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Scattering approach to fidelity decay in closed systems and parametric level correlations

T. Gorin and P. C. López Vázquez
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Based on an exact analytical approach to describe scattering fidelity experiments [Köber et al., Phys. Rev. E
82, 036207 (2010)], we obtain an expression for the fidelity amplitude decay of quantum chaotic or diffusive
systems under arbitrary Hermitian perturbations. This allows us to rederive previous separately obtained results in
a simpler and unified manner, as is shown explicitly for the case of a global perturbation. The general expression
is also used to derive a so far unpublished exact analytical formula for the case of a moving S-wave scatterer.
In the second part of the paper, we extend a relation between fidelity decay and parametric level correlations from
the universal case of global perturbations to an arbitrary combination of global and local perturbations. Thereby,
the relation becomes a versatile tool for the analysis of unknown perturbations.
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I. INTRODUCTION

During the last decade, approximately, considerable efforts
have been dedicated to the quantitative prediction of the fidelity
decay in chaotic and diffusive quantum systems and classical
wave systems [1–4] (see also Ref. [5] and references therein).
A very successful approach has been based on random ma-
trix theory, adopting the so-called Bohigas-Giannoni-Schmit
conjecture [6]. Applied to the current setting, it suggests that
quantum systems with chaotic classical counterpart (“chaotic
quantum systems” for short) as well as diffusive wave systems
show a universal response to perturbations which can be calcu-
lated within an appropriate random matrix model [7]. The first
exact analytical results in this respect have been obtained by
Stöckmann and Schäfer [8,9] using supersymmetry techniques
similar to Ref. [10], for the calculation of correlation functions
between scattering matrix elements. More recently, exact
analytical results have also been found for scattering systems,
where the fidelity amplitude, an expectation value, is replaced
by the “scattering fidelity,” which is a product of two transition
amplitudes [11,12]. These results, published in Ref. [13], have
been obtained by a simple but powerful modification of the
Verbaarschot-Weidenmüller-Zirnbauer (VWZ) formula from
Ref. [10]. We will call this new approach the “scattering
approach to fidelity.”

As shown first by Kohler et al. [14], for a global
perturbation of a completely diffusive system, the fidelity
amplitude can also be calculated from the parametric level
correlations. Subsequent generalizations have been discussed
in Refs. [15–17]. Originally, parametric level correlations
have been introduced in the area of disordered systems with
diffusive dynamics [18,19]. At that moment, they have been
considered a universal signature of chaotic and diffusive
dynamics, with a functional form, independent of the particular
perturbation applied. However, in Ref. [20], it was shown
that certain types of perturbations lead to very different
behaviors, and it became clear that the “universal” prediction
of Ref. [19] applies only to global perturbations, not to local
perturbations, characterized by only a few eigenstates with
nonzero eigenvalues. The perturbation due to the displacement
of a small scatterer discussed in [20] is precisely of that latter
type.

The purpose of the present paper is twofold. First, we
use the scattering fidelity approach from Ref. [13] to derive
exact analytical expressions for the fidelity decay of chaotic
and diffusive wave systems in the presence of completely
general Hermitian perturbations. This allows us to rederive
the known result for the decay of the fidelity amplitude
due to a global perturbation [8,9]. More importantly, we
then use the expression to describe the decay of the fidelity
amplitude due to the displacement of a single S-wave scatterer
(local perturbation). We compare our result to experimental
data published in Ref. [21], based on earlier measurements,
described in Ref. [20].

Second, we generalize the relation between the fidelity
amplitude and the parametric level correlations (“FA-PLC
relation” for short) from Ref. [14] to arbitrary perturbations. To
do so, we compare the analytical expression for the parametric
level correlations [22] and its analog for the fidelity amplitude
for general perturbations. Our result shows that the fidelity
amplitude depends only on spectral data and is therefore
a basis independent quantity: a surprising fact, taking into
account that the perturbation may be completely arbitrary.
Our generalization constitutes an important result, since it
turns the FA-PLC relation into an analytical tool, useful in an
inverse problem setting. Previously, the FA-PLC relation could
be applied only if the perturbation was known to be global
(implying a universal form of fidelity amplitude and parametric
correlations). Now we have shown that it can also be applied
in situations where we would like to obtain information about
an unknown perturbation by analyzing the fidelity amplitude
or the parametric level correlations.

The present paper is organized as follows: In the next
section, we follow Ref. [13] to describe the connection between
scattering fidelity [11] and scattering matrix correlation func-
tions as considered in Ref. [10]. We then use this connection to
derive an exact analytical expression for the fidelity amplitude
valid for arbitrary perturbations. In Sec. III we discuss the
differences between local and global perturbations, and we
use our general formula to rederive the known result for
a global perturbation. In the main part of that section, we
calculate the fidelity amplitude in the case of a moving
scatterer and compare the resulting theoretical prediction to
experimental data from Ref. [21]. In Sec. IV we evaluate the
general integral expression for the fidelity amplitude in the
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perturbative (long time) limit. In Sec. V we generalize the
relation between parametric level correlations and the fidelity
amplitude to arbitrary perturbations. Conclusions are pre-
sented in Sec. VI.

II. SCATTERING APPROACH TO FIDELITY

In this section we introduce the central quantity of this
work, the fidelity amplitude of a closed quantum or classical
wave system, with quantum chaotic or diffusive dynamics. We
assume that random matrix theory can be used to describe
the fidelity decay. While the first part contains some general
statements about fidelity and the random matrix models used,
the second part describes the description of the algebraic
scattering model to which the fidelity problem is mapped. This
mapping, introduced in Ref. [13] provides an exact analytical
description of the fidelity decay.

A. Fidelity

The fidelity and the fidelity amplitude for a Hamiltonian
Hα = H0 + Wα with perturbation Wα are defined as

F (t) = |f (t)|2, f (t) = 〈a| e2πiHα t e−2πiHβ t |a〉, (1)

where |a〉 is the initial state and Wα is the perturbation
depending on an external parameter α. We assume that the
energy is measured in units of the mean level spacing d0 in
the spectrum of H0, and time in units of the Heisenberg time
tH = 2πh̄/d0. As a result, the variable t in Eq. (1) becomes
dimensionless.

