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A large number of published studies have examined the properties of either networks of citation among
scientific papers or networks of coauthorship among scientists. Here we study an extensive data set covering
more than a century of physics papers published in the Physical Review, which allows us to construct both
citation and coauthorship networks for the same set of papers. We analyze these networks to gain insight into
temporal changes in citation and collaboration over the long time period of the data, as well as correlations and
interactions between the two. Among other things, we investigate the change over time in the number of publishing
authors, the number of papers they publish, and the number of others with whom they collaborate, changes in the
typical number of citations made and received, the extent to which individuals tend to cite themselves or their
collaborators more than others, the extent to which they cite themselves or their collaborators more quickly after
publication, and the extent to which they tend to return the favor of a citation from another scientist.
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I. INTRODUCTION

Citation networks [1,2] and coauthorship networks [3–5]
are distinct network representations of bodies of academic
literature that have both been the subject of quantitative
analysis in recent years. In a citation network the network
nodes are papers and a directed edge runs from paper A to paper
B if A cites B in its bibliography. In a coauthorship network the
nodes are authors and an undirected edge connects two authors
if they have written a paper together. Both kinds of network
can shed light on habits and patterns of academic research.
Citation networks, for instance, can give a picture of the topical
connections between papers, while coauthorship networks can
shed light on patterns of collaboration such as the size of col-
laborative groups or the frequency of repeated collaboration.

In this paper we analyze networks of citation and coau-
thorship derived from a large data set made available by the
American Physical Society, which consists of bibliographic
and citation data for the Physical Review family of physics
journals and spans the entire history of those journals, more
than 100 years, from their inception in 1893 to 2009 [6]. The
data set is unusual both because of the length of time it spans
and also because it contains information on both citation and
coauthorship for the same body of literature. A number of pre-
vious analyses of the data have been published [7–10], but our
work adopts a somewhat different viewpoint from other studies
in focusing on the interactions between authorship and citation,
as well as on long time-scale patterns in the data. In particular,
the simultaneous availability of citation and coauthorship data
allows us to associate citations not only with papers but with
individual authors so that we can tell whether or not a particular
author cites another. Combining this insight with the temporal
aspects of the data we find, for example, that researchers cite
their own or coauthors’ papers more quickly after publication
than they do the work of others; that authors show a strong
tendency to return the favor of a citation from another author,
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especially a previous coauthor; that, contrary to some recent
conjectures, having a common coauthor does not make two
authors likely to collaborate in future [11–13]; and that there
has not (at least within the journals we study) been any increase
over time in self-citations, the number holding roughly
constant at about 20% of all citations for over a century.

II. DATA SET

In its raw form the data set we study contains records
for 462 090 papers published in the various Physical Review
journals, each identified with a unique numerical label. Data
for each paper include paper title, date of publication, the
published names and affiliations of each of the authors, and a
list of the numerical labels of previous Physical Review papers
cited. The data set is unusual in two respects: the long period
of time it covers, which spans 116 years from 1893 to 2009,
and the fact that it includes citation data and hence allows us to
compare coauthorship patterns with citations, at least for that
portion of the citation network that appears in the Physical
Review; citations to and from non-Physical-Review journals,
of which there are many, are not included.

Before performing any analysis, however, there are some
hurdles to overcome. Foremost among them is the fact that the
name of an author alone does not necessarily identify him or
her uniquely. Two authors may have the same name or the same
author may be identified differently in different publications
(with or without a middle initial, for example). Unlike
some journals, such as those of the American Mathematical
Society [14], the Physical Review does not maintain unique
author identifiers that can be used to attribute authorship
unambiguously. As a first step in analyzing the data, therefore,
we have processed it using a number of disambiguation
techniques in order to infer actual author identity from author
names as accurately as possible. Details of the disambiguation
process are given in the Appendix.

In addition, we have performed a modest culling of the
data to remove outliers, the most substantial action being the
removal of all papers with 50 or more authors, which are
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TABLE I. Mean values of some statistics for our data set, with
and without papers having over 50 authors.

