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Effects of mixing in threshold models of social behavior
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We consider the dynamics of an extension of the influential Granovetter model of social behavior, where
individuals are affected by their personal preferences and observation of the neighbors’ behavior. Individuals are
arranged in a network (usually the square lattice), and each has a state and a fixed threshold for behavior changes.
We simulate the system asynchronously by picking a random individual and we either update its state or exchange
it with another randomly chosen individual (mixing). We describe the dynamics analytically in the fast-mixing
limit by using the mean-field approximation and investigate it mainly numerically in the case of finite mixing.
We show that the dynamics converge to a manifold in state space, which determines the possible equilibria, and
show how to estimate the projection of this manifold by using simulated trajectories, emitted from different initial
points. We show that the effects of considering the network can be decomposed into finite-neighborhood effects,
and finite-mixing-rate effects, which have qualitatively similar effects. Both of these effects increase the tendency
of the system to move from a less-desired equilibrium to the “ground state.” Our findings can be used to probe
shifts in behavioral norms and have implications for the role of information flow in determining when social
norms that have become unpopular in particular communities (such as foot binding or female genital cutting)
persist or vanish.
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I. INTRODUCTION

In this paper, we investigate a simple model of behavior,
the threshold model (TM) [1,2]. It consists of N individuals
arranged in a network. Each individual, described by a state
variable si (i = 1, . . . ,N), has either adopted or rejected the
behavior in question and has a tendency to switch to adopting
(rejecting) if the proportion of individuals in its neighborhood
adopting the behavior is greater (less) than its (constant)
threshold Ti . Individuals are chosen at random to be “updated,”
i.e., to consider, and possibly change (“flip”), their state. We
make an analogy with physics by thinking of the individual’s
state as a “spin” with value +1 (−1) for those who adopt
(reject) the behavior.

Threshold models are relevant to questions of how patterns
of behavior persist, even when attitudes change, and how these
patterns can sometimes change rapidly. A currently relevant
example is the practice of female genital cutting (FGC), which
goes back at least to ancient Egypt [3]. Despite a public health
consensus that the practice is harmful [4], traditional practice
remains widespread in various societies [5,6]. A similar
example is the Chinese practice of foot binding, which was
widely practiced for hundreds of years, before disappearing
rapidly [7]. These practices can be considered in the context
of the theory of “social norms,” behaviors which individuals
prefer to follow, given that they think that others will conform,
and that others expect them to conform [8].

Many similar individual-based models are also based on
individuals making binary choices [9,10]. Usually the voter
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model [11] is associated with an imitation process, since a
randomly chosen individual adopts the behavior of one of
its neighbors. In this sense, the TM adds social pressure to
the framework: the adoption or rejection of the behavior by
an individual depends on the current level of adoption in
its neighborhood [12]. The majority rule model (MR; see
Ref. [13]) is a special case of the TM, since all thresholds
are one half (the randomly chosen individual tends to flip if
the majority of its neighbors have opposite spin).

It has been shown that the majority rule model can be
described by the classical Ising model with zero external
magnetic field [13] and that the general TM can be described
as a random-field Ising model (RFIM) [14]. The study
of RFIMs in physics often focuses on critical temperature
phenomena [15] or metastable states and hysteresis loop
phenomena at zero temperature [16,17]. Instead of using the
notion of the thermodynamic temperature, where individuals
probabilistically flip in a nonpreferred direction (see, for
example, Refs. [18,19]), we chose to set the thermodynamic
temperature to zero and study the effects of mixing on the
dynamics.

We simulate our model on a two-dimensional lattice, with
global mixing. We implement mixing by allowing individuals
to exchange places within the network at rate μ (relative to
the update rate). The importance of mixing in sociological and
ecological studies has been demonstrated in other contexts
[20–23]. Introducing global mixing on a two-dimensional
lattice is similar in concept to using a “small-world” network
[24]. Both cases have regular connections and random global
connections; the difference is that we implement random
global connections by switching individuals.

