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Vortex dynamics in cubic-quintic Bose-Einstein condensates
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We study vortex dynamics in a trapped Bose-Einstein condensate with tunable two- and three-body interactions.
The dynamics is governed by two-dimensional cubic-quintic Gross-Pitaevskii equation. A time-dependent
variational method has been used to obtain critical rotational frequency and surface mode frequency analytically
and are compared with numerical simulation results. An imaginary time propagation method and Crank-Nicolson
scheme for discretization have been used for numerical simulation. The numerically calculated average value of
the angular momentum per particle shows very clearly its dynamical relation with the time development of the
vortex formation. The rotational frequency dependence of the variation of average value of the angular momentum
per particle with time shows that vortices form much faster in time for higher rotational frequency. Similarly, the
vortex forms much faster in time with an increase of the strength of the repulsive three-body interaction. The
simulation of the vortex lattice formation in the condensate shows that the presence of the three-body interactions
does not alter the vortex lattice pattern but it helps in the shape deformations of the condensate thereby leading to
vortex lattice formation. Likewise, the three-body interactions enable the vortex lattice formation in Bose-Einstein
condensates even with attractive two-body interactions and in purely quintic BEC.
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I. INTRODUCTION

Following theoretical developments, the experimental real-
ization of Bose-Einstein condensates (BECs) of alkali-metal
atoms have provided a new leap in the field of atomic
physics. It opened wide the opportunity to explore many
properties of atomic clouds, especially collective excitations
such as vortices [1–3], solitons, mode coupling [4,5], nonlinear
interferometry [6], etc., of cold atoms. Exact vortex soliton
solutions in quasi-two-dimensional BEC with cubic-quintic
nonlinearity has been obtained recently [7]. Two classes of
vortex solitons and their stability in quasi-two-dimensional
BEC with cubic-quintic nonlinearity has also been obtained
recently [8]. The theoretical developments of the study of
vortices in superfluids started with the work of Landau in
1941 [9,10]. Later it has been found that techniques such
as rotating the trap or rotating the laser beam or Raman
transitions scheme can be utilized for vortex creation and there
is a minimum rotational frequency for vortex nucleation [11].
Since its experimental realization, the comparison between
the experimental and theoretical values of critical rotational
frequency �c, for the harmonically as well as the anharmoni-
cally trapped condensate have taken place [12–14]. Also it has
been observed that the �c for BECs with repulsive interaction
decreases with an increase in the number of atoms [15]. The
formation of a vortex and vortex lattice in trapped BECs has
been studied and it shows the superfluidity of BEC [16–19]. It
has been suggested that the BEC passes through a dynamically
unstable stage before the vortex pattern formation [3,20]. The
effect of an impulsive force on the instability and hence vortex
lattice formation in BECs has also been reported [21].

The experimental study of the stability against collapse has
revealed the role of three-body interactions in trapped BECs
and these interactions are significant at large scattering lengths
[22–24]. The three-body interaction is represented with the
quintic nonlinear term in a Gross-Pitaevskii [23–25] equation
and its application in the field of nonlinear fiber optics is a
well established one [26]. Since the vortex dynamics of the

condensate in such systems has not been explored yet, it would
be interesting to study the vortex dynamics in such a system
both theoretically and experimentally.

Theoretical work on anharmonically trapped BECs with the
two-body interactions has been done with variational analysis
[27]. Similar studies with the two- and three-body interactions
[28] show that the repulsive three-body interactions helps in
the formation of the vortex and reduces the critical rotational
frequency of the system [28]. However, these theoretical
studies are based on a variational method and therefore provide
only approximate results. It would therefore be useful to
compare the results of these studies with accurate numerical
simulations. Since it has already been found that the critical
rotation frequency in a harmonically trapped BEC calculated
from the thermodynamic arguments does not exactly match
with the experimental values [12,27], it will be useful to
find the critical rotational frequency numerically. Moreover,
studies of vortex lattice formation in the trapped system in
the presence of three-body interactions is not reported as
yet and it is therefore an interesting problem to analyze the
role of such interactions. In this paper we simulate the vortex
formation in BECs in the presence of a three-body interaction
for both harmonic and anharmonic traps and calculate the
critical rotational frequency. The dynamical evolution of the
average value of the angular momentum per particle and its
relation with the dynamics of the condensate leading to vortex
formation is simulated as a function of the two- and three-body
interaction parameters and rotational frequency. Our numerical
simulation results agree with the earlier theoretical results
[28] that the repulsive three-body interaction depresses the
critical rotational frequency �c and anharmonicity increases
the critical rotation as compared to the case of harmonically
trapped BECs. We then simulate the vortex lattice formation in
the condensate and study the role of the three-body interaction
in the vortex lattice formation.

