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Attractive forces on hard and soft colloidal objects located close to the surface of an
acoustic-thickness shear resonator
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Colloidal particles located close to the surface of an acoustic thickness shear resonator feel an attractive steady
force, which is induced by the high-frequency tangential motion of the resonator surface. The range of the force
is about half the penetration depth of the transverse viscous wave, that is, half of the thickness of the Stokes
boundary layer. For an oscillation amplitude of 10 nm and a particle radius of 100 nm, the depth of attractive
potential well corresponds to about 3 times the thermal energy, kBT . The force therefore suffices to overcome
Brownian motion.
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I. INTRODUCTION

Steady forces originating from oscillatory motions have
been known since the late 19th century, when Reynolds
described how and why dust particles migrate to the nodes
of a standing acoustic wave [1]. Such steady forces also
occur in the context of turbulence, where they are termed
“Reynolds forces” [2]. Acoustophoresis, as the phenomenon
is called in a technical context, can be used to pump liquids on
small scales [3,4], to manipulate particles in a liquid without
touching them [5,6], to separate different types of particles
[7], and for biosensing [8]. A further field of application is
medical ultrasound [9]. Making use of the Reynolds stress,
one can remotely exert a static force onto a tissue. On a more
mundane level, acoustically generated steady forces play a role
in ultrasonic cleaning [10,11] and acoustic deagglomeration of
particulate aggregates [12]. Recent reviews on the underlying
theory are provided in Refs. [13,14], and [15]. With regard
to microfluidics, the principles and current applications of
acoustofluidics are summarized in a series of tutorial papers in
Lab on a Chip [16].

The work reported below is concerned with a special
geometry, namely nanoscopic particles located close to a
solid surface, which undergoes a tangential oscillation. Such a
surface emits a transverse viscous wave. In a sensing context,
such waves are also called acoustic shear waves. Importantly,
transverse viscous waves do not propagate in liquids. The
penetration depth, δ, is given as δ = (2η/(ρω))1/2 with η

the viscosity, ρ the density, and ω the angular frequency.
Inserting a frequency of 5 MHz (typical for a quartz crystal
microbalance, see below) and the viscosity and density of
water, one finds a penetration depth of 250 nm. The force
described below is a phenomenon strictly limited to the
boundary layer near the surface (also called Stokes layer).
In the following, we use the terms “depth of penetration of
the transverse viscous wave” and “thickness of the boundary
layer” synonymously.

Colloidal particles close to a solid surface are of consider-
able relevance in acoustic sensing. The calculations below
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were motivated by experiments undertaken with a quartz
crystal microbalance (QCM) [17,18]. The QCM is mostly
known as an acoustic sensor [19]. It is a quartz plate with
a thickness of a few hundred micrometers, which is piezoelec-
trically excited to undergo a thickness-shear vibration. The
resonance is exceptionally sharp and shifts of the resonance
frequency therefore can be determined with good precision
(<0.1 ppm). The adsorption of single layers of proteins
is readily evidenced from the adsorption-induced frequency
shift. One of the problems of QCM-based sensing is the lack
of specificity, that is, the difficulty in differentiating between
different types of adsorbates. Edvardsson et al. [17] as well
as Heitmann et al. [18] addressed this problem by running
the sensor at an exceptionally large amplitude. They applied
driving voltages of 10 V and above, which corresponds to
amplitudes of oscillation at the resonator surface of tens
of nanometers. The line of reasoning was that some kinds
of analytes (Edvardsson and Heitmann were concerned with
particles and biological cells, respectively) might be affected
in their behavior by the high amplitude, while others might not.
Both groups find adsorption to be prevented when the drive
level is chosen high enough. Heitmann et al. find differences
between different types of cells: For some cells the effect is
stronger than for others and the approach might therefore serve
to differentiate between cells.

