the sake of simplicity, in both cases Leq < L3 and Leq >

L3, we will discuss results for which no droplets are present
in the network when simulations start.

We first study the case Leq < L3. Figure 11 shows the
variations of the period of the signals describing the successive
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FIG. 11. Variations of Tcyc with λ. The parameters expressed
in arbitrary units are L1 = L3 = 100, L2 = 125, L4 = 25, and
Ld = 2.7 (Leq < L3). The dotted, dashed, and solid lines correspond
to the mean travel times of drops exiting by arms (3), (2), and
(1), respectively. These times are computed using the continuous
approach.
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FIG. 12. Shown is Tcyc versus λ for L1 = L3 = 100, L2 = 125,
L4 = 25, and Ld = 2.7 expressed in arbitrary units (Leq < L3). The
solid line is calculated using the expressions derived with the discrete
approach for which λ is replaced by λ̃.

selected paths with λ. In the partial filter regime, one observes
a succession of plateaus where the period is constant, separated
by bifurcations. In the narrow regions between two successive
plateaus, the period is unusually large, much larger than the
different residence times of the drops in the network; such
regimes, which are irrelevant to experiments, are also observed
in the case of single loops (Sec. II C7). In the partial filter
regime, all drops flow in either arm (1) or arm (2). Similarly
to our modeling in the previous section, replacing λ by λ̃

and using Eq. (7), we can use the selection rules derived in
Sec. II C7. One obtains a relatively good description of the
dynamics in this regime (see Fig. 12). The value of Tcyc
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FIG. 13. Variations of F1 (◦) and F2 (�) with λ for L1 = L3 =
100, L2 = 125, L4 = 25, and Ld = 2.7 (Leq < L3). The solid lines
are calculated using the discrete model in the partial filter regime;
these predictions that are extended to the other regimes are established
by replacing λ by λ̃.
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FIG. 14. Shown is Tcyc versus λ for L1 = L3 = 100, L2 = 125,
L4 = 60, and Ld = 2.7 (Leq > L3). The dotted, dashed, and solid
lines correspond to the mean travel times of drops exiting by arms
(3), (2), and (1), respectively. These times are computed using the
continuous approach.

for a plateau and the transition between plateaus are well
predicted. Since F2 = Npack/Tcyc in the partial filter regime,
this approach also permits one to model the variations of F2

and F1 = 1 − F2 with λ in this regime (Fig. 13). The resulting
predictions provide a better description of the fraction of drops
than the continuous model (see Fig. 8).

We now investigate the case Leq > L3. Figure 14 shows the
period of the signals as a function of λ. In both the repartition
and partial filter regimes, we also obtain a succession of
bifurcations between different plateaus. As observed for single
and imbedded loops when Leq < L3, irrelevant regimes with
unusually long cycle times appear in the narrow regions
between successive plateaus. In the partial filter regime,
droplets only flow in either arm (1) or arm (3). However, in
contrast to the case of a single asymmetric loop, the temporal
fluctuations of the number of drops, thus those of the holes,
present in the two selected paths, can be larger than one. This

FIG. 15. Schematic of the microfluidic device and photographs
defining D, λ, and V .

FIG. 16. Images of the three hydrodynamic regimes observed in
imbedded loops when varying λ for (a) (Leq < L3) L1 = L3 = 4 mm,
L2 = 5 mm, and L4 = 1 mm and (b) (Leq > L3) L1 = L3 = 4 mm,
L2 = 5 mm, and L4 = 2.6 mm. The inlet and outlet of the loop are
respectively located on the left and on the right of each image.

difference results from the presence of node B, which provides
an extra degree of freedom to this system. The exit and entrance
of drops in arm (1) alter the total flow rate in arm (2), which in
turn modifies the velocity of the droplets traveling in arms (1)
and (4). For this reason, in contrast to the case Leq < L3, one
cannot employ the discrete approach to find simple selections
rules.

D. Experiments

To validate our numerical predictions, we carry out ex-
periments with planar microfluidic devices made of poly-
dimethylsiloxane and fabricated using standard soft lithog-
raphy techniques [35] (see Fig. 15).