The paper is organized as follows. In Sec. II, a model for our
system is introduced. The time-dependent variational analysis
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leading to the theoretical estimate of various parameters of the
system, such as the deformation parameter, the average angular
momentum per particle, quadrupole frequency, the surface
mode frequency, the critical rotational frequency, and their
variation with the two- and three-body interaction parameters
are reported in this section. In Sec. III, we present the results
obtained from numerical simulation of the two-dimensional
cubic-quintic Gross-Pitaevskii equation. Finally we conclude
in Sec. IV.

II. MODEL

As a model we consider the two-dimensional (2D) cubic-
quintic Gross-Pitaevskii (GP) equation given by [29]

iψt = − 1
2 (ψxx + ψyy) + V (x,y)ψ + i�(xψy − yψx)

+p|ψ |2ψ + q|ψ |4ψ, (1)

where V (x,y) = 1
2 [(x2 + y2) + λ(x2 + y2)2] and � are the

trapping potential and rotational frequency, respectively. For
the harmonic case the small anharmonic term is λ = 0. Here
p = g1N

h̄ω⊥a3
0
, q = g2N

2

h̄ω⊥a6
0
, and a0 =

√
h̄

mω⊥
, where N , g1, and

g2 denote the total number of particles, and two- and three-
body interaction coupling constants, respectively. The spatial
coordinates, time, condensate wave function, and rotational
frequency are in units of a0, ω−1

⊥ , a
−3/2
0 , and ω⊥, respectively.

Also the condensate wave function ψ is normalized as∫
ψ∗ψ dx dy = 1.
The Lagrangian density corresponding to Eq. (1) is given by

Ł = i

2
(ψψ∗

t − ψ∗ψt ) + 1

2
|∇ψ |2 + V (x,y)|ψ |2

+ p

2
|ψ |4 + q

3
|ψ |6 − �ψ∗Lzψ. (2)

The effective Lagrangian can be obtained from Eq. (2)
as L = ∫ ∞

−∞ Ł dx dy. For studying the properties of a
harmonically trapped rotating condensate we use the
time-dependent variational analysis. We use Gaussian ansatz
for the condensate wave function [2]:

ψ(x,y,t) = c(t)e−1/2[α(t)x2+β(t)y2−2iγ (t)xy)], (3)

where c(t) is normalized as c(t) = (
√

D
π

)1/2 and
D = α1β1 − γ 2

2 . Here the complex dimensionless parameters
have the form α(t) = α1(t) + iα2(t), β(t) = β1(t) + iβ2(t),
and γ (t) = γ1(t) + iγ2(t), and the inverse of α1 and β1 give
the square of the condensate width in the x and y directions,
respectively. The Gaussian wave function [Eq. (3)] cannot
describe a condensate with a vortex as the phase corresponds
to an irrotational flow [30]. Vortices are nucleated when
the rotation resonantly excites the quadrupole modes of the
condensate and induce large amplitude oscillations (surface
mode excitations) of the condensate, resulting in a dynamical
instability. Once the system starts deforming, it starts
transferring angular momentum to the condensate leading to
vortex nucleation, and finally a single vortex is formed when
the transferred average angular momentum per particle is 1.