Different ways by which a high-amplitude oscillation
might affect the adsorption process come to mind. First, the
effect might be genuinely mechanical. The bond between the
particles and surface might be too weak to sustain the stress
induced by the periodic vibration. This would imply that the
particles can be shaken off after they have adsorbed. Such
detachment events are reported in Ref. [20]. The authors of
Ref. [17], on the other hand, emphasize that adsorption was
irreversible, once it had occurred. Particles were prevented
from adsorption only if the high-amplitude oscillation was
kept on over the entire duration of the experiment. Once
they had adsorbed, they stayed on the surface no matter
how high the amplitude was ramped. A second mechanism
by which particles might be prevented from adsorbing is a
tangential steady flow, induced by the flexural contributions
to the resonator’s vibration [21]. While the resonator surface
mostly moves in the tangential direction, there also is a normal
component, which arises because the amplitude of oscillation

013001-11539-3755/2013/88(1)/013001(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.013001


ARNE LANGHOFF AND DIETHELM JOHANNSMANN PHYSICAL REVIEW E 88, 013001 (2013)

is large in the center and decays towards the edge (“energy
trapping”). A combined tangential and normal movement of
a planar surface induces a tangential flow, as calculated by
Wang and Drachman [22] and more recently discussed by
Sadhal [23]. This flow can be readily observed with a video
camera. We will discuss this flow and its consequences for
particle adsorption separately [24]. A third type of steady
force arises because particles and nanodroplets themselves
distort the transverse viscous wave. This third mechanism is
the focus of the current work. Pure transverse viscous waves do
not produce steady forces because the direction of flow and the
gradient direction are perpendicular. However, if the transverse
flow is distorted by a particle, a steady force appears. The
detailed calculation shows that this force cannot explain the ex-
periments reported in Refs. [17] and [18] because it is directed
towards the surface. Still, its occurrence has not been reported
before and the force definitely is of relevance to acoustic
sensing.

Steady forces between particles or bubbles and a tangen-
tially vibrating surface were also reported in the context
of experiments under conditions of microgravity [25–27].
Such forces initiate a convective flow, which may disturb the
experiment (often crystallization). The vibration of the cell
walls is caused by the so-called g-jitter. The configuration
underlying these observations is more complicated than what
is discussed below. The effects observed are not necessarily
boundary layer effects; at least they are not portrayed as
such in the literature. Also, the particles or bubbles are
not small in the sense that they follow the motion of the
background fluid. Both repulsive and attractive forces are
observed. Contrasting to the results reported below, the steady
force depends on the density mismatch between the object
(particle or bubble) and the fluid. While there clearly is a
connection between this work and Refs. [25–27], our results
should not be directly applied to the configuration discussed
there.

The paper is structured as follows. In Sec. II we elaborate
on why particles located inside a Stokes layer are peculiar
and why the steady force onto these particles cannot be
calculated in the frame of Gor’kov theory [28]. This is a
consequence of the viscous coupling between the particle and
the source of excitation (the vibrating surface). In Sec. III,
we describe a numerical calculation of the steady force onto
hard and soft particles located inside the boundary layer.
The calculation makes use of the finite-element method. An
attractive force is found. Its range is half the thickness of
the boundary layer and the dependence of force on distance is
about exponential. The calculation is extended to nanodroplets,
which experience a static deformation. In Sec. IV we show
that the numerical result is well approximated by an analytical
relation, derived by assuming that, first, the particle’s internal
deformation can be neglected; that, second, the particle mostly
follows the motion of the background fluid; and that, third, the
body force onto the particle is larger than the contact force
exerted by the adjacent fluid. This approximation leads to a
simple estimate for the strength of the force as a function of
particle size and distance to the surface. Section V discusses
a side aspect, which is the existence of a surface term
occuring when there are discontinuities in density. Section VI
concludes.

II. VISCOUS COUPLING BETWEEN THE PARTICLE AND
TANGENTIALLY VIBRATING SURFACE

To start, we comment on assumptions and approximations.
We assume the fluid to be incompressible. This is appropriate
because the wavelength of conventional ultrasound (compres-
sional waves) is around λ = 300 μm in water at 5 MHz,
whereas the thickness of the boundary layer is around δ =
250 nm. Since λ � δ, we can approximate λ as infinite,
which amounts to incompressibility. Because the medium
is incompressible, all steady flows originating from finite
compressibility [29] vanish here.