We simulate behavior change by either choosing an indi-
vidual at random to update or mixing two individuals in each
step of the simulation. Mixing consists of exchanging two
randomly chosen individuals rather than updating in a given
simulation step, with probability μ/(1 + μ), so that we have an
average of μ switches per update. We increment the clock by
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1/N per update event. This gives us update events at rate 1 per
individual and mixing events at rate μ per individual. When
we mix individuals, we exchange their states and thresholds,
leaving the network otherwise unchanged. A synchronous
process or a pure Poisson process would be expected to give
qualitatively similar results, but this asynchronous process is
simpler to simulate and can be analyzed using an ordinary
differential equation (ODE) framework derived from master
equations.

Most analytical results in the field of TMs and RFIMs are
obtained using mean-field approximations [25,26]. This can
be achieved either by considering a complete network (where
every node is a neighbor of every other node) or by setting the
mixing rate μ � 1.

The intermediate mixing case μ ∼ 1 is not so easily treated.
If we write equations for the moments of different order
for the distribution of states among individuals, we get a
hierarchical system of coupled equations [26]. There are
then various methods to “close” the system by approximating
higher moments in terms of lower moments [27–29].

In Ref. [30], the authors considered a MR model and
concluded that the behavior of their system resembles the
movement of a Brownian particle in a potential field that is
unknown a priori. We describe such an “effective potential”
function for our threshold model and calculate the analytical
potential form for the mean-field version of the model.

We can use the effective potential to provide an additional
perspective on the dynamical properties of the system. The
bifurcation where the system changes from having one stable
equilibrium to two, for example, corresponds to a change from
a single-welled to a double-welled effective potential function.
In terms of an Ising-like model, this would correspond to a
phase transition of the first order. This bifurcation is relevant
from a sociological point of view, since a transformation from
a potential consisting of two wells to a potential consisting of
one well, due to a change of mixing rate, could give rise to
sudden abandonment or adoption of a social norm. In contrast,
if such transformation does not occur, even when one well
is much deeper than the other, this might help to explain
why a human society sometimes continues to support a fairly
unpopular social norm for many years [8].

In this paper we explore the dynamics of this system using a
Gaussian threshold distribution. It is not necessary to truncate
the distribution, since we can simply assume that if the thresh-
old is <0 (or >1), an individual will always be updated to its
preferred state independent of its neighborhood configuration.
We expect other flexible distributions to give similar qualitative
results. For example, even uniform distributions show the same
basic bifurcations that we explore here [2]. We have also
tried simulations with bimodal superpositions of Gaussians
and again have seen qualitatively similar results.

Here is how we organize the rest of the paper. First, we
consider the mean-field dynamics, which are given by the
fast-mixing and large-scale (N � 1) limits. Then we consider
the intermediate mixing rates and state the main results of
our paper: we discuss the bifurcation phenomena found in
the TM, and we demonstrate the appearance of a manifold in
the dynamics that is approached by any trajectory of the TM.
Finally, we interpret our main results from a sociological point
of view and draw conclusions.

II. MEAN-FIELD APPROXIMATION

First, consider the case in which the neighborhood size is
so large that each spin is connected with all other spins in
the network. In this case, we recover Granovetter’s threshold
model for collective behavior [2], with dynamics in which the
probability of a spin being updated from minus to plus is given
by P (↑|y) = (1 − y)F (y), where y denotes the proportion of
plus spins and F (·) is the cumulative distribution function of
the thresholds’ PDF f (x):

F (x) =
∫ x

−∞
f (ξ ) dξ. (1)

The probability of a spin being flipped in opposite direction
from plus to minus is P (↓|y) = y[1 − F (y)]. In this case,
master equations can be written in terms of the probability
function p(yk,t) (yk = k/N), which provides the probability
to find the TM in a state with k spins in a plus state and N − k

spins in a minus state at a given moment of time t :

dp(yk,t)

dt
= P (↑|yk−1)p(yk−1,t)

+ P (↓|yk+1)p(yk+1,t) − P (�|yk)p(yk,t),

k = 0, . . . ,N, (2)

where P (�|yk) = P (↑|yk) + P (↓|yk).
Letting N → ∞ and scaling the time as t → Nt , we can

treat the discrete variable yk as continuously changing y ∈
[0,1] and transform Eq. (2) to the Hamilton-Jacobi equation,
which is a first order partial differential equation:

∂p(y,t)

∂t
= − ∂

∂y
{[F (y) − y]p(y,t)}. (3)

During such transformation, the diffusive terms, consisting of
second-order partial derivatives, vanish due to the large-scale
limit N � 1.