To obtain the relation between the average angular mo-
mentum per particle and the shape deformation of the system,
we calculate the average of the angular momentum operator
〈Lz〉 = 〈xpy − ypx〉 using the Gaussian condensate wave

function [Eq. (3)] and obtain [27,28]

〈Lz〉 = �(1 − η)2

2η(α10 + β10)
, (4)

where η denotes the shape deformation parameter of the
condensate defined as

η = 〈x2〉
〈y2〉 = β10

α10
= � + γ20

� − γ20
, (5)

and α10, β10, and γ20 are the equilibrium values of the
variational parameters which can be obtained by minimizing
the variational energy [27,28]. Since η is always positive,
this implies � > γ20. Equation (4) shows how the angular
momentum transfers to the condensate due to spontaneous
shape deformations (η 	= 1). To reveal dynamical instability
and to calculate the quadrupole mode and surface mode fre-
quencies, we take initially a small deviation of the variational
parameters from its equilibrium values (keeping only second
order deviations) and get coupled linear equations of motion
for the deviations. The solutions of these coupled equations
give the required frequencies [30]. The quadrupole mode
(mz ± 2) frequency so obtained is given by [28]

ωq =
√

4 − PR2
0 − 2QR3

0, (6)

In the presence of rotation the centrifugal term (−�Lz) shifts
the quadrupole mode frequency [Eq. (6)] by ±2�. The lowest
energy surface mode frequency is then given by

ω−2 =
√

4 − PR2
0 − 2QR3

0 − 2�, (7)

where R0 is obtained from the equation (1 + P
2 + QR0)

R2
0 − 1 = 0, P = p/π , and Q = 4q/9π2.
From Eqs. (6) and (7) we can see that for � = ωq

2 , the
lowest energy surface mode frequency is zero. The system
is irrotational until � = ωq

2 , although we are rotating the
system. In other words, the system does not respond to
the external rotation until � = ωq

2 . Spontaneous symmetry
breaking (deformation parameter η 	= 1) and hence transfer
of angular momentum [Eq. (4)] leading to vortex formation
happens only for � > ωq/2. The plot of η vs � actually shows
that η = 1 for 0 < � <

ωq

2 and there is surface deformation
(η 	= 1) for � >

ωq

2 [27,28]. Figure 1 shows the plot of the
quadrupole mode frequency against q for a fixed p. From this

FIG. 1. (Color online) Quadrupole mode frequency ωq plotted
against q for p = 3.

012904-2



VORTEX DYNAMICS IN CUBIC-QUINTIC BOSE- . . . PHYSICAL REVIEW E 88, 012904 (2013)

figure it follows that the critical rotational frequency �c = ωq

2
decreases with an increase in strength of the three-body
interaction (q).

III. VORTEX DYNAMICS

Recently Muruganandam et al. [31] have shown that the
split-step imaginary-time propagation method yields very
precise results when compared to the real-time propagation
method at low computational cost and is quite appropriate for
the solution of stationary problems involving the ground state.
So here we perform the numerical simulation of Eq. (1) using
the imaginary-time propagation method, where real time t is
replaced as t → −it and the equation is discretized by using
the Crank-Nicolson scheme [32]. For our simulation, we take
the the initial wave function as Gaussian. For the stable ground
state we fix that the interactions are initially absent.

For the time iteration, we split our Eq. (1) into three parts.
These are

iψt = V (x,y)ψ + p|ψ |2ψ + q|ψ |4ψ, (8a)

iψt = − 1
2 (ψxx) − i�yψx, (8b)

iψt = − 1
2 (ψyy) + i�xψy. (8c)

We first solve Eq. (8a) with a given initial value ψ(x,y,t0)
at t = t0. This step provides the solution ψ at an intermediate
step t = t0 + �, where � is the time step. This intermediate
solution is used as the initial value to solve Eqs. (8a) and (8b)
for getting the solution at the final time [31]. For our
simulation, we set small spatial step hx = hy = 0.04 and time
step � = 0.01.