For our purpose it will prove convenient to write the
perturbation in terms of a normalized eigenbasis:

Wα =
∑

j

wj (α) |vj 〉〈vj |, (2)

where the orthonormal eigenstates { |vj 〉 } are assumed to be
independent of α. This is normally well fulfilled in the case
of global perturbations, and also in the case of many types
of local perturbations, such as pointlike scatterers. A more
detailed discussion of this assumption is given in Sec. III. In
other words, Eq. (2) implies that we assume [Wα,Wβ] = 0 for
any α,β in the allowed range. Note that it is often possible to
consider H0 + Wα as the unperturbed Hamiltonian H ′

0. Then
W ′

α = 0 and W ′
β = Wβ − Wα such that [W ′

α,W ′
β] = 0, trivially.

Returning to our original setup, we choose H0 from one
of the invariant ensembles, the Gaussian orthogonal ensemble
(GOE) or the Gaussian unitary ensemble (GUE) [23]. Cor-
respondingly, we assume that the perturbation Wα can be
diagonalized either by an orthogonal (GOE case) or unitary
(GUE case) transformation. In either case, we arrive at

Hα = H0 +
∑

j

wj (α) |j 〉〈j |, (3)

without changes in the random matrix ensemble for H0. Here
the states |j 〉 simply are the elements of the canonical basis
of a complex vector space CN , where N may be assumed
arbitrarily large but finite. In this situation, one may use the
results of Ref. [13] to calculate the fidelity amplitude averaged
over H0 as the average of a certain scattering matrix correlation
function within the framework of statistical scattering [10]. In

what follows, we concentrate on the GOE case. The GUE case
(which turns out to be even simpler) may be treated along
similar lines, using Ref. [24].

B. Scattering matrix correlation functions

According to Ref. [10], the scattering matrix may be written
as

Sab(E) = δab − 2iπ V † 1

E − Heff
V, (4)

where Heff = H0 − iπ V V † with H0 from the GOE and V

a fixed coupling matrix whose matrix elements Vja may be
interpreted as transition amplitudes from an internal state |j 〉 to
a decay channel a. Typically, it is assumed that there are much
less scattering channels a = 1, . . . ,M than internal states, such
that M � N . The Kronecker delta δab implies the any direct
processes are absent or negligible. Applying the singular value
decomposition to V , demonstrates that there exists and external
basis for the scattering states as well as an internal basis in
the Hilbert space of H0, such that the matrix V V † becomes
diagonal with an N − M-fold degenerate eigenvalue zero, and
M real and positive eigenvalues {γa}a=1,...,M . In what follows,
we use these special basis sets, which allows us to write

Heff = H0 − iπ
∑

a

γa |a〉〈a|, (5)

where the vectors {|a〉}a=1,...,M simply denote the first
M canonical basis vectors in the Hilbert space RN . According
to Ref. [10], the average scattering matrix (averaged over the
GOE for H0), is then given as

E(Sab) = 1 − κa

1 + κa

, κa = π2 γa

N
, (6)

where we have assumed that the average level spacing for H0

is equal to one. Here we introduced the somewhat unusual
notation E( . . . ) for the ensemble average over the GOE, to
avoid possible conflicts with the Dirac notation used below.
The main result of Ref. [10] consists in a triple integral
which gives the spectral correlation function between different
S-matrix elements,

C[S∗
ab,Scd ](w) = E[ Sab(E)∗ Scd (E + w)]

−E[Sab(E)∗] E[Scd (E + w)], (7)

depending on the transmission coefficients Ta = 4κa (1 +
κa)−2 only. Due to the convolution theorem, the Fourier
transform of these correlation functions yields an average over
different amplitudes of the evolution operator for the effective
Hamiltonian Heff . Namely, for t > 0:

Ĉ[S∗
ab,Scd ](t) ∝ E[ Ŝab(t)∗ Ŝcd (t) ]

= E
[ 〈b|e2πiH

†
eff t |a〉〈c|e−2πiHeff t |d〉 ]

. (8)

Here the states |a〉, |b〉, |c〉, and |d〉 have to be chosen from the
first M elements of the canonical basis in RN , as introduced
above. In what follows, we will only be concerned with the
case c = a , d = b. That allows to write for the correlation
function in Eq. (8):

Ĉ[S∗
ab,Sab](t) = δab T 2

a

〈
Z J 2

a

〉
I
+ (1 + δab) TaTb 〈Z Pab〉I ,

(9)
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where Z, Ja , and Pab are abbreviations for more complicated
expressions given below, while the angular brackets 〈· · ·〉I
denote the following weighted double integral:

〈· · ·〉I =
∫ t

max(0,t−1)
dr

∫ r

0
du

(t − r)(r + 1 − t)(· · ·)
(2u + 1)(t2 − r2 + x2)2

.

(10)

The above-mentioned expressions are as follows:

Z =
∏
j=1

1 − Tj (t − r)√
1 + 2Tj r + T 2

j x2
, x2 = u2 2r + 1

2u + 1
, (11)

Ja = 2
√

1 − Ta

[
r + Tax

2

1 + 2Tar + T 2
a x2

+ t − r

1 − Ta(t − r)

]
,

Pab = 2

{
TaTbx

4 + dabx
2 + (2r + 1)r[

1 + 2Tar + T 2
a x2

] [
1 + 2Tbr + T 2

b x2
]

+ (t − r)(r + 1 − t)

[1 − Ta(t − r)] [1 − Tb(t − r)]

}
, (12)

with dab = TaTb + (Ta + Tb) (r + a) − 1. Note that changing
the integration variable from u to x yields

2x dx = (2r + 1)

[
2u

2u + 1
− 2u2

(2u + 1)2

]
du

(13)

⇒ du

2u + 1
= dx√

x2 + 2r + 1
,

such that Eq. (10) may be written equivalently as

〈· · ·〉I =
∫ t

max(0,t−1)
dr

∫ r

0

dx(t − r)(r + 1 − t)(· · ·)√
x2 + 2r + 1 (t2 − r2 + x2)2

.

(14)

That expression allows easier comparisons with the results in
Refs. [8,9].