We invoke a second approximation throughout all of
this paper, which is that the amplitude is small enough for
perturbation theory to be applicable [30]. We first calculate
the flow field at the resonance frequency of the sensor, solving
the linear problem of hydrodynamics with the given boundary
conditions. Within the linear theory, particles can be allowed
to be viscoelastic. The nonlinear form of the Navier-Stokes
equation does not apply to viscoelastic solids, but the linearized
form does. In a second step, we calculate the source term
driving the steady flow. The source term is the advected
momentum in the Navier-Stokes equation. This force drives
a second-order, steady flow, the pattern of which (in a third
step) is calculated by again using linear hydrodynamics. The
steady velocity of the particle is converted to a force onto
the particle by multiplying the velocity and with the particle’s
drag coefficient. The latter is also calculated from the linear
model (see Sec. III). Note: This force is to be understood as an
equivalent force, which would lead to the steady velocity as
calculated in step 2 if the ambient liquid was quiescent (which
it is not in experiment). It differs from the time-averaged
advected momentum integrated over the particle volume.

The classical theory of acoustophoresis (following
Gor’kov) treats particles in an inviscid fluid [28,29,31]. The
formalism makes use of the fact that there are no steady bulk
forces in an inviscid liquid far from the particle. Following
Gor’kov, the force onto the particle is calculated from the
particle’s scattering amplitude [Fig. 1(a)]. The scattering
amplitude must be evaluated in the far-field region because
viscous effects are significant near the particle surface. There
is a narrow layer close the particle surface (the Stokes layer),
inside which the flow field deviates from inviscid flow in order
to accommodate for the no-slip condition at the surface [32].
Gor’kov theory is not applicable to a particle close to a
vibrating surface because the movement is excited across
a viscous fluid [Fig. 1(b)]. Coupling to the source occurs
through the near field. Excitation by viscous coupling has the
interesting consequence that the particle rotates periodically,
while rotation is negligible for a particle embedded in an
inviscid fluid. The flow in the inviscid fluid is irrotational and
therefore does not exert a torque onto the particle. Rotation
is an essential element of the mechanism producing a steady
force, as shown in Sec. IV.

III. NUMERICAL RESULTS OBTAINED BY THE
FINITE-ELEMENT METHOD

In order to analyze the problem numerically, we have
used the incompressible Navier-Stokes module supplied by
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FIG. 1. (a) In the standard theory of acoustophoresis a particle
is assumed to be immersed in an inviscid fluid and subjected to
convential ultrasound (compressional waves). In the far field, the fluid
is inviscid. The force onto the particle is calculated by integrating the
stress over a surface located in the far field. The integral is related
to the scattering amplitude. (b) The geometry under consideration
here differs. The particle is located close a solid surface undergoing
tangential oscillation. The surface emits an transverse viscous wave,
which decays within a few hundred nanometers. The particle is
located inside this boundary layer (Stokes layer). It undergoes a
tangential translation with velocity vx(t) and a rotation with a
rotational velocity �(t) at the same time. The particle’s motion is
excited by viscous coupling to the surface. There is no surface entirely
located in the far field, which could serve as a surface of integration
as in panel (a). An important consequence of the viscous coupling is
the particle’s periodic rotation. No such rotation occurs in standard
acoustophoresis because the flow in an inviscid fluid is irrotational.

COMSOL (COMSOL GmbH, Göttingen, Germany). Unfortu-
nately, this particular module only works in two dimensions.
The calculations therefore describe cylinders rather than
spheres, but they can still serve to demonstrate certain general
features which should hold irrespective of particle shape. There
are more advanced software packages for computational fluid
mechanics on the market. The calculation of the steady force
[to second order in vu, see Eq. (2)] can be added onto such
calculations with moderate effort.

For this particular calculation we have modified an existing
code described in Ref. [33] and Ref. [34], which predicts the
MHz fluid flow at the surface of a quartz crystal microbalance.
The software solves the Navier-Stokes problem in two dimen-
sions. Importantly, the oscillation amplitude, uq,0, was chosen
small enough (0.01 nm) to ensure that the nonlinear term in the
Navier-Stokes equation is negligible. Under such conditions,
the software in effect solves the linearized Navier-Stokes
problem, namely the equation

iωρv (r) = −η∇2v (r) + ∇p (r) , (1)

where v is the velocity, ρ is the density, η is the viscosity, and
p is the pressure. The software accounts for elastic stresses
by a complex viscosity of the form η′ − iη′′. It computes a
complex velocity field, vu,0(r), which is the amplitude of the
unsteady first-order flow as a function of position.