A. Single vortex

According to the experimental results [33], the average
angular momentum per particle is one when there is a single
vortex created. We show from our simulation that the time
evolution of the expectation value of angular momentum
Lz reaches the value 1 during a single vortex formation.
Figure 2(a) shows the density plot as it evolves in time and
Fig. 2(b) shows the variation of the average angular momentum
per particle with time during a single vortex formation. From
these two figures we can see that, as experimentally observed,
〈Lz〉 saturates to the value 1 when a single vortex is created as
seen from the time variation of the density plot. Meanwhile, the
nonzero value of Lz (between 0 and 1) shows the spontaneous
shape deformation of the condensate [34]. The saturation of
the 〈Lz〉 value to 1 represents the stability of the single vortex
over time. We have obtained the critical rotational frequencies
�c for the single vortex formation for different values of the
interaction parameters p and q from the numerical simulation
of the 2D GP equation [Eq. (1)]. The numerical values of �c for
harmonically trapped (λ = 0) condensates are given in Table I.
These values show that �c get depressed by the addition of a
repulsive three-body interaction. Figure 3 shows that at critical
rotational frequency �c = 0.966 for p = 1 and q = 0, the
average angular momentum per particle reaches 1. From the
figure we can see that for � < �c the average value of Lz is
always <1 and consequently no vortex can form. Similarly,
the figure shows that for � > �c a vortex forms much faster
in time as the value of 〈Lz〉 reaches saturation earlier in time.
The very accurate nature of our numerical simulation brings
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FIG. 2. Time evolution of (a) the condensate density and (b) the
average angular momentum per particle, during the single vortex
formation for p = 1, q = 3, and � = 0.947.

out the very sensitive dependence of the critical rotational
frequency on the dynamics of vortex formation as seen from
Fig. 3. The corresponding figures for the p = 1 and q 	= 0
cases are similar to Fig. 3 and hence are not plotted here.
However, the corresponding values of �c for the p = 1 and
q 	= 0 cases as obtained from numerical simulations are given
in Table I. Figure 2 is plotted for the rotational frequency
� = 0.947, which is greater than the corresponding critical
rotational frequency �c = 0.944 (see Table I). A comparison
of Fig. 2(b) and the curve for ω > �c in Fig. 3 shows that
in both cases 〈Lz〉 have intermediate values between 0 and
1 over time. This implies that for the � > �c case also the
condensate undergoes deformations before the formation of
the stable single vortex. The horizontal line for the intermediate
value of 〈Lz〉 shows that the vortices stay at the edges for some
time before moving to the center of the condensate. Finally, the

TABLE I. Critical rotational frequencies.

λ p q Numerical �c

1 0 0.966
0 1 3 0.944

1 5 0.934

1 0 0.991
0.01 1 3 0.971

1 5 0.961
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FIG. 3. (Color online) Variation of the average angular momen-
tum per particle for p = 1 and q = 0 with rotational frequencies.

stable single vortex is formed when 〈Lz〉 attains the saturation
value 1 as shown in Figs. 2(b) and 3.

In order to study the effect of anharmonicity of the trapping
potential on the critical rotational frequency �c, we consider a
quadratic-plus-quartic trapping potential of the form V (x,y) =
1
2 [(x2 + y2) + λ(x2 + y2)2], where λ is the anharmonic term.
Table I gives the details about the critical rotational fre-
quency values obtained through the numerical simulations for
λ = 0.01. From the table we can see that, as in the case
of a harmonic trap, the three-body interaction depresses the
critical rotational frequency. Also, a comparison between the
harmonic and anharmonic cases (Table I) shows that the critical
rotational frequencies are quite enhanced for the anharmonic
trap as compared to the harmonic trap. This is shown in
Fig. 4 for various values of the three-body interaction strength.
These observations show that our simulation results are in
agreement with the nature of variation of the critical rotational
frequency with anharmonicity as obtained theoretically using
the variational analysis [28].