C. Connection to fidelity

Starting from Eq. (1), we insert the projection onto a random
state |b〉〈b| into the definition of the fidelity amplitude:

f (t) → fab(t) ∝ E( 〈a|e2πiHβ t |b〉〈b| e−2πiHα t |a〉 ), (15)

where the average over the random state |b〉〈b| simply yields
the identity times a normalization constant equal to the inverse
Hilbert space dimension. As a result, we obtain the product of
two transition amplitudes which we propose to call “scattering
fidelity” even if the system is closed. The reason is that in the
light of what we call the scattering approach to fidelity, the
more fundamental distinction between fidelity and scattering
fidelity as defined in Ref. [11] is in the different algebraic
structure and not in the question whether one has a true
scattering system or not. According to Ref. [11], the scattering
fidelity should be normalized in such a way that fab(t) = 1
whenever Hα = Hβ . In that case the right-hand side of Eq. (15)
becomes and autocorrelation function. Thus the normalization
factor will typically contain autocorrelation functions in the
denominator, as can be seen in the following section.

Comparing the effective Hamiltonian in Eq. (5) with the
perturbed Hamiltonian for a closed system as given in Eq. (3),
we find that they share the same structure, and that we need
only to allow the coupling parameters γa to become complex

to unify both descriptions. In Ref. [13] it has then been shown
that the analytical result for the correlation functions in Eq. (9)
can be generalized to different effective Hamiltonians Heff and
H ′

eff , which differ only in the eigenvalues of the coupling term
γa and γ ′

a . In that case, one just needs to calculate the effective
transmission coefficients

Tj = 2 (κ ′
j + κ∗

j )

(1 + κ ′
j )(1 + κ∗

j )
(16)

from the coupling parameters κa (corresponding to Heff) and
κ ′

a (corresponding to H ′
eff), as defined in Eq. (6). Then the

double integral in Eq. (10) yields the scattering fidelity, when
replacing the transmission coefficients in the term Z by the
effective transmission coefficients defined here.

Restricting ourselves to closed systems with Hermitian
perturbations, we obtain from the comparison of Eq. (3) with
Eq. (5) that −iπγj = wj (α), such that according to Eq. (6)

κj = π2 γj

N
= i π wj (α)

N
, κ ′

j = i π wj (β)

N
. (17)

Finally, to make sure that we really have a closed system, we
need the transmission coefficients Ta and Tb to be negligibly
small. That means that the dynamics of the system is probed
from the outside via scattering channels which are so weakly
coupled to the system that their effect on the dynamics is
negligible. In that limit, the expressions to be integrated in
Eq. (9) become

Ja → 2t,
(18)

Pab → P0 = 2 [ r2 + (2r + 1) t − t2 − x2 ].

Thereby, we obtain for the scattering fidelity

fab({κj },{κ ′
j } ; t) ∝ δab T 2

a 4t2 〈Z〉I
+ (1 + δab) Ta Tb 〈Z P0〉I , (19)

where its dependence on the coupling parameters {κj } and
{κ ′

j } is denoted explicitly, as their value will become important
below, where we discuss normalization.

In the calculation of the scattering fidelity fab(t), there is
still the problem of normalization to be solved. This is because
fab(t) becomes an autocorrelation function for Heff = H ′

eff ,
which may still decay to zero in time. In Ref. [11], this problem
has been solved by dividing the scattering fidelity through the
geometric mean of the auto correlation functions of Heff and
H ′

eff . Below we will see that this normalization procedure is
somewhat simpler in the case of closed systems.

As mentioned earlier, when one is really interested in
fidelity and |b〉〈b| has been inserted just for convenience as
described in Eq. (15), one can normally assume that a �= b.
In addition, the case a �= b arises in the case of an explicit
scattering fidelity experiment, where in- and outgoing channels
are chosen to be different (transmission measurement). Then
the formula for fab(t) simplifies to

fab(t) ∝ TaTb 〈P0 Z〉I . (20)

In order to apply the normalization scheme from Ref. [11], we
note that for the autocorrelation functions:

fab({κj },{κj } ; t) = fab({κ ′
j },{κ ′

j } ; t) ∝ TaTb 〈P0〉I . (21)
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This follows from the fact that κj + κ∗
j = κ ′

j + κ ′
j
∗ = 0 since

the coupling parameters are purely imaginary in both cases.
That implies that the effective transmission coefficients are
zero, so that Z becomes equal to one. Since the autocorrelation
functions are the same, the geometric mean is also the same.
Therefore, we obtain for f (t) in Eq. (1) and fab(t) in Eq. (15)

f (t) = fab(t) = TaTb 〈P0 Z〉I
TaTb 〈P0〉I = 〈P0 Z〉I

〈P0〉I . (22)

Now, it has been shown in Ref. [8] that for Z = 1, the resulting
double integral yields

〈P0〉I =
∫ t

max(0,t − 1)
dr

∫ r

0

dx(t − r)(r + 1 − t) P0√
x2 + 2r + 1 (t2 − r2 + x2)2

= 1

(23)

for any t > 0, so that for a �= b

f (t) = fab(t) = 〈P0 Z〉I . (24)

This formula constitutes the first important result of our work,
since it gives an exact analytical expression for the fidelity
amplitude of a chaotic and diffusive wave system for an
arbitrary perturbation.

In the special case when the scattering fidelity is measured
from a reflection amplitude (a = b), we find

faa({κj },{κ ′
j } ; t) = T 2

a [ 4t2 〈Z〉I + 2 〈Z P0〉I ]

N (t)
, (25)

where the geometric mean of the autocorrelation functions,
denoted by N (t), turns out to be time dependent. While the
effective transmission coefficients are still zero and Z = 1, the
autocorrelation functions now read:

faa({κj },{κj } ; t) = faa({κ ′
j },{κ ′

j } ; t) = N (t)

= T 2
a [ 4t2 〈1〉I + 2 〈P0〉I ]. (26)

The integral 〈1〉I has been calculated in Refs. [25,26], with
the result 4t2 〈1〉I = 1 − b2(t), where b2(t) is the two-point
spectral form factor of the Gaussian orthogonal ensemble [23].
Hence, we obtain

faa(t) = 4t2 〈Z〉I + 2 〈Z P0〉I
3 − b2(t)

. (27)

This result will be used in Sec. III B, where we discuss
experimental results for perturbations due to the displacement
of an S-wave scatterer.

III. LOCAL VERSUS GLOBAL PERTURBATIONS

A detailed discussion of the differences between local
and global perturbations can be found in Ref. [22]. Consider
Eq. (2), where a perturbation results in the change of several
eigenvalues of the perturbation operator W . In order to affect
the dynamics of the system (leading to the decay of the fidelity
amplitude), one may change either only a few eigenvalues by
a large amount (local perturbation) or very many eigenvalues
by a small amount (global perturbation). Both cases are
considered in this section.