Papers with 50
Measurement All papers authors or fewer

total papers 460 889 457 516
total authors 235 533 226 641
mean authors per paper 5.35 3.34
citations made per paper 10.16 10.16
mean collaborators per author 59.44 17.24
mean papers per author 10.47 6.74

primarily recent papers in experimental high-energy physics.
(Almost all of them, about 91%, were published in either
Physical Review D, which covers high-energy physics, or
Physical Review Letters; the remainder were in Physical
Review C, which covers nuclear physics.) As we show shortly,
though papers with more than 50 authors are only a small
fraction of the whole (about 0.7%), their inclusion skews
results for the last 30 years substantially by comparison with
the rest of the time period. For results whose outcome depends
strongly on the presence or not of these papers, we quote
results both with and without, for comparison. Table I gives
some basic parameters of the resulting data set.

III. ANALYSIS

In the next few sections we present a variety of analyses
of the Physical Review data set. We begin by looking at some
basic parameters of authorship and coauthorship.

A. Authorship patterns

Figure 1 shows a cumulative distribution function for the
number of papers an author publishes, aggregated over the
entire data set. That is, the figure shows the fraction of authors
who published n papers or more as a function of n, which
is a crude measure of scientific productivity. The axes in the
figure are logarithmic and the approximate straight-line form
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FIG. 1. (Color online) Probability that an author wrote more than
a given number of papers. Red circles indicate values calculated from
the full data set; black squares are values from the data set after papers
with 50 or more authors have been removed. The plot is cut off around
500 papers because there is very little data beyond this point.

of the distribution function implies that scientific productivity
follows, roughly speaking, a power law, a result known as
Lotka’s law, first observed by Lotka in 1926 [15] and confirmed
by numerous others since. (It has also been suggested that
the distribution is log-normal rather than a power law [16].
It is known to be hard to distinguish empirically between
log-normal and power-law distributions [17].) In Fig. 1 we
give separate curves with and without the papers that have
50 or more coauthors. As the figure shows, the difference
between the two is primarily in the tail of the distribution,
among the authors who have published the largest number
of papers, indicating that a significant fraction of the most
productive authors are those in large collaborations. In fact, if
one compiles a list of the 50 authors publishing the largest
numbers of papers, only one of them remains on that list
after papers with 50 or more authors are excluded. This
probably results from a combination of two effects: First,
larger groups can publish more papers simply because they
have more people available to write them and second, a
large and productive group of collaborators contributes many
apparently prolific authors to the statistics—each of the many
coauthors separately gets credit for being highly productive.
It is precisely because of biases of this kind that we exclude
papers with many authors from some of our calculations.

We can remedy this problem to some extent by measuring
productivity in a more sophisticated fashion. Rather than just
counting up all the papers an author was listed on, we can
instead divide up the authorship credit for a paper among the
contributing authors so that, for example, each author on a two-
author paper is credited with half an authorship for that paper.
This reduces significantly the impact of large collaborations on
the statistics, though the distribution of the number of papers
authored is still highly skewed, with certain authors producing
much more science than others. A common way to visualize
such skewed distributions is to use a Lorenz curve, a plot of
the fraction of papers produced by the most prolific authors
against the fraction of authors that produced them. Such a
curve is shown for our data set in Fig. 2; the sharp rise in
the curve at the left-hand side indicates the concentration of
scientific productivity among the most productive scientists.
Note, for instance, that productivity appears roughly to follow
the so-called 80-20 rule, such that about 80% of the output
is produced by the 20% most productive authors. Notice also
that there is almost no difference in the Lorenz curves with
and without the 50-plus-author papers, precisely because we
have divided up the authorship credit so that the effect of
many-author papers is diminished.

The distribution can be further quantified by measuring a
Gini coefficient, which is defined as the excess area under the
Lorenz curve compared to the case where everyone has the
exact same productivity. In our data set, the Gini coefficient
is 0.70, a relatively large figure as such coefficients go,
indicating high skew. (Gini coefficients for wealth inequality,
for example, which is the context in which such coefficients
are perhaps best known, rarely rise above 0.6, even in the most
inequitable countries.)

The data set also allows us to measure the productivity of the
entire field of physics over time, something that cannot be done
with many other data sets. Figure 3 shows the total number
of papers published in the Physical Review in five-year time
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FIG. 2. (Color online) Fraction of papers written by the most
prolific authors (with credit for multi-author papers divided among
coauthors, as described in the text). The red (grey) curve represents
values calculated from the full data set; the black curve represents
values after papers with fifty or more authors have been removed.
Note that the two curves are almost indistinguishable. The dashed
line indicates the form the curve would take if all authors published
the same number of papers.