If the initial configuration is strictly defined such that
p(y,0) = δ(y − y0), where δ(·) is the Dirac delta, the solution
of Eq. (3) is given by the following ODE (see pp. 53–54 of
Ref. [31]):

ẏ ≡ dy

dt
= F (y) − y, y(0) = y0. (4)

The equilibria of this system are all values y∗ for which
F (y∗) = y∗.

Notice that Eq. (4) can also be written in terms of a potential
function: V (x) = − ∫ x(F (ξ ) − ξ ) dξ , such that dy

dt
= −V ′(y).

Thus, the equilibrium points can be also defined by the extrema
of V (y).

We now consider a case where each individual’s updates
depend on the states in a finite neighborhood. First, simulations
of the TM on a two-dimensional lattice with eight nearest
neighbors for each individual and with no mixing among
them reveal complex patterns (see Fig. 1 and Video 1 from
the Supplemental Material [34]). This figure presents initial,
intermediate, and final states of the lattice for four different
neighborhood sizes, but with identical assignments of states
and thresholds. We see that increasing neighborhood size can
shift the outcome of the system’s dynamics from a low level of
conformity to a very high level. Moreover, the equilibrium
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FIG. 1. (Color online) Simulations of the threshold model (TM)
on a two-dimensional lattice of size 1002 with no mixing among
individuals and different neighborhood sizes. The thresholds are
normally distributed with the mean 0.45 and standard deviation 0.3.
The initial pattern of thresholds and initial states is the same for all
simulations shown. Activated individuals are shown in orange (dark).
The ∞ symbol denotes an equilibrium, which is reached in the TM.

distribution preserves some noticeable clustering for small
neighborhood sizes.

However, in the large-scale (N → ∞), fast-mixing (μ →
∞) limit, the behavior of the TM can still be described
analytically by a mean-field model, in which a spin and all
its neighbors are chosen de novo at each update event.

The probability that a randomly selected individual will
choose to adopt is equal to the probability that the activation
level of its randomly selected neighborhood exceeds its
threshold. In a regular network where each individual has n

neighbors, this is given by

Fn(y) =
n∑

k=0

F

(
k

n

)
Ck

ny
k(1 − y)n−k, (5)

where Ck
n = n!

k!(n−k)! is a binomial coefficient (see Ref. [14]).
Then Eqs. (2)–(4) remain valid for this system once we
substitute Fn(y) for F (y), and they give us the dynamics
of the TM with finite neighborhood size in the mean-field
approximation. [This approach also works for networks of
variable degree; if neighborhood sizes are distributed with
probability density P(n), we average over the distribution to
get FP = ∑∞

n=0 P(n)Fn(y).]
Figure 2 illustrates the difference between the functions (5)

and (1) as well as the difference in the mean-field dynamics
of the TM for different neighborhoods. Parameters of the
thresholds’ PDF f for Fig. 2 were chosen in such a way that
there are two stable equilibria for large neighborhoods and
only one stable equilibrium for small neighborhoods. Different
neighborhood sizes can lead to very different outcomes, even
when distributions and initial conditions are the same. For
example, in simulations starting with everybody adopting the
behavior [y(0) = 1], the TM reaches a high equilibrium (few
individuals change), when neighborhood size is large, but a
low equilibrium (almost everybody rejects the behavior) when