A. Global perturbation

This was the first problem solved analytically in the
context of fidelity decay of quantum-chaotic systems [8,9,12].
Experimentally, the perturbation was realized in a chaotic
microwave billiard by displacing one of the straight billiard
boundaries. If described by Eq. (1) and Eq. (2), Wα may
represent absolute displacements with respect to some initial
position. Then its eigenvector representation in Eq. (2) runs
over a large number N of states. According to Sec. II C, and
in particular Eq. (16) and Eq. (17), the effective transmission
coefficients become

Tj = 2π

N

i wj (β) − i wj (α)

[1 + iπ wj (β)/N ] [1 − iπ wj (α)/N]

= 2δj (1 − iπ δj ) + O

{[
wj (β)

N

]3

,

[
wj (α)

N

]3
}

, (28)

where δj = [wj (β) − wj (α)]/N . In this setting, global per-
turbations are characterized by the fact that the contribution
of each individual term is negligible, while the perturbation
becomes noticeable only because it is the sum of very
many such contributions. This allows us to perform a Taylor
expansion of ln Z with respect to the coupling parameters δj .
Starting from the Taylor expansion of Zj with respect to the
transmission coefficients

Zj = [1 − Tj (t − r)]
[
1 + 2Tj r + T 2

j x2
]−1/2

= [1 − Tj (t − r)]
[
1 − rTj − (x2 − 3r2) T 2

j

/
2
] + O

(
T 3

j

)
= 1 − t Tj + [rt + r2/2 − x2/2] T 2

j + O
(
T 3

j

)
. (29)

Insertion of Eq. (28) into the above Taylor expansion yields

ln Z = −2π
∑

j

[
it δj + π ( r2 + (2r + 1) t − t2 − x2 ) δ2

j

]

+O

{[
wj (β)

N

]3

,

[
wj (α)

N

]3
}

. (30)

In order to obtain a well-defined function Z(t,r,x) in the
limit of N → ∞, and vanishing perturbation δj → 0, the
parameters δj must scale with an appropriate negative power
of N :

(1) For δj ∼ N−1, ln Z would converge to the finite value
−2πi

∑
j δj t .

(2) For δj ∼ N−1/2, the sum
∑

j δj could still converge, if
the δj had different signs. In addition, the sum

∑
j δj

2 would
always converge, while any higher order terms would vanish.

(3) For powers larger than −1/2, the sum
∑

j δj
2 would

always diverge, and the function Z(t,r,x) would not be well
defined.

Hence, the cases (1) and (2) are the only viable options,
where ∑

j

δj = δs,
∑

j

δj
2 = λ2 (31)

converge to finite values. This finally leads to

lim
N→∞

Z = exp(−2πi δs t − π2λ2 P0), (32)

with P0 given in Eq. (18). Note that by considering the
fidelity F (t) = |f (t)|2, instead of the fidelity amplitude, the
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dependence on δs disappears and with it any possible problems
with the convergence of this term.

To conclude this section about global perturbations, let us
discuss the random matrix model for fidelity decay, as has first
been introduced in Ref. [7]. This model may be written as

Hα = H0 + α V, (33)

where the matrices H0 and V are independent GOE matrices,
normalized in such a way that the mean level spacing in
the center of the spectrum of H0 is d0 = 1, while for the
perturbation matrix it holds that

〈Vij Vkl〉 = δjkδil + δikδjl . (34)

Now, representing Hα in the eigenbasis of V , the perturbation
becomes diagonal with eigenvalues wj (α) showing a semicir-
cle distribution between −2α

√
N and 2α

√
N . Then, according

to Eq. (2):

κj = 0, κ ′
j = iπ

N
wj (α) ⇒ δj = wj (α)

N
, (35)

which is of order N−1/2, as stipulated above. From the
semicircle distribution of the eigenvalues wj (α) it follows that∑

j

δj = 1

N

∑
j

wj (α) = 0, (36)

∑
j

δj
2 = 1

N2

∑
j

wj (α)2 = α2. (37)

This shows that Eq. (32) applies for this case if we set δs = 0
and λ = α. From Eq. (24) it then follows that

f (t) = 〈
P0 e−π2λ2 P0

〉
I
, (38)

in agreement with Ref. [8].

B. Local perturbations

In the case of local perturbations, Wα and Wβ differ strongly
in a finite-dimensional, typically rather small subspace. A
Taylor series expansion as in the previous case is therefore not
useful, and we may normally not assume that [Wα,Wβ ] = 0.
Instead, we redefine the perturbation by considering Hα as
the unperturbed system and Wβ − Wα as the perturbation. In
doing so, we assume that including Wα into H0 does not change
its statistical (i.e. random matrix) properties. That is justified
by the quantum chaos conjecture as long as the perturbation
is classically small. We may then choose a basis in which
Wβ − Wα is diagonal, without affecting the the random matrix
ensemble for H0.

In contrast to the previous case, instead of Eq. (3), we now
have

Hβ = H ′
0 +

M∑
j=1

w′
j (α,β) |vj 〉〈vj | where w′

j (α,α) = 0,

(39)

with 1 � M � N . Then the Eqs. (24) and (27) give the exact
analytical expressions for the scattering fidelity in the case
of a transmission experiment fab(t) (a �= b), or a reflection
experiment faa(t), respectively. We only have to express the
effective transmission coefficients in Eq. (16) and the coupling

parameters in Eq. (17) in terms of the new eigenvalues:

Tj = 2κ ′
j

1 + κ ′
j

, κ ′
j = iπ

w′
j (α,β)

N
, (40)

since κj = 0. Here it can be seen in the case of a finite M , the
eigenvalues w′

j (α,β) must scale with N in order to make the
fidelity or scattering fidelity decay on finite times (in units of
the Heisenberg time). Note however that in order to derive
the Eqs. (24) and (27) we assumed that the measurement
channels a and b are coupled very weakly to the system, such
that the corresponding transmission coefficients are negligibly
small. This implies that the measurement channels must have
negligible overlap with the eigenvectors {|vj 〉}j=1,...M defined
above. In the case of fidelity, as defined in Eq. (1), it is
enough that the initial state |a〉 has negligible overlap, since
for sufficiently large N , the overlap of a random state |b〉
as required in Eq. (15) with a finite-dimensional subspace is
always negligible.