blocks since 1893. With the important caveat that these results
are for a single collection of journals only and one moreover
whose role within the field has evolved during its history from
provincial upstart to one of the leading physics publications
on the planet, we see that there is a steady increase in the
volume of published work, which appears roughly to follow
an exponential law (a straight line on the semilogarithmic
scales of the figure). An interesting feature is the dip in the
curve in the 1940s, which coincides with the second World
War, followed by a recovery in the 1950s, perhaps attributable
in part to increased science funding in the postwar period. The
combined result of these deviations, however, is only to put
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FIG. 3. (Color online) Number of papers published in each five-
year block. Red circles indicate numbers calculated from the full data
set; black squares are calculated from the data set after papers with
50 or more authors have been removed. Note that the two values are
almost indistinguishable. The straight line is the best-fit exponential.
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FIG. 4. (Color online) Number of unique authors who published a
paper in each five-year block. Red circles indicate numbers calculated
from the full data set; black squares are calculated from the data set
after papers with 50 or more authors have been removed. Note that
the two values are almost indistinguishable. The straight line is the
best-fit exponential.

the curve back on the same path of exponential growth after
the war that it was already on before it. In his early studies of
secular trends in scientific output, Price [18,19] noted a similar
exponential growth interrupted by the war and measured the
doubling time of the growth process to be in the range from
10 to 15 years. The best exponential fit to our data gives a
compatible figure of 11.8 years.

Figure 4 shows the corresponding plot of the number of
unique authors in the data set in each five-year block as a
function of time. Like the number of papers published, the
number of authors appears to be increasing exponentially and
with a roughly similar (but slightly smaller) doubling time of
10.4 years. Thus, despite the marked increase in productivity
of the field as a whole, it appears that each individual scientist
has produced a roughly constant, or even slightly decreasing,
number of papers per year over time.

The natural complement to measurement of the number of
papers per author is measurement of the number of authors per
paper, i.e., the size of collaborative groups. Figure 5 shows the
mean number of authors per paper in our data set as a function
of time and there is a clear increasing trend throughout most of
the time period covered, with the average size of a collaborative
group rising from a little over one a century ago to about
four today. A similar effect has been noted previously by, for
example, Grossman and Ion [3], for the case of mathematics
collaborations. In our calculations we have again calculated
separate curves with and without papers having 50 or more
authors and a comparison between the two reveals a startling
effect: While there is almost no difference at all between the
curves prior to about 1975, there is a large and rapidly growing
gap between them in the years since. Without these papers the
growth in group sizes has been slow and steady for decades;
with them it departs dramatically from historical trends after
the 1970s, indicating a large and growing role in physics (or
at least in physics publication) for big collaborations.

An alternative view of the same trend is given in Fig. 6,
which shows the number of unique coauthors an author has,
on average, during each five-year time block. Every coauthor
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FIG. 5. (Color online) Number of authors per paper averaged
over five-year blocks. Red circles indicate the full data set; black
squares are the data set after papers with 50 or more authors have
been removed.

in a time block is counted, even if he or she was also counted in
a previous time block (but previous coauthors are not counted
unless they are also coauthors in the new time block). As the
figure shows, this number has also risen significantly over the
past century, from a little over one to more than ten today (and
more than 60 if one includes collaborations with 50 or more
members). Since we only have data from the Physical Review,
it is likely that we miss some collaborators, so these numbers
are in practice only lower bounds on the actual numbers.

B. Citation patterns

Let us now add the citation portion of the data set to
our analyses and examine citation patterns over time in the
Physical Review, as well as interactions between citation and
coauthorship.

Figure 7 shows the average number of citations by a paper
and to a paper, over the time period covered by the Physical
Review data set. The black curve, the number of citations that
a paper makes, shows a steady increase over time—authors
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FIG. 6. (Color online) Average number of unique coauthors of
an author, averaged in five-year blocks. Red circles indicate the full
data set; black squares are the data set after papers with 50 or more
authors have been removed.
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FIG. 7. (Color online) Average numbers of citations made (black
squares) and received (red circles) per paper, in five-year blocks.

used to cite fewer papers and have been citing steadily more in
recent decades. One possible explanation for this phenomenon
is the increase in the volume of literature available to be cited,
although it has also been conjectured that authors have been
under greater pressure in recent decades, for example, from
journal editors or referees, to add more copious citations to
papers [20].