0.16
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0

0.08

V
(y

)

dy
/ 

  

y

dt

FIG. 2. (Color online) The mean-field dynamics of the TM in
the phase plane (y,dy/dt) for different neighborhood sizes: n = 4
[magenta (light)], 12 [red (medium)], and 24 [green (dark)]. The
dashed curve corresponds to the case of infinitely large neighborhood
size. The corresponding potential functions Vn(y) are shown in the
inset. The thresholds’ PDF is Gaussian with the mean 0.6 and
standard deviation 0.225. The crosses show the results of numerical
simulations of the TM on a two-dimensional lattice of the size 1002

at mixing rate μ = 4 and y(0) = 1.

neighborhood size is small. Note that simulations done on a
two-dimensional lattice of size 1002 at mixing rate μ = 4 give
a good approximation to the large-scale, fast-mixing limit in
this case; later we will show that this is not true for smaller
mixing rates, though.

In case of a Gaussian distribution for the thresholds, the
curve y ′ = Fn(y) has up to three crossings with the diagonal
y ′ = y. If there is only one crossing with the diagonal, there
exists a globally stable equilibrium y− ∈ [0,1]. If there are
three crossings, we have three equilibrium points, which we
denote as y−, y∗, and y+, such that y− < y∗ < y+. Two of
them, y±, are stable equilibria, and one of them, y∗, is an
unstable equilibrium.

We can define a potential, analogous to the mean-field case:
Vn(y) = ∫ y[Fn(ξ ) − ξ ] dξ . Then y± are the minima and y∗
is the maximum of Vn(y); see Fig. 2 (inset). The case of two
crossings represents the bifurcation point between these two
generic cases.

If the mean of the Gaussian distribution is not exactly
0.5, the potential function Vn(y) is asymmetric, with one well
deeper than the other. Without loss of generality, we assume
that the norm is intrinsically unpopular (i.e., the mean of the
threshold distribution >0.5), so that the “lower” equilibrium
y− corresponds to the deeper well, and the “upper” equilibrium
y+ to the shallower well, when it exists. These values refer to
the case where μ → ∞. For clarity, we will sometimes add
∞ as a superscript.

III. INTERMEDIATE MIXING

Simulations show that reducing the mixing rate away from
the fast-mixing limit has a similar qualitative effect to reducing
neighborhood size (as seen in Fig. 2). In the case where the
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FIG. 3. (Color online) The probability p+ that the TM will
approach the upper equilibrium as a function of μ or scaled μ/L

(the inset). The TM is on a two-dimensional lattice of size N = L2

with the neighborhood 8. The thresholds’ PDF is Gaussian with mean
0.55 and standard deviation 0.225. Different colors (shades) stand for
different initial values y(0), while the symbols stand for different
values of L (see the legend in the bottom right corner). In the main
figure the points with y(0) = 0.71 are shown in cyan (light), with
y(0) = 0.69 in blue (dark). In the inset overlapping points in the
middle correspond to y(0) = y∞

∗ , the ones above them to y(0) = 0.69,
and the ones below them to y(0) = 0.66. The bifurcation value
μ̃(y(0) = 0.69) ≈ 1.556 is indicated. To estimate the probability, we
performed 105 simulations with different random initial individual
states and thresholds and update order.

mean-field system has one stable equilibrium, reducing mixing
rates does not lead to a qualitative change in the dynamics. In
the case where the mean-field system has two stable equilibria,
as the mixing rate gets smaller we often find a bifurcation to
a single equilibrium; i.e., the equilibrium with the shallower
potential well disappears.

We consider a two-dimensional lattice, with initial activa-
tion level y(0). If we simulate, starting from a value between
the two stable equilibria, the system will move to the upper
equilibrium with probability p+; otherwise it moves to the
lower equilibrium. The result depends on the random selection
of thresholds, initial states, and the order in which sites are
updated.

Figure 3 shows how the probability p+ depends on the
mixing rate μ, using two different scaling approaches. In either
case, as we move away from the fast-mixing case (from right
to left on the figure), the system becomes increasingly certain
to end in the deeper well, and eventually the shallower well
disappears altogether.