1. Moving scatterer

This case refers to the displacement of a small scatterer
from a position �r1 to another position �r2. This may be modeled
by the unperturbed Hamiltonian consisting of the system
with scatterer at position �r1, while the perturbation consists
in removing the scatterer from position �r1 and placing it
at position �r2. For a pointlike scatterer, the effect of the
scatterer can be described by one single state (the perturbation
operator corresponding to that scatterer has only one nonzero
eigenvalue). Therefore,

Hβ = H0 + w(β) ( |v2〉〈v2| − |v1〉〈v1| ). (41)

For the scattering approach to fidelity, this means that the
perturbation must be described by two effective transmission
coefficients:

T1 = −2πi δ1

1 − iπ δ1
, T2 = 2πi δ1

1 + iπ δ1
. (42)

If δ1 = w(β)/N becomes very large, T1 as a function of δ1

traces a path in the complex plane which starts at T1 = 0 and
ends at T1 = 2, while T2 = T ∗

1 . Then

Z =
M∏

j=1

1 − Tj (t − r)√
1 + 2Tj r + T 2

j x2
= |1 − T1 (t − r)|2∣∣1 + 2T1 r + T 2

1 x2
∣∣ (43)

in Eqs. (24) and (27).

2. Comparison with experiment

The perturbation we just described applies precisely to an
experiment published in Refs. [20,21]. There a small disk of
diameter 4.6 mm has been moved in steps of |	r| = 1 mm
through a rectangular two-dimensional microwave billiard
with 19 additional random scatterers. Then the reflection
spectrum has been measured for 300 different positions of
the moving disk in a frequency range from 3.5 to 6 GHz. In
this frequency range, it was still possible to extract resonance
positions and amplitudes by Lorentzian fits. The statistical
properties of the spectrum as well as the wave functions were
in agreement with the random matrix expectation for quantum
chaotic or weakly disordered systems.

012906-5
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FIG. 1. (Color online) Experimental data for the fidelity decay
due to a moving scatterer from Ref. [21], compared to the approximate
(dashed lines) and to the exact theory (solid lines). The different
colors, red (slowest decay), green (intermediate decay), and blue
(fastest decay), correspond to different displacements 	r = 1 mm
(δ1 ≈ 0.07), 2 mm (δ1 ≈ 0.14), and 4 mm (δ1 ≈ 0.28), respectively.
The corresponding experimental data (in the same order) are shown
by red crosses, green circles, and blue squares.

From Berry’s model of the random superposition of plane
waves [27], it is possible to obtain a connection between the
displacement |	r| of the movable disk and the parameter δ1

which measures the perturbation strength. Translating the
corresponding equation from Ref. [21] to our system of units
and parameters, we obtain

δ1 = α

4

√
1 − J0(k|	r|)2, (44)

where α is a dimensionless factor related to the electromag-
netic properties of the movable disk, which can be determined
independently (e.g., from the variance of the level velocities).
For the wave number k, we choose a value which corresponds
to the frequency in the center of the range considered, which
yields

k = 2π f

c
= 0.996 cm−1. (45)

For the displacements considered in Ref. [21], the relation
between δ1 and |	r| is still approximately linear, as can be
seen from the fact that k |	r| is small as compared to one
in all cases (see the captions of Fig. 1). Finally, we find that
α = 1 provides the best agreement between the theory and
experiment. Using time-independent perturbation theory, the
authors of Ref. [21] obtained the following asymptotic result
for the decay of the fidelity amplitude:

f (t) = 1√
1 + (4δ1t)2

, (46)

valid for finite δ1 t , in the case where δ1 → 0 and t → ∞,
and in agreement with our asymptotic result derived below in
Sec. IV D. The most notable difference to our exact result in
Eq. (27) is the quadratic decay at small times, where the exact
result shows a linear decay. Note that we use an energy scale,
where the mean level spacing is equal to one [see the text
below Eq. (6)], such that the spectral span of the Hamiltonian
H0 goes to infinity in the semiclassical limit. That implies that

the Zeno time scale, below which the fidelity decay must be
quadratic (as discussed in Ref. [5]), goes to zero.

In Fig. 1 we show the experimental data for the decay of
the absolute value squared |faa(t)|2 as obtained in Ref. [21].
In the experiment, this quantity is obtained from ensemble
averages of the respective correlation functions, introduced
in Eq. (15). The results are compared to the theoretical
predictions based on the perturbative result, Eq. (46), and on
our exact analytical expression for a reflection measurement,
Eq. (27). We note that both theoretical descriptions are quite
close to the experimental data. However, focusing on the
behavior of the scattering fidelity at small times, where the
asymptotic formula is expected to be less accurate, we find
indeed significant deviations for the cases δ1 ≈ 0.14 (green
points vs dashed green line) and δ1 ≈ 0.28 (blue points vs
dashed blue line). For these cases, the experimental fidelity
decay has a notable linear component at small times, which
cannot be reproduced by the perturbative formula, Eq. (46).
By contrast, our exact analytical result (solid lines) contains
that linear component and therefore agrees better with the
experimental results. Still, in particular for δ1 ≈ 0.28, some
differences remain. We believe that these are rather due to
problems on the experimental side. One error source consists
in the wide frequency range used, which, according to Eq. (44)
leads to a considerable variation in the perturbation strength.
Another problem is related to the upper end of the frequency
range, which implies rather small wavelengths, for which
the scatterer to be moved may no longer be considered as
pointlike. For a more significant test, one would need a
different experimental design, allowing higher accuracies at
strong perturbations in the vicinity of the Heisenberg time.

In the perturbative result, Eq. (46), it makes no difference
whether the measurement is performed as a transmission
measurement or as a reflection measurement with only one
measurement antenna. As we have seen from Eqs. (24)
and (27), for the exact analytical result this is no longer
true. In Fig. 2 we compare both cases for four different
perturbation strengths. The results show that the difference
|faa(t)|2 − |fab(t)|2 is relatively small, but clearly noticeable.
However, for sufficiently large (δ1 = 0.56, narrow peak at
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0.008
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)|2
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FIG. 2. Comparison between fidelity decay, measured in re-
flection |faa(t)|2 and in transmission |fab(t)|2. Different colors
correspond to different perturbation strengths, δ1 = 0.07 (solid line),
0.14, 0.28, and 0.56 (dashed lines with decreasing dash lengths).
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t � tH ) or sufficiently small perturbation strengths, it seems
that the difference tends to disappear. This is consistent with
our treatment of the perturbative case in the next section.