The red curve in Fig. 7 is the average number of citations
received by a paper, which shows more irregular behavior,
rising to a peak twice before dropping off in recent times.
A number of effects are at work here. First, if (as we will
shortly see) most citations are to papers in the recent past,
then a steady increase in citations by papers should lead to
an increase in citations to papers published slightly earlier.
Behavior of this kind has been observed in previous studies,
such as the comprehensive study by Wallace et al. using data
from the Web of Science [21]. The growth in number of
citations received cannot continue to the very end of the data
set, however, since the most recent papers are too recent to
have accrued a significant number of citations and hence we
expect a drop at the rightmost end of the curve, as seen in the
figure.

There is, however, also a notable dip in the red curve around
1970, whose origin is less clear. (It is not seen, for instance,
in the work of Wallace et al.) In examining the data for this
period in detail, we find that the dip in citations per paper is due
primarily to an increase in the number of papers published in
the Physical Review (which expanded considerably during this
period), while the number of citations received by those papers,
in aggregate, remains roughly constant. The increase in papers
published may have been in part a response to the general
expansion of US physics research during the 1960s, following
the establishment of the National Science Foundation, but the
data indicate that the greater volume of research did not, at
least initially, result in a greater number of citations received
and hence the ratio of the two displays the dip visible in Fig. 7.
However, the upward trend in the curve reestablishes itself
from about 1970 onward, suggesting that in the long run there
was an increase not only in the number of papers published,
but also in the number that are influential enough to be later
cited.
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FIG. 8. (Color online) Fraction of citations made more than a
given number of years after publication. Black diamonds include
all citations, blue squares are self-citations, red circles are coauthor
citations, and green triangles are distant citations.

It is interesting to compare the data for citations received
with the predictions of theoretical models for the citation
process. Perhaps the best known class of models are the
preferential attachment models [22], particularly the 1976
model of Price [23], a simple model in which the rate at
which a paper receives citations is assumed to vary linearly
with the number it already has. In its most naive application,
this model makes predictions that differ strongly from the
observations plotted in Fig. 7. The model predicts that the
largest number of citations should go to the oldest papers and
the smallest to the youngest, so that the red curve in the figure
should be monotonically decreasing. There are a number of
possible explanations for the disagreement. A popular theory
is that papers “age” over time, becoming less well cited as they
become older [24,25], perhaps because their field has moved
on to other things, because they have been superseded by more
advanced or accurate work, or because their results are so well
known that authors no longer feel the need to cite them. Were
this the case, most citations would be to recent papers and the
curve of citations received would mostly mirror the curve of
citations given, albeit with a time lag whose length would be
set by the rate at which papers age. An alternative theory, for
which there is some empirical evidence, is that preferential
attachment models do represent citation patterns quite well
within individual subfields [26], but not when applied to the
literature as a whole. A central parameter in the preferential
attachment models is the date of the start of a subfield, and
since different subfields have different start dates, the model
might be expected to work within subfields but not for the
overall data set.

Figure 8 tests the aging of papers within the Physical
Review data set by plotting the fraction of citations that are
to papers a certain time in the past. Let us focus for the
moment on the black curve, which includes all citations in
the entire data set. The figure shows that there does indeed
appear to be a strong aging effect, with the citation rate
dropping off approximately exponentially over time (which
would be a straight line on the semilogarithmic scales of the
plot). This finding is in agreement with previous studies of
aging [24], which also found exponential decay. An alternative
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FIG. 9. (Color online) Fraction of citations made, by type, in
five-year blocks. There were no citations made in the 1890–1894
block. Blue squares represent self-citations, red circles are coauthor
citations, and green triangles are distant citations.

interpretation of the data, however, is that there is no aging
occurring at all and that the drop in citations is a purely
mechanical effect that results from dilution of the literature:
In a small, young field there are only a few papers to cite and
hence each receives many citations; in an older field there are
more papers and so individual citation rates fall off. To the
extent that it has been tested, the latter theory appears to agree
well with available citation data and also with the prediction
of the preferential attachment models [27], so at present the
evidence for (or against) aging in our data set is inconclusive.