The main picture of Fig. 3 shows the probability p+ vs μ

for values of y(0) > y∞
∗ . In this case the system stops in the

shallow well for large values of μ and moves to the deeper
well for smaller values. This transition becomes steeper as the
size of the network increases. The curves for a given starting
point intersect where p+ = 1/2. That is to say, for a given
value of μ, the value of y(0) that falls “in the middle” of the

0.2 0.4 0.6

0.
8

1.
0

µ~

FIG. 4. The dependence of y
μ
× on μ. The TM is posed on a two-

dimensional lattice of size 2002 with neighborhood 8 and Gaussian
distribution of thresholds with the mean 0.55 and standard deviation
0.225. The extrapolation curve, shown by the dashed line, gives
μ̄ = μ(yμ

× = 1.0) ≈ 0.168.

two wells, so that the system is equally likely to go to either
one, does not change with lattice size. We call this value y

μ
×,

because it is related to the unstable equilibrium y
μ
∗ , but not

equivalent (as we will see below). The dependence of y
μ
× on μ

has a hyperbolic shape and its minimal value μ̄ is reached at
y

μ
× = 1, which is shown in Fig. 4.

The inset in Fig. 3 shows the same data, with p+ plotted
against a scaled version of the mixing rate μ/L (where
L = N1/2 is the length of the two-dimensional lattice). A
surprising pattern emerges. For y(0) = y∞

∗ , all of the curves
approximately align onto a single curve, with p+ → 1/2
for μ → ∞, as we expect, since we are approaching the
well-mixed case, where y(0) is the unstable equilibrium. For
other values of y(0), the curves do not intersect in this scaling:
instead, as N gets larger, the system becomes less likely to
“switch” to the equilibrium on the other side of y∞

∗ .
If we visualize the trajectories in the phase subspace

(y,dy/dt), we find that all of them approach the same curve
F

μ
n , shown in Fig. 5, presumably because they are collapsing

onto a lower-dimensional slow manifold. Thus, the behavior
of the TM can be well approximated by the ODE: dy/dt =
F

μ
n (y) − y, on some time interval t ∈ [t1,∞), which is similar

to Eq. (4), where F∞
n ≡ Fn. The equilibrium points y

μ
∗ can be

determined as F
μ
n (yμ

∗ ) = y
μ
∗ and the effective potential can be

introduced by V
μ
n (y) = − ∫ y[Fμ

n (ξ ) − ξ ] dξ . Thus, we can
describe the behavior of the TM qualitatively, by studying the
properties of the manifold-projection curve F

μ
n .

When y approaches 0 or 1, mixing does not affect the
dynamics. Therefore, we can construct at least part of the curve
F

μ
n (for any value of μ) by simulating trajectories starting from

y(0) = 1 and y(0) = 0. When there is only one equilibrium in
[0,1], this method generates the whole projection curve. When
there are two stable equilibria, this method generates only the
part “outside” them. Completing the curve requires that we
start simulations from one or more intermediate initial points
y(0) ∈ (0,1). In fact, we need only one additional starting
point, which is precisely y

μ
×, since any trajectory initiated at

that point goes through the point y
μ
∗ on the curve F

μ
n to the

upper or lower equilibrium with equal probability one half.
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FIG. 5. (Color online) The projection curve F μ
n on a two-

dimensional lattice of size 8002 with neighborhood 8 and the Gaussian
distribution of thresholds (the mean 0.55 and standard deviation 0.225
and mixing rate equals 0.278). The trajectories, shown in red (thin)
lines, start from y(0) = i/10 (i = 1, . . . ,9), while the green (solid)
curve consists of the trajectories initiated at y(0) = 0, y(0) = 1 and
y(0) = y

μ
× = 0.76. Initially, the states and thresholds are distributed

randomly among individuals, hence all initial points fall along the
curve Fn(y) ≡ F ∞

n (y) (dashed curve).

Note that if we take the minimal mixing rate μ̄ (see Fig. 4),
F

μ
n will have two fixed points, one of them will be a double

root of F
μ
n (yμ

∗ ) = y
μ
∗ , which corresponds to the bifurcation,

described above.
For mixing rates μ < μ̄, the system will always move

towards the lower equilibrium y
μ
−. We therefore explore the

“transition time” TR: how long it takes to move from the fully
activated state y(0) = 1.0 to some intermediate activation level
y that belongs to the basin of attraction of the lower equilibrium
for any mixing rate (for example, one can take y = y∞

∗ as in
Fig. 6).