IV. PERTURBATIVE REGIME

In the perturbative regime, the fidelity amplitude of Eq. (1)
can be calculated using first order time-independent perturba-
tion theory [2]. For {|j 〉} denoting the eigenbasis of Hβ and
V = Hα − Hβ , we then find

f (t) ≈
∑

j

〈α|j 〉 e2πiEj (β) t e−2πi[Ej (β)+〈j |V |j〉] t 〈j |α〉

=
∑

j

|〈j |α〉|2 e−2πi〈j |V |j〉 t , (47)

where |α〉 denotes some initial state, and {Ej (β)} denote
the eigenvalues of Hβ . This expression shows that in the
perturbative regime the fidelity decay depends on the product
between time and perturbation strength. The perturbative result
becomes exact only in the limit of vanishing perturbation
strength. To yield a finite value for the fidelity amplitude,
time must then tend to infinity such that the product between
perturbation strength and time remains constant. We therefore
define the perturbative regime as the limit

t → ∞, ∀j : Tj → 0, (48)

such that t
∑

Tj and t2 ∑
j T 2

j remain both finite. In what
follows, we calculate fab(t) and faa(t) in that limit, starting
from the exact analytical expressions in Eqs. (24) and (27),
via an asymptotic expansion of the respective integrals. This
is done in two steps. Note that including the summations over
the transmission coefficients, our treatment is valid for local
and global perturbations.

A. Step one

Here we will demonstrate that 〈· · ·〉I ∼ 〈· · ·〉A, with

〈· · ·〉A =
∫ t

t−1
dr

∫ √
r

0
du

(t − r)(r + 1 − t) (· · ·)
(2u + 1)(t2 − r2 + x2)2

, (49)

where the ellipsis above may be replaced by either Z P0 or
4t2 Z. Here and in what follows, the symbol ∼ denotes the
perturbative limit we are interested in.

For the first case, our claim follows from∫ t

t−1
dr

∫ r

√
r

du
(t − r)(r + 1 − t) P0 Z

(2u + 1)(t2 − r2 + x2)2
∼ 0. (50)

Since P0 > 0 and 0 < Z < 1 in the whole region of integra-
tion, it is sufficient to show that Eq. (50) holds for Z = 1.
Furthermore, since we can maximize (t − r)(r + 1 − t) in the
interval t − 1 < r < t by 1/4, it is sufficient to prove that

max
t−1<r<t

∫ r

√
r

du
r2 + (2r + 1)t − t2 − x2

(2u + 1)(t2 − r2 + x2)2
∼ 0, (51)

where we have used that P0 = 2 (r2 + (2r + 1)t − t2 − x2).
Denoting this integral with J , we realize that

J <

∫ r

√
r

du
r2 + (2r + 1)t − t2

(2u + 1)(t2 − r2 + x2)2
. (52)

Then, because r2 + (2r + 1)t − t2 = t + 2r2 − (r2 − 2rt +
t2),

J <

∫ r

√
r

du
2t2 + t

(2u + 1)x4
= (2t2 + t)

∫ r

√
r

du
2u + 1

(2r + 1)2 u4
.

(53)
Evaluating the last integral we finally obtain

J <
t (2t + 1)

(2r + 1)2

(
3
√

r + 1

3r3/2
− 3r + 1

3r3

)
∼ 0, (54)

which completes the proof. For the second case, we replace
P0 with 2t2 and arrive at the same result, which may be seen
from Eq. (53).

B. Step two

According to Eq. (49) the perturbative limit only requires
integration of u up to u = √

r . This implies that

Z =
∏
j

1 − Tj (t − r)√
1 + 2Tj r + T 2

j x2
∼

∏
j

1√
1 + 2Tj t

, (55)

since (t − r) is of order one, t − 1 < r < t , and

T 2
j x2 = T 2

j u2 2r + 1

2u + 1
< T 2

j r
2r + 1

2
√

r + 1
∼ 0. (56)

Therefore, we obtain for fab(t) = 〈Z P0〉I :

fab(t) ∼
∏
j

1√
1 + 2Tj t

〈P0〉A ∼
∏
j

1√
1 + 2Tj t

. (57)

This simply follows from the fact that 1 = 〈P0〉I ∼ 〈P0〉A. For
the scattering fidelity in a reflection measurement, we obtain

faa(t) ∼ 4t2 〈Z〉I + 2 〈Z P0〉I
3

, (58)

since b2(t) in Eq. (27) tends to zero for large times. Here it
only remains to treat the first term in the nominator:

4t2 〈Z〉I ∼
∏
j

1√
1 + 2Tj t

4t2 〈1〉A ∼
∏
j

1√
1 + 2Tj t

,

(59)

since 1 = 4t2 〈1〉I ∼ 4t2 〈1〉A. Thus, in the perturbative
regime, we obtain the same result no matter whether we
perform a transmission or a reflection measurement:

faa(t) ∼ fab(t) ∼ fpert(t) =
∏
j

1√
1 + 2Tj t

. (60)

C. Global perturbation

Global perturbations are discussed in detail in Sec. III A,
where Eq. (28) relates the effective transmission coefficients
with the perturbation strengths δj . Taking also Eq. (31) into
account, we may write for f (t) up to second order in the
perturbation strength:

ln fpert(t) ∼ − 1

2

∑
j

ln[ 1 + 4πi δj (1 − iπ δj ) t ]

∼ −
∑

j

[
2πi δj t + 2π2δ2

j (2t2 + t)
]
. (61)
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Since we are working in the perturbative regime, where t goes
as fast to infinity as the δj go to zero, terms containing δ2

j t can
be neglected. In addition, the summation contains a number
of terms which are of the order of N , taken to infinity in our
analytical approach. In this limit, δ2

j scales with N−1, such that
we obtain

fpert(t) = exp(−2πi δs t − 4π2λ2 t2). (62)

D. Moving scatterer

Inserting the effective transmission coefficients from
Eq. (42) describing a moving scatterer into Eq. (60), we find

fpert(t) =
∣∣∣∣1 − 4i δ1 t

1 − i δ1

∣∣∣∣
−1

. (63)

In the perturbative limit considered this implies that T1 → 0,
t → ∞ such that T1 t remains constant. Consequently, also
δ1 → 0 such that δ1 t remains constant. Therefore fpert(t) =
|1 − 4i δ1 t |−1 in agreement with Eq. (46), from Ref. [21].