Once the linearized problem is solved, the solution can
be scaled to any other amplitude. For comparison with
experiment, it was scaled to uq,0 = 10 nm here. The index q (for
quartz) denotes the resonator surface. Of course, this solution
at uq,0 = 10 nm is the first-order solution. At an oscillation
amplitude of 10 nm, the nonlinear term in the Navier-Stokes
equation is not negligible, as evidenced by the occurrence of

FIG. 2. (Color online) Geometry underlying the FEM calculation
and raw outputs. A rigid sphere with radius R = 100 nm is located
at a variable distance from the resonator surface (at the bottom). The
surface oscillates tangentially with a frequency of 5 MHz. Panel (b)
shows the stream lines of the first-order velocity field at 5 MHz. Panel
(c) shows the streamlines of the steady, second-order flow driven by
the steady force. In Panel (d), the rigid particle has been replaced by
a droplet with a viscosity of twice the viscosity of the ambient liquid.
In this case, there is deformation as well as translation. Colors (online
version) and gray values (print version) encode the vertical component
of the motion, where bright corresponds to upward motion. As
indicated by the arrows, the particle moves downwards.

steady flows. The first-order solution is the starting point for a
perturbation analysis, which predicts the steady flow.

Figure 2(a) shows the geometry and the mesh. Only
the portion of the simulation cell containing the particle is
displayed. The particle radius was R = 100 nm, while the cell
was 2 μm wide and 2 μm high. The height of the cell much
exceeds the thickness of the Stokes layer. The cell boundary
at the top was a wall at rest with a no-slip condition. The
bottom of the cell is the resonator surface. It was assigned a
no-slip condition with a tangential velocity of vq,0 = iωuq,0.
Periodic boundary conditions were applied to the right and to
the left. Figure 2(b) depicts the streamlines of the first-order,
unsteady flow as derived by solving the linearized problem.
The viscosity of the liquid was 1 mPa s. The densities of the
particle and the liquid were 1 g/cm3. By choosing the density
to be constant in space, we avoided the complications arising
from the fact that the gradient in the Navier-Stokes equation
applies to the product of density and velocity (Sec. V).

The steady force density (with index S) was calculated (to
second order in v) from the unsteady solution to the linear
problem, vu,0(r), as

fS(r) = −〈(vu (r,t) · ∇) ρvu (r,t)〉
= −ρ

2
Re

((
vu,0 (r) · ∇)

v∗
u,0 (r)

)
. (2)

013001-3



ARNE LANGHOFF AND DIETHELM JOHANNSMANN PHYSICAL REVIEW E 88, 013001 (2013)

Angle brackets denote the time average, the star indicates
the complex conjugate, and the index 0 denotes a complex
amplitude. The force density as calculated with Eq. (2) was
inserted as a body force into a second FEM calculation, which
employs the same geometry and the same mesh as the first one.
The second FEM calculation (at ω = 0) differs from the first
one (at frequency ω) in that it has the resonator surface at rest.
The second calculation yields the steady second-order velocity
field vs(r). The stationary flow field derived in the second
FEM calculation is shown in Figs. 2(c) and 2(d). The flow
pattern displays the expected convection rolls. The particle
moves downward. For the calculation shown in Fig. 2(c), the
particle was assigned a storage modulus of G′ = 30 GPa and
vanishing loss modulus (G′′ = 0). For all practical purposes,
this amounts to a rigid object. Figure 2(d) shows the steady
flow field obtained for a drop with a viscosity equal to twice
the viscosity of the ambient liquid. The velocity is constant
inside the rigid particle [Fig. 2(c)], while there is deformation
for the droplet [Fig. 2(d)].

These calculations were repeated for various distances
between the particle and the surface. Fig. 3(a) displays the
velocity of the solid particle [cf. Fig. 2(c)], vP , versus distance,
zq , where the distance is measured from the resonator surface
to the lower edge of the particle. zq is to be distinguished from
the distance to the center of the particle [called z in Eq. (8)].
|vP | has a maximum at zq ≈ R. For particles located far away
from the surface, the steady velocity eventually goes to zero
because the decaying transverse viscous wave does not reach to
these particles. For particles located just above the resonator
surface, the streaming velocity also is small because of the
strong hydrodynamic coupling between the particle and the
surface (that is, the large friction coefficient, see below).