The calculations based on the field theory reveal that the
three-body interaction (g2) is a complex quantity because of the
three-body recombination effect [35]. The recent experiments
on the alkali-metal atoms such as 87Rb and 85Rb show that

FIG. 4. (Color online) Variation of critical rotational frequency
with q for p = 1. The solid line corresponds to λ = 0.01 and the
dashed line is for λ = 0.

the imaginary part of g2 is negligible when compared to
the real part, where Re(g2) ≈ (10−27–10−26)h̄ cm6 s−1. The
calculation of dimensionless parameters p and q based on the
data for alkali-metal atoms show that the q can be set larger
than or less than p [36]. The experiments on alkali-metal atoms
show that the three-body interactions are significant only at
high densities. Nowadays this can be achieved through the
strong confinement of the atoms. The small values of two-
and three-body interaction parameters p and q, respectively,
chosen above is for the case when the total number of particles
in the trap is small. We now increase the number of trapped
particles and take it as N = 104 in agreement with the available
experimental data of alkali-metal atoms. For this value of
N , the two- and three-body interaction parameter values
turns out to be p ≈ 580 and q ≈ 80–900 for 87Rb. For this
value of the parameter p, numerical simulation shows that
�c ≈ 0.425 for the range of q (q ≈ 80–900). This implies
that the critical rotational frequency is not affected by the
variation of the the strength of three-body interactions and
is apparently in contradiction to our variational results as
mentioned above. In order to understand the reason behind
this, we calculated the quadrupole mode frequency for higher
values of the dimensionless two-body interaction parameter
p. The plot of quadrupole mode frequency in Fig. 5 shows
that a significant decrease in its values occurs only when the
strength of the two-body interactions is small. However, for a
large value of parameter p [p = 580 in Fig. 5], we find that
�q (hence �c) remains almost constant with variations of q

showing agreement of the variational result with the numerical
simulation.

B. Vortex lattice

Figure 6 shows the time evolution of vortex lattice pattern
formation in a harmonic trap for the case q > p. The first and
second panels of Fig. 6 are for intermediate time dynamics at
t = 500 and t = 1500, respectively, showing that even though
the vortex lattice structures are almost formed, the vortices are
still entering the condensate through the boundary. The third
panel at t = 7500 shows the final stable vortex lattice structure.
We observe a similar final stable vortex pattern for the cases
p = q and q < p also, but the intermediate time pattern may

p=−1

p=1

p=50

p=580

200 300 400 500 600 700 800
q

1.45

1.50

1.55

1.60

1.65
ω q

FIG. 5. (Color online) Plot of quadrupole mode frequency ωq

against q for different p.
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FIG. 6. Density plot of vortex lattice formation for the case
p = 580, q = 890, and � = 0.92. Here the figures are at t = 500,
1500, and 7500.

be different. As the harmonically trapped cubic case (q = 0)
favors a triangular lattice [16], we can see that the three-body
interaction also favors the same lattice arrangements.

The vortex lattices with repulsive two-body and attractive
three-body interactions are shown in Fig. 7. The first panel of
Fig. 7 for intermediate time dynamics at t = 500 shows that
the vortices are entering the condensate through the boundary,
whereas the second panel at t = 1500 shows that number of
vortices entering the condensate has decreased considerably.
The third panel below for longer time (t = 9500) shows the
stable vortex lattice. These figures are very similar to Fig. 6
showing that the nature of the three-body interaction, whether
it is repulsive or attractive, does not alter the vortex lattice
arrangements, but the time to form the final stable vortex lattice
is different for different cases. The existence of a stable vortex
lattice for the p > 0 and q < 0 cases as shown above (Fig. 7)
has similarity with the results of Song and Li [8] where they
showed that stable vortex-soliton solutions are also allowed
for repulsive two-body and attractive three-body interactions.

The vortices arrangement for the attractive two-body and
repulsive three-body case is depicted in Fig. 8. Here the
two-body interaction parameter p is taken to be small as
higher values of p lead to instability of the condensate. This
figure shows that if the strength of the repulsive three-body
interaction is higher than the attractive two-body, vortices can
appear even in the repulsive two-body attractive system also.

Finally, we checked the possibility of formation of vortices
in a purely three-body interactive system. Such condensates

FIG. 7. Density plot of vortex lattice formation for the case
p = 580, q = −890, and � = 0.92. Here the figures are at t = 500,
1500, and 9500.

have already been produced experimentally [37,38]. We
observe the same vortex lattice pattern as in Fig. 8. The vortex
lattice formation for the anharmonic trap also follows the same
lattice arrangements of vortices.