V. COMPARISON WITH PARAMETRIC
LEVEL CORRELATIONS

In this section we will generalize the relation between
fidelity amplitude and the parametric level correlations (FA-
PLC relation) discovered in Ref. [14] to arbitrary per-
turbations. For that purpose we use our initial definition
of the fidelity amplitude in Eqs. (1) and (2), but choose
Hα = 0. This typically does not imply any restriction of
generality, as explained at the beginning of Sec. III B. To
proceed, we separate global and local perturbations explicitly.
Hence,

Hλ,β = H0 + Wα +
M∑

k=1

w′
k(β) |v′

k〉〈v′
k|, (64)

where the unique quantity to characterize the global pertur-
bation Wα is the strength parameter λ, defined in Sec. III A,
which fulfills

λ2 = tr
(
W 2

α

)
N2

= 1

N2

∑
j

wj (α)2,
1

N

∑
j

wj (α) = 0. (65)

These two equations just mean that the eigenvalues wj (α)
are symmetrically distributed around zero, and that their
magnitudes scale with

√
N . In order to derive an analytic

expression for the fidelity amplitude we need to find a common
eigenbasis for both types of perturbations. For that purpose,
we replace Wα with its projection W̃α onto the orthogonal
complement of the subspace spanned by the eigenvectors {|v′

k〉}
and show that this will not change the result for the fidelity
amplitude decay.

Let {|v′′
l 〉}l=1,...,N be a orthonormal basis of the full Hilbert

space such that |v′′
k 〉 = |v′

k〉 for all k = 1, . . . ,M . Then we
obtain with Pβ = ∑M

k=1 |v′
k〉〈v′

k|
tr
[
W̃ 2

α

] = tr[ (1 − Pβ) Wα (1 − Pβ) Wα ]

= tr
[
W 2

α

] − 2 tr
[
Pβ W 2

α

] + tr[PβWαPβWα]

= N2λ2 − 2
M∑

k=1

〈v′
k| W 2

α |v′
k〉 +

M∑
k,l=1

|〈v′
k|Wα|v′

l〉|2.

(66)

Then the inequality

M∑
k,l=1

|〈v′
k|Wα|v′

l〉|2 �
M∑

k=1

N∑
l=1

〈v′
k|Wα |v′′

l 〉〈v′′
l | Wα|v′

k〉

=
M∑

k=1

〈v′
k| W 2

α |v′
k〉 =

M∑
k=1

N∑
j=1

〈v′
k|vj 〉wj (α)2 〈vj |v′

k〉

∼
M∑

k=1

N∑
j=1

〈v′
k|vj 〉

√
N 〈vj |v′

k〉 = M
√

N (67)

implies that in the limit N → ∞,

1

N2
tr
[
W̃ 2

α

] − λ2 ∼ M√
N

→ 0. (68)

This proves the validity of the replacement, such that we may
finally write for the above Hamiltonian:

Hλ,β = H0 +
M∑

k=1

w′
k(β) |v′′

k 〉〈v′′
k | +

N∑
k=M+1

w̃k(α) |v′′
k 〉〈v′′

k |,

(69)

where the w̃k(α) are the new eigenvalues of W̃α . This results
in the following expression for the fidelity amplitude:

f (λ,t) = 〈
P0 e−π2λ2P0 Zloc

〉
, (70)

with Zloc given by the expression for Z in Eq. (11), but
considering the eigenvalues of the local perturbation only.

The parametric level correlations X(λ,r) describe the
probability to find two eigenvalues, one of H0 and the other
one of Hλ,β at a distance r . The quantity to be compared to the
fidelity amplitude is the Fourier transform of the parametric
level correlations [14]:

K(λ,t) =
∫

dr e2πi rt [X(λ,r) − 1]. (71)

Note that for λ → 0, this quantity converges to the complement
of the two-point form factor: K(0,t) = 1 − b2(t) [23,28,29].
The FA-PLC relation discussed in Ref. [14] may now be
expressed as

f (λ,t) = −β

4π2t2

∂

∂ (λ2)
K(λ,t), (72)

with β being the Dyson parameter [30] which is one, as
we consider systems with an anti-unitary symmetry and real
matrix representations of their Hamiltonians. In Ref. [14] this
relation is proven for a purely global perturbation (Zloc = 1)
only.

For pedagogical reasons, we will prove Eq. (72) for
purely global perturbations first (Sec. V A), as the prove
for the general case follows the same lines. Without local
perturbations, the expressions are less lengthy, and the line
of argument is easier to follow. In Sec. V B we consider the
general case and then need only to indicate which, and if so
how, some of the expressions must be modified.
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A. Global perturbation

In that case Zloc = 1, and from Ref. [22] we find

X(λ,r) = 1 + Re
∫∫ ∞

1
dλ1dλ2

∫ 1

−1
dμ′

× (λ1λ2 − μ′)2 (1 − μ′2) eiπ r+ (λ1λ2−μ′) e−π2λ2 P̃0

(1 + 2λ1λ2 μ′ − λ2
1 − λ2

2 − μ′2)2
,

(73)

where 2P̃0 = 1 + 2λ2
1λ

2
2 − λ2

1 − λ2
2 − μ′2, and r+ equals r plus

an additional positive imaginary increment.
The first substitution, μ′ → μ = (λ1λ2 − μ′)/2, yields

X(λ,r) = 1 + 2 Re
∫∫ ∞

1
dλ1dλ2

∫ (λ1λ2+1)/2

(λ1λ2−1)/2
dμ

× 4μ2 (1 − μ′2) e2iπ r+ μ e−π2λ2 P̃0

(1 + 2λ1λ2 μ′ − λ2
1 − λ2

2 − μ′2)2
. (74)

In order to shorten the expressions, we keep writing μ′ which
must be understood as being a function of μ. Now, we can
switch to the Fourier transform, which turns the Fourier factors
in delta functions:

K(λ,t) =
∫∫ ∞

1
dλ1dλ2

∫ (λ1λ2+1)/2

(λ1λ2−1)/2
dμ

× [ δ(t + μ) + δ(t − μ) ] 4μ2 (1 − μ′2)e−π2λ2 P̃0

(1 + 2λ1λ2 μ′ − λ2
1 − λ2

2 − μ′2)2
.