In order to assess the strength of this effect, we convert
the steady velocity to a potential, which we then compare to
the thermal energy, kBT . The potential is calculated as an
integral of the equivalent force, which would lead to the exact
same steady velocity as displayed in Fig. 2(c) if the ambient
liquid was quiescent. This equivalent force is not the same as
the time-averaged advected momentum averaged over the
particle volume because the neighboring fluid also exerts a
force. The particle is driven towards the resonator surface by,
first, the advected momentum integrated over its volume and,
second, the drag exerted by the surrounding fluid (which also is
in steady motion). The product of velocity and drag coefficient
captures both effects. In order to calculate the equivalent
force as defined above, one has to know the particle’s friction
coefficient, ξ (zq). The friction coefficient is the ratio of force
and the velocity as a function of the distance to the surface.
ξ (zq) is obtained in still another FEM calculation using the
same geometry, where a known external force, F , is applied to
the particle. The friction coefficient is equal to F/v(zq), where
the velocity v(zq) is calculated using the finite-element model.
Since the calculation occurrs in two dimensions, the product
of the friction coefficient, ξ (zq), and the velocity, vP , has units
of N/m. The conversion to a 3D force in units of Newton is
achieved by multiplication with the diameter of the particle.
Evidently, the thus-derived force pertains to a section of an
infinite cylinder with a length equal to the cylinder diameter.
The force onto a sphere differs and this difference must be kept
in mind.
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FIG. 3. Particle velocity (a), equivalent steady force (squares,
b), time-averaged advected momentum integrated over the particle
volume (small circles, b), and equivalent potential (c) obtained from
the finite element calculation [cf. Fig. 2(c)]. The parameters were uq ,0

= 10 nm, R = 100 nm, ρ liq = ρP = 1 g/cm3, η = 1 mPa s. The
particle was rigid. The solid line in panel (b) is the prediction from
Eq. (8).

Figures 3(b) shows the equivalent steady force (FS =
ξvP , squares) and the volume-integral of the time-averaged
momentum (small circles). The two are similar, but not the
same. Figure 3(c) shows the potential (VS(zq)) derived from
the equivalent force versus distance, zq . The potential was
calculated by integrating the equivalent force from infinity
to the respective distance [where VS(∞) = 0 by definition].
Clearly, the equivalent force and the potential decrease with
distance from the surface and they do so in a roughly
exponential manner. The range of the steady force is about
125 nm, which is half the thickness of the boundary layer [cf.
Eq. (9)]. For the chosen conditions, VS is of the order of the
thermal energy, kBT .

The data shown in Fig. 3 pertain to rigid particles. Being
numerical, the calculation is readily extended to soft particles
and droplets. An example of a steady flow field around a droplet
is shown in Fig. 2(d). The numerical calculation predicts the
total force as well as the droplet’s deformation. Figure 4
shows force-distance curves obtained for droplets with var-
ied viscosity, ηd . The droplets were assumed to be purely
viscous (G′

d = 0, G′′
d = iωηd with Gd the shear modulus of

the droplet). For the sake of this particular argument, we
neglected surface tension. For a more realistic calculation,
surface tension should be included [35]. The viscosity of the
droplet, ηd , was incremented logarithmically between 0.1 and
100 mPa s. The viscosity of the ambient liquid was maintained
fixed at η = 1 mPa s. Interestingly, the steady force is repulsive
for droplets, which are less viscous than the ambient liquid. An
example would be droplets of water in oil. The force is directed
away from the surface for ηd < η, which is the analog of
buoyancy. Again, there is a caveat because of surface tension.

IV. STEADY FORCE ONTO A RIGID PARTICLE SET IN
MOTION BY A TRANSVERSE VISCOUS WAVE

The numerical results shown in Fig. 3 suggest that there
might be a set of approximations, which lead to a simple
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FIG. 4. (Color online) Force-distance curves computed for
droplets of variable viscosity. The viscosity of the ambient liquid
was 1 mPa s. The droplet radius was R = 100 nm. The viscosity
of the droplet, ηd , was incremented logarithmically (3 steps/decade)
from 0.1 mPa s to 100 mPa s.

analytical relation. We expect the potential, VS(zq), to be
exponential with a decay depth equal to about half the
thickness of the boundary layer. In the following, we make
such approximations. These are the following:

(a) The particle is rigid.
(b) The body force [the integral of the source term from

Eq. (2) over the particle volume] is large compared to the
contact force exerted by the adjacent liquid. Remember: we
cannot integrate the stress tensor over a surface outside the
Stokes layer because such a surface does not exist (cf. Sec. II).