A periodic train of monodisperse water-in-oil droplets is
produced in a flow focusing geometry [29]. The drop size D
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FIG. 17. Experimental variations of F1 (◦), F2 (�), and F3 (•)
with λ in the configuration shown in Fig. 16(b). The solid lines are
calculated using the continuous approach with Ld = 165 μm in the
repartition and partial filter regime.

and the production rate f are controlled by the flow rates Q
f
c

and Qd of the continuous and dispersed phases, respectively
(Fig. 15). Additional volumes of the continuous phase can
be infused or withdrawn downstream the production module
by changing the flow rate Qd

c in a dilution module (Fig. 15).
Adjustments of Qd

c permit one to vary the velocity of the
droplets V , i.e., the dilution λ = V/f , while D and f remain
constant [25]. The drops are then directed towards the inlet of
two imbedded loops (Fig. 15); this network is similar to the
one depicted in Fig. 6. The dispersed and continuous phases
consist of a mixture of water containing 15 g/L of sodium
dodecyl sulfate and hexadecane, respectively. Videos of the
flow are recorded with a fast camera (Phantom V7) typically
working at 1000 frames/s. Here D, V , λ, and the trajectory
of each drop in the network are obtained from image analysis
using a custom-written software developed with MATLAB. In
all experiments, the Reynolds and the capillary numbers are
very small and span the ranges 10−3–10−1 and 10−3–10−2,
respectively. For this range of capillary numbers and any values
of D, we do not observe droplet breakup or collision between
drops at any T junctions of the circuit [21,25,36–40].

Figure 16 shows the three hydrodynamic regimes found
experimentally as λ varies when either Leq < L3 or Leq > L3.
In both cases, at large dilutions, all drops flow through one
arm. As the dilution decreases, the drops explore two and
eventually three paths. As shown in Fig. 16, the sequence of
selected paths depends on whether Leq < L3 or Leq > L3. In
each case, the observed sequence concurs with numerical and
theoretical findings. As suggested by our simulations, as λ

decreases, the paths are selected according to the ascending
order of their hydrodynamic resistance in the absence of drops.

We study the variations of the droplet fraction Fi in each
arm (i) with λ for Leq > L3 and constant values of D and
f . Comparing the results to predictions calculated using the
continuous approach, Ld being the only free parameter, we
obtain relatively good agreement (Fig. 17). This indicates that

the continuous model can describe droplet traffic in complex
single-lane networks.

IV. CONCLUSION

We have investigated the flow of periodic trains of monodis-
perse droplets through various single-lane networks. At steady
state, when drops divide at a node between two arms, our
results show that the mean total flow rates in these arms
are nearly equal for any topology of the network. Using
this generalized equipartition rule, we have demonstrated
that the continuous model approach, introduced to describe
traffic through single asymmetric loops [10,12,14,16], can be
successfully adapted for more complex single-lane networks.
This approach, which neglects the discrete nature of droplets,
gives a good description of the steady states provided that
the temporal fluctuations of the hydrodynamic resistances of
the various arms can be neglected; such fluctuations result
from the entrance and exit of drops in these arms. In the case
of two imbedded loops, our study reveals the existence of
three hydrodynamic regimes as the dilution varies, each regime
being characterized by the number of paths explored by the
drops. Above a critical dilution, the droplets take only the path
that has the smallest hydrodynamic resistance in the absence
of drops: This is the filter regime. As the dilution decreases, the
number of explored paths increases and eventually the whole
network contains droplet in the so-called repartition regime.
As the dilution decreases, the paths are selected according to
the ascending order of their hydrodynamic resistance in the
absence of drops.

The dynamics of droplet traffic in microfluidic networks
is controlled by time-delayed feedbacks as a path selection
depends on the paths taken by the preceding drops. Complex
dynamical behaviors result from such feedbacks, notably long-
lasting periodic states separated by a wealth of bifurcations
as the dilution varies. In contrast to the case of a single
asymmetric loop, the period of the system may strongly depend
on initial conditions. This sensitivity to initial conditions is
due to extra degrees of freedom, related to the presence in the
network of more than one node where the drops select the path
to take. In the partial filter regime in which the drops explore
only two paths, depending on the topology of the network, we
have shown that the discrete approach developed by Sessoms
et al. [13] in the context of asymmetric loops can successfully
describe the dynamics. Such an approach is possible provided
downstream the node where the drops divide, no bifurcations
exist along the two possible paths.
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Physfood). We acknowledge fruitful discussions with D. A.
Sessoms and we thank J. Bonte and G. Jézéquel for preliminary
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