(75)

This shows that the function K(λ,t) is symmetric in time.
In what follows, we thus assume t > 0. The remaining delta
function already allows us to eliminate the μ integration.
However, before actually doing so, we perform a variable
transformation on the λ1,λ2 double integral:

(λ1,λ2) → (r ′,x ′), r ′ = λ1λ2, x ′ = λ2 − λ1. (76)

The Jacobian of this transformation is simply J = (λ1 +
λ2)−1 = (x ′2 + 4r ′)−1/2. Therefore,

K(λ,t)=
∫ ∞

1
dr ′

∫ r ′−1

1−r ′

dx ′
√

x ′2 + 4r ′

∫ (r ′+1)/2

(r ′−1)/2
dμ

× 4μ2(1 − r ′ + 2μ)(1 + r ′ − 2μ)δ(t − μ)e−π2λ2 P̃0

[1 + 2r ′(r ′ − 2μ) − x ′2 − 2r ′ − (r ′ − 2μ)2]2
.

(77)

For the μ integral not to yield zero, it must hold that
(r ′ − 1)/2 < t < (r ′ + 1)/2. This modifies the limits of the
r ′ integral as follows:

K(λ,t) = 4t2
∫ 2t+1

max(1,2t−1)
dr ′

∫ r ′−1

1−r ′

dx ′
√

x ′2 + 4r ′

× (1 − r ′ + 2t)(1 + r ′ − 2t) e−π2λ2 P̃0

[1 + 2r ′(r ′ − 2t) − x ′2 − 2r ′ − (r ′ − 2t)2]2
.

(78)

Further substitutions r ′ = 2r + 1 and x ′ = 2x and the fact that
the integrand is a symmetric function of x yield

K(λ,t) = 4t2
∫ t

max(0,t−1)
dr

×
∫ r

0
dx

(t − r)(r + 1 − t)e−π2λ2 P̃0

√
x2 + 2r + 1(t2 − r2 + x2)2

= 4 t2
〈
e−π2λ2 P̃0

〉
I
. (79)

Performing all variable substitutions to P̃0 we find that it
becomes a function of t,r , and x, which agrees precisely with
P0 defined in Eq. (18). Comparing to Eq. (70) for Zloc = 1, it
is now easily checked that K(λ,t) as defined here fulfills the
FA-PLC relation Eq. (72).

B. General perturbation

In Ref. [22] it is shown that parametric level correlations
can be calculated for arbitrary perturbations. According to this
reference, the term describing the global perturbation σglob =
π2λ2 P0 must be replaced by σ = σglob + σloc, where

σloc(λ1,λ2,μ
′)

= 1

2

∑
j

ln

[
1 + 2iκ ′

j λ1λ2 − κ ′
j

2
(
λ2

1 + λ2
2 − 1

)
(1 + i κ ′

j μ′)2

]
. (80)

Note that the discussion in Sec. III A shows that the additional
global perturbation could always be incorporated into σloc,
via a large number of additional channels with infinitesimal
perturbations. However, in order to establish the desired
relation between fidelity decay and the parametric level
correlations, it is important to have the parameter λ describing
the global perturbation at hand.

Now, we should go through the calculation of K(λ,t) again,
replacing σglob in Eq. (74) with the more general expression σ .
As a consequence, the integrand is no longer real, which affects
Eq. (75). While the delta function δ(t − μ) is multiplied with
the same term as before, the second delta function δ(t + μ) is
now multiplied with its complex conjugate. Therefore K(λ,t)
is no longer symmetric. Instead K(λ,t) = K(λ, − t)∗, which
nevertheless allows us to continue the calculation without
changes for t > 0. Only in Eq. (79) do we need to express
σloc in the current integration variables. That results in

exp[−σloc(r,x,t)] =
∏
j

1 − Tj (t − r)√
1 + 2Tj r + T 2

j x2
, (81)

where Tj = 2iκ ′
j /(1 + i κ ′

j ), just as in Eq. (28). Inserting this
expression into Eq. (79) and comparing to the general result
Eq. (24) for the decay of the fidelity amplitude (a �= b) we
find that Eq. (72) holds also for this case, where we have an
additional term describing local perturbations. This constitutes
our second important result. In practice, it means that one can
obtain the fidelity amplitude in the presence of arbitrary local
and/or global perturbations, by measuring the change of the
parametric level correlations under the increment of the global
perturbation.
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VI. CONCLUSIONS

In this paper we have used the results of Ref. [13] to derive
an exact analytical expression for the fidelity decay in a closed
chaotic and diffusive wave system, under arbitrary Hermitian
perturbations. For illustration, we used that result to rederive
the known formula for the fidelity decay in the case of a global
perturbation [8,9]. In a second application, we calculated the
fidelity amplitude for a moving S-wave scatterer and verified
that it describes corresponding experimental results reported
in Ref. [21] well. Another analytical result that can be treated
along these lines is the case of a symmetry-breaking pertur-
bation [31,32]. Finally, we generalized a relation between the
fidelity amplitude and parametric level correlations introduced
in Ref. [14] to arbitrary perturbations. The latter is probably
the most important result of this work, since it turns the
relation into an analytical tool which can be applied to inverse
problems, i.e., in cases where we want to deduce properties
of the perturbation from measured fidelity or parametric level
correlation data.

In the present work, we restricted ourselves to matrix
ensembles based on the Gaussian orthogonal ensemble (GOE).
For the comparison with experimental data, this is the most
important case. However, our results can also be translated
to the Gaussian unitary ensemble (GUE), using the analog of
the VWZ formula published in Ref. [24]. For the Gaussian
symplectic ensemble (GSE), the corresponding analytical

expressions for the parametric level correlations and the corre-
lations between scattering matrix elements are unfortunately
not yet available, but we would still expect a similar relation
to hold.

It would be interesting to perform an experiment similar
to the one analyzed in Refs. [20,21] in order to verify
our results with higher accuracy and for larger perturbation
strengths. Particularly interesting would be the regime where
the perturbation strength depends in a nonlinear way on the
displacement of the scatterer; see Eq. (44). If the microwave
experiment would allow to measure fidelity decay and para-
metric level correlations at the same time, one could test the
applicability of the FA-PLC relation in practice. Finally, one
may intend to generalize the FA-PLC relation further to scat-
tering systems and non-Hermitian perturbations (e.g., coupling
fidelity).
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435, 33 (2006).
[6] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52,

1 (1984).
[7] T. Gorin, T. Prosen, and T. H. Seligman, New J. Phys. 6, 20

(2004).
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