From simulations, we see that the distribution of transition
times becomes narrower for larger N ; see the inset of Fig. 6.
Hence, it is important to look how the mean value 〈TR〉 changes
for N � 1. It turns out that the dependence 〈TR〉 vs μ is con-
cave and has a minimum at some intermediate value μ̂. We see
that it becomes arbitrarily large for small mixing rates and ex-
ponentially decreases as μ approaches μ̂. From the other side
the value 〈TR〉 increases as μ becomes closer to μ̄; see Fig. 6.

The minimum in the transition-time curve can be explained
in terms of two countervailing effects of increased mixing.
When the mixing rate is very slow, any changes in behavior
take a long time to spread through the lattice. When the
mixing rate is high, for our parameters, exchange between
neighborhoods tends to preserve the “upper equilibrium,”
leading to an exponentially slow transition on the finite lattice
(and no transition at all for the infinite system); see Video 2
from the Supplemental Material [34]. Thus, the most rapid
transition from the activated state to the lower equilibrium
occurs at an intermediate value.

IV. CONCLUSIONS

Offering an explanation why collective behavior can shift
abruptly from avoidance to adoption of an alternative, or vice
versa, Ref. [2] provides an example where a slight change
in distribution of individual thresholds leads to completely
different outcomes: a system initially at one stable equilibrium
switches to another one due to a change of the threshold of one

FIG. 6. (Color online) The mean transition time 〈TR〉, necessary
for the TM to evolve from complete activation y(0) = 1.0 to a
given intermediate value y(TR) = y∞

∗ ≈ 0.6752. The TM is posed
on a two-dimensional lattice of size N = L2 with neighborhood 8
and Gaussian distribution of the thresholds with the mean 0.55 and
standard deviation 0.225. The inset illustrates the distribution of TR

at μ = 0.1 for L = 100 [green (light)], 200 [magenta (medium)], and
400 [blue (dark)].

individual. This change can be visualized as a change in the
shape of the Fn curve, which we call the “activation curve.” We
investigate other factors that can change this curve and lead
to similar phenomena, including abrupt changes in outcome
when an equilibrium disappears.

We model a population on a lattice, with a finite interaction
neighborhood, and “mixing,” implemented by exchanging ran-
dom individuals. To disentangle the effects of neighborhood
size and “locality,” we first considered a lattice with finite
neighborhoods in the infinite-mixing limit. We showed that
the effect of finite neighborhoods is to “flatten” the activation
curve, often leading eventually to the elimination of the
“weaker” equilibrium, as neighborhood size gets smaller.

We then consider the effect of “locality,” by reducing
the mixing rate to be of the same order as the update rate.
This system is harder to analyze, but we show that it tends
to converge towards a manifold, whose projection can be
interpreted in a way similar to the activation curve. This
interpretation allows us to define an effective potential in
the finite mixing case, which can aid in qualitative analysis.
We find that the effect of locality on the projection curve is
similar to the effect of finite neighborhood size: it flattens the
curve and eventually leads to the disappearance of the weaker
equilibrium.

The flattening due to finite neighborhood size (Fig. 2) can be
understood in terms of averaging. If each individual evaluates
a random, finite subset of the population when updating, the
realized activation curve is a weighted average of the original
curve. This averaging tends to flatten out curvature: in the
limit of considering a single neighbor, the activation curve
becomes a straight line. Finite mixing has a similar effect
(Fig. 5). Individuals’ states will be correlated with those of
their neighbors, since they are responding to each other. This
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increases the variance in neighborhood activation perceived
by individuals, for a given value of the mean activation,
accentuating the effect of averaging and further smoothing
the activation curve.