(c) The particle follows the motion of the background fluid.
The third approximation is separate from the first and the

second. It will only be invoked from Eq. (6) onward.
For a rigid particle the velocity field inside the particle is

given as

vu (r,t) = vc,u (t) + �u (t) × r, (3)

where vc,u is the velocity of the particle’s center, �u is the
rotational velocity, r is the distance to the particle center,
and vc,u and �u are first-order quantities like vu. Their
determination relies on a solution of the linear problem of
hydrodynamics [Eq. (1)].

We decompose the advected momentum acting onto the
particle itself in the usual form as

FS =
∫

Volume
fSd3r

= −
∫

Volume
ρ 〈(vu · ∇) vu〉 d3r

=
∫

Volume
ρ 〈(vu × (∇ × vu))〉 d3r−

∫
Volume

ρ

〈
1

2
∇v2

u

〉
d3r,

(4)

where FS is a force in newtons. The second term in line 3 is
zero for reasons of symmetry. The geometry does not have a
polar axis. (This statement only concerns the particle itself,
not the liquid around it.) Integration of the first term over the
particle volume yields

FS = M 〈vc (t) × � (t)〉 = −M

2
Re

(
�∗

0 × vc,0
)
, (5)

where M = ρV is the particle’s mass with V the particle
volume.

Equation (5) looks as though it describes a Magnus force
and one might view FS as a time-averaged Magnus force
[36–39]. Note, however, that any steady force acting onto the
particle must contain a term of the form � × v for reasons
of symmetry. The conventional Magnus force acts onto a
body moving steadily relative to an inviscid fluid. The force
is generated by the boundary layer. Here, the movement is
oscillatory and the particle is coupled viscously to a nearby
wall, which oscillates, as well. When portraying FS as the
conventional Magnus force, one misses an essential element
of the problem.

Equation (5) holds for all rigid particles. In a second step, we
make an approximation with regard to vc,0 and �0, assuming
that the particle diameter is much less than the thickness of the
boundary layer. If this is the case, the particle (approximately)
follows the movement of the background fluid. The flow
field of the background fluid is entirely along the tangential
direction (x). The velocity, vx(z,t) is given as

vx(z,t) = Re(vx,0(z) exp(iωt)) = Re(vq,0 exp(i(ωt − kz)))

= Re

(
vq,0 exp

(
i

(
ωt − 1 − i

δ
z

)))
, (6)

where z is the distance to the surface and k is the complex-
valued wave vector, pointing normal to the surface. One has
k = ω(ρ/(iωη))1/2 = (1 − i)/δ with δ the depth of penetration
of the transverse viscous wave (δ ∼ 250 nm at ω/2π = 5 MHz
in water). vx ,0(z) is the complex amplitude of the velocity and
vq ,0 is the amplitude at z = 0. vq ,0 is equal to iωuq ,0, with
uq,0 the oscillation amplitude at the resonator surface. The
amplitude was a few nanometers in Ref. [17].

The velocity gradient tensor of a transverse viscous wave
can formally be decomposed into a symmetric and an antisym-
metric part as dvx/dz = 1

2 (dvx/dz + dvz/dx) + 1
2 (dvx/dz

− dvz/dx). The first term and the second term are the strain
rate tensor and the rotation tensor, respectively. Since the
particle is rigid, it only takes part in the rotation. If the particle
is small, its rotation follows the rotation of the background
fluid, evaluated at the position of the particle’s center. The axis
of rotation is the y axis. We have

�y,0(z) = 1

2

(
dvx,0 (z)

dz
− dvz,0 (z)

dx

)

= 1

2

dvx,0 (z)

dz
= − ik

2
vx,0 (z) . (7)

In step 2, we used vz ≡ 0 for the background fluid. z is the
position of the center of the particle. There is a phase shift
between translation and rotation because the wave vector, k,
is complex. Equation (7) can also be obtained from Eq. 4.18
in Ref. [40] with the particle being buoyancy-matched and
with small ω. The limit of ω → 0 is appropriate because we
have assumed the particle radius to be much smaller than
δ = (2η/(ρω))1/2. Inserting Eq. (6) and Eq. (7) into Eq. (5)
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one finds