Figure 9 shows that for the same number of vortices (which
is three in this case), the time of vortex nucleation decreases
with an increase in strength of the repulsive three-body
interaction. On the other hand, for the attractive interaction
case, the time of vortex nucleation increases with an increase

FIG. 8. Density plot of vortex lattice formation for the case
p = −0.5, q = 800, and � = 0.98.
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FIG. 9. (Color online) Variation of the average value of the
angular momentum with time for attractive and repulsive q at
p = 580.

in strength of the attractive three-body interaction. Also it is
observed that time for vortex nucleation is smaller for the
repulsive three-body interaction as compared to the attractive
three-body interaction. An interesting observation is that
the number of vortices is reduced when the strength of the
repulsive three-body interaction approaches the strength of
the repulsive two-body interaction. This is shown in Fig. 10.
Here � = 0.43 and is near to �c. The number of vortices is
three for p = 580 and q = 200. But for q = 500 the number
of vortices is reduced to two. A further increase in q going
beyond the value of p shows that the number of vortices is
again increased to three. This effect is absent when � � �c

and also for attractive three-body interaction. This interesting
observation can be used as a mechanism to control the number
of vortices in the system.

IV. CONCLUSION

We have studied vortex dynamics in BECs with tunable
two- and three-body interactions and explored the role of three-

FIG. 10. (Color online) Variation of the average value of the
angular momentum with time for different q. Here p = 580 and
� = 0.43.

body interactions on single vortex and vortex lattice formation.
We have used parameter values for the two- and three-body
interactions which correspond to the experimental parameters
of the BEC. The number of vortices that appear depends on
the parameters of the simulations p, q, and �.

Our numerical simulation results show that for BECs
confined in a harmonic trap, the repulsive three-body inter-
action depresses the critical value of rotational frequency
which is in agreement with our time-dependent variational
analysis and also earlier theoretical studies [28]. But for BECs
confined in an anharmonic trap, the anharmonicity increases
the value of the critical rotational frequency when compared
to a harmonically trapped BEC. However, its value is lowered
in the presence of the three-body interaction. Also our results
show that the time of formation of vortices decreases with an
increase in rotational frequency values above �c. Similarly,
the vortex forms much faster in time with an increase of
the strength of the repulsive three-body interaction. This is
in contrast to the attractive three-body interaction case where
the vortex nucleation time increases with increasing strength of
the attractive three-body interaction. The numerical simulation
for the vortex lattice formation shows that the magnitude of
three-body interaction does not alter the vortex pattern and
also it does not depend on the type of three-body interaction
(attractive or repulsive), but the type of interaction affects the
number of vortices when � is near to �c. This mechanism can
be used to control the number of vortices in BECs.

The vortex formation in the harmonically trapped purely
attractive cubic BEC is restricted because of the lack of shape
deformation [14,27]. But our results show that the addition of a
repulsive three-body interaction with magnitude larger than the
attractive two-body interaction enables the shape deformation
and leads to the vortex formation. Our numerical simulation
shows that the vortex formation in purely quintic BECs is
also possible. The vortex patterns as obtained with different
interaction strengths show that irrespective of the types of
interactions, whether two-body or three-body, the BECs favor
a triangular vortex lattice.

Recent theoretical studies have shown that the Gross-
Pitaevskii equation can be modified with a higher order
term (∇2|ψ |2)ψ , where corrections in the effective range of
two-body interactions are needed [39]. The cases such as
Rydberg molecules embedded in BECs and narrow Feshbach
resonances are certain examples [40]. Our variational analysis
using the Gaussian wave function given in Eq. (3) shows
that the equation determining the quadrupole mode frequency
for the modified GP equation as mentioned above is the
same as in Eq. (6). The details of the analysis will be
published elsewhere. This shows that the effect of higher order
corrections resulting from the effective range corrections and
the three-body interactions have a similar effect on the critical
rotational frequencies for the vortex formation in BECs.
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