Here we, as others in the past [14,26], use the mapping
between the threshold model and the random field Ising model
so that it is possible also to apply tools from statistical physics
to the question. Another possibly useful analogy can be made
between the TM and a spin gas. We neglect the structure of
the network and consider particles stochastically moving in
uniform medium and affected primarily by nearby particles.
In this case, the mixing rate can be associated directly with
thermodynamic temperature. There is then an analogy between
the tendency of all spins to be at the lower equilibrium for
small mixing rate in the original system and low-temperature
Bose-Einstein condensation in the spin gas [32]. This mapping
may be worth future study.

From a sociological point of view, mixing is associated
with the rate of information flow in a given society or people
mobility. We might imagine “activists” who have high mixing
rates, and who are eager to change the prevalent behavior.
We have seen that large mixing rates can actually prevent the
system from switching to a desirable equilibrium, so that an un-
popular social norm persists, while low mixing rates facilitate
the abandonment of the social norm. However, very low mixing
rates make the transition very slow, so that in many cases the
transition will happen fastest at intermediate mixing rates.
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APPENDIX A: ISING MODEL FRAMEWORK

In our model, each node i ∈ {1 . . . N} of the network has a
state (or spin) si and a (constant) threshold Ti . The classical
Ising model translates to a majority rule (MR) model, where
all thresholds are exactly 0.5: a spin tends to flip to the state
where it will be aligned with more than one half its neighboring
spins; see ch. 8 of Ref. [26]. This system is Hamiltonian with
the energy function H = − 1

2

∑
i;j∈〈i〉 sisj , where i ∈ 1 . . . N ,

and 〈i〉 refers to the network neighbors of node i.
When the thresholds are randomly distributed with a given

probability distribution function (PDF), the model becomes
equivalent to the spin system under a magnetic field which

describes effects of locality between spins, and such that the
strength of nearest interactions depends on the connectivity of
the network. In this case, the system also obeys Hamiltonian
dynamics and its energy function has the form

H = −
∑

i;j∈〈i〉

sisj

2ni

+
∑

i

(2Ti − 1)si,

where ni is the number of connections for a spin si and Ti

is a given threshold of it. Thus, the induced magnetic field is
hi = 2Ti − 1.

To simulate the TM dynamics, the following underlying
update rule is posed for each update event:

si �→ sign

(
−∂H

∂si

)
= sign

⎛
⎝ 1

ni

∑
j∈〈i〉

sj − hi

⎞
⎠ , (A1)

while the thermodynamic temperature, determining the rate of
random flips of spins, is set to zero. Hence, we use only the
first part of the Metropolis algorithm [33] that consists only
of Eq. (A1) in order to simulate the dynamics of the TM. The
second part when the spin might be flipped even if it was not
updated due to Eq. (A1) is omitted.

Note that Eq. (A1) indeed allows a sociological interpre-
tation of the TM: if the proportion of plus spins (individuals
adopting the social norm) in the neighborhood of a spin si is
written as y◦

i = 1
ni

∑
j∈〈i〉

1+sj

2 , such that ni is the connectivity
of a spin si , then Eq. (A1) transforms to the following
form: si �→ sign(y◦

i − Ti). In the particular case of the MR,
it translates to the simplest form: si �→ sign

∑
j∈〈i〉 sj =

sign(y◦
i − 1/2).

APPENDIX B: TECHNICAL DETAILS OF SIMULATIONS

In our simulations, individuals’ initial states and thresholds
are independently identically distributed with a given initial
activation level y(0) and PDF of thresholds. After that,
we initialize the simulation process, using the Metropolis
algorithm. At each event, we either update with probability
(1 + μ)−1 the state of a randomly chosen individual or
exchange with complementary probability the locations of two
randomly chosen individuals. We associate the time only with
update events, by defining the time quanta 1/N . We say that
the TM is located near the equilibrium point if it fluctuates
near it over a sufficiently long period of time, compared with
the time of observation.

To construct Figs. 3 and 4, we considered the TM with y∞
− <

y(0) < y∞
+ . In this case, we expect the system to move toward

either the lower or upper equilibrium. We run the simulations
until they traverse 85% of the distance from the starting point
to one of the mean-field equilibria; p+ is the probability that
it has moved toward the upper equilibrium.
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