FS = −M

2
Re

(
�∗

0 × vc,0
)

= M

2
Re

(
ik∗

2
v∗

x,0 (z) vx,0 (z)

)
ẑ

= M

2
Re

(
i − 1

2δ

∣∣vx,0 (z)
∣∣2

)
ẑ

= −M

4δ

∣∣v2
q,0

∣∣ exp

(
−2z

δ

)
ẑ

= −M

4δ
ω2

∣∣u2
q,0

∣∣ exp

(
−2z

δ

)
ẑ, (8)

ẑ is the unit vector along z. Clearly, there is an attractive
force, decaying exponentially with distance. The solid line
in Fig. 3(b) is the prediction from Eq. (8). It reproduces the
numerical result rather well.

Since the FS(r) has vanishing curl, one can define a potential
as

VS =
∫ z

∞
−FS

(
z′) dz′ = −M

8
ω2

∣∣u2
q,0

∣∣ exp

(
−2z

δ

)
. (9)

The potential at infinity was set to zero. From the compari-
son of VS to the thermal energy, kBT , one can assess whether
the steady force is strong enough to overcome Brownian
motion. Inserting the experimental values from Ref. [17]
(R = 100 nm, ρ = 1 g/cm3, uq,0 = 10 nm, ω = 2π 5 MHz)
and z ≈ 2R, one finds a potential of 2.5 kBT . An attractive
force of this magnitude is relevant to experiment. It is strong
enough to overcome Brownian motion and, also, to compete
with other surface forces, for instance induced by electrostatic
repulsion.

V. DROPLETS WITH A DENSITY DIFFERING FROM THE
DENSITY OF THE AMBIENT FLUID

Above we have chosen the density constant throughout the
entire volume. If we allow for variable density, the advected
momentum term of the Navier-Stokes equation acquires a
component proportional to the gradient in density,

fS = −〈(vu · ∇)ρvu〉 = −ρ〈(vu · ∇)vu〉 + −vu〈(vu · ∇ρ)〉.
(10)

At an interface with a discontinuity in ρ, the gradient in density
turns into a δ function,

∇ρ = (
ρbulk − ρdroplet

)
δ (r − RS) n̂, (11)

where n̂ is the unit vector along the surface normal and RS is
a location at the interface. δ(r − RS) is meant to integrate to

unity, when the integration path is along the surface normal.
Clearly, the steady force contains a contribution from the
interface. As long as one is only concerned with rigid particles,
one can avoid explicit treatment of the interface term by
integrating the force density as

FS =
∫

Volume
fSd

3r = −
∫

Volume
∇ · σSd

3r

= −
∫

Surface
n · σSd

2rS. (12)

Step 2 makes use of the fact the force density is the divergence
of the stress tensor. σS is the Reynolds stress. One has
σS,ij = ρ vivj . Gauss’s theorem was applied in step 3. The
integral contains a contribution from the bulk (proportional
the density inside the particle) and a contribution from the
interface (proportional to the density mismatch). These two
terms partially cancel each other. However, there is no need to
explicitly account for the interface term, because one might
as well integrate ρliqvivj over an area just outside of the
interface. This integral yields a term similar to Eq. (6), but
the prefactor contains the density of the liquid (because the
integration occurs inside the liquid). The body force onto the
particle (including the interface term but not the contact forces
exerted by the adjacent liquid) is

FS = ρliqVP 〈vc (t) × � (t)〉 = −ρliqVP

2
Re

(
�∗

0 × vc,0
)
. (13)

The mass of the particle in Eq. (6) has to be replaced by the
product of the particle’s volume and the density of the liquid.

However, this argument does not apply if one aims at the
deformation of a droplet. Droplets experience displacement as
well as deformation. For the calculation of the deformation, the
steady force field inside the particle is needed and the interface
term must be taken into account.

VI. SUMMARY

Colloidal particles located closely above a solid surface
launching acoustic transverse viscous waves are attracted
towards this surface. For an oscillation amplitude of 10 nm
and a particle size of 100 nm, the force is strong enough to
overcome Brownian motion. For liquid droplets, the direction
of the force depends on the ratio of the droplets viscosity
to the viscosity of the liquid. If the droplet is less viscous
than the ambient medium, it repelled from the surface. This is
analogous to buoyancy.
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