C. Interactions between citation and coauthorship

Perhaps the most interesting aspect of the Physical Review
data, however, is the window it gives us on the interplay
between citation and coauthorship. One way to probe this
interplay is to divide citations according to the collaborative
roles assumed by the authors of the citing and cited papers
and then compare the resulting citation patterns. In the present
work, we divide citations into three classes, following Wallace
et al. [28]: self-citations, where the citing and cited papers
shared at least one coauthor; coauthor citations, where at least
one author of the citing paper has previously collaborated with
at least one author of the cited paper (but there are no common
authors between papers, so that self-citations and coauthor
citations are disjoint); and distant citations, which includes all
citations other than self-citations and coauthor citations. (Other
authors who have examined citation and collaboration have
gone further and considered also citations between coauthors
of coauthors [28], but this proves computationally unfeasible
in the present case because of the size of the Physical Review
data set.) We emphasize that we only consider individuals
to be coauthors if they have previously coauthored when the
citation occurs. Coauthorship that comes after the citation is
not counted. Also our data are limited to the Physical Review,
so the number of coauthor citations will in reality be higher
than presented here, both because some citations are missing
from our data and because some coauthorships are.

Figure 9 shows the fraction of citations that fall into each
of the three classes as a function of the year of publication

012814-5



MARTIN, BALL, KARRER, AND NEWMAN PHYSICAL REVIEW E 88, 012814 (2013)

TABLE II. Mean time delay between a paper’s publication date
and the dates of the papers it cites.

Citation type Mean delay (years)

self-citations 4.12
coauthor citations 6.92
distant citations 9.02
all citations 7.89

of the citing paper. Roughly speaking, the three curves appear
flat over time. There is a modest increase in the fraction of
coauthor citations (the lowest, red curve in the figure), but this
can be explained by the increase in the number of coauthors
available for citation, shown in Fig. 6, which is of a similar
magnitude. In other respects, the rule of thumb seems to be that
a constant 20% or so are self-citations, 75% or 80% are distant
citations, and the small remaining fraction are to coauthors.

The distribution of time between the publication dates of
a new paper and the papers it cites is shown for the three
classes of citation in Fig. 8, as the blue, red, and green
curves. Here we do notice a significant difference between
the classes. In particular, the self-citations (in blue) fall off
faster than coauthor and distant citations. This implies that a
larger fraction of self-citations occur rapidly after publication,
compared with citations in the other classes. This is not
unexpected, given that a researcher presumably knows about
their own research sooner, and in more detail, than they know
about others’. We note also that coauthor citations are slightly
earlier than distant citations, which again seems reasonable.
One must be careful in the interpretation of these results,
however. An alternative explanation for the same observations
is that a paper can be cited by others long after the author
retires or leaves the field, which could make the average delay
for citations by others longer than that for self-citation. There
is no way to tell, purely from the delay statistics themselves,
which explanation is the better one.

Table II summarizes the mean delay to citation for the three
citations classes. We explore the differences between citation
classes further in the next section.

D. Self-citation and coauthor citation

Consider Table III, which gives the percentages of papers
that make or receive at least one self-citation or coauthor
citation, provided such a citation is possible. Nearly 70% of
papers cite at least one paper by the same author (or one
of the same authors, if there are several) and 60% of them
receive such a citation. These numbers may at first appear

TABLE III. Percentage of papers that make or receive at least one
citation of a given type.

Citation type Made (%) Received (%)

self-citation 68.9 60.3
coauthor citation 42.0 31.3
both 35.6 26.3
either 75.0 64.2
either given both possible 76.4 66.4

large and raise concerns, given the use of citation counts as
a measure of impact, that authors might be inflating their
counts by self-citing [29,30]. However, taken with the fact
that the number of citations per paper and the fraction that
are self-citations are both sizable, these large numbers are
not unexpected. Figure 9 shows that overall self-citation has
remained constant and moderate, around 20%, and that there
has been no sizable recent excess in self-citation.

A more interesting question is whether researchers have a
tendency to reciprocate citations by others. If author A cites a
paper of author B, does B return the favor by later citing A?
To address this question we measure the fraction of citations
of one author by another (excluding citations of one’s own
papers) that are reciprocated in one or more later publications.
We calculate separate figures for pairs of authors who have
previously coauthored a paper and those who have not and find
that 13.5% of citations between noncoauthors are reciprocated
when possible, while an impressive 43.8% of citations between
coauthors are reciprocated. (Keep in mind that no authors can
overlap between a citing and a cited paper for the citation
to be considered a coauthor citation and not a self-citation.)
Both these numbers are very high compared to the expected
reciprocity if citations were made uniformly at random, but
this does not necessarily imply a tit-for-tat return of citations.
A citation is presumptively an indication that two papers fall
in similar subject areas and thus the presence of a citation
greatly increases the chances that the authors are working
in the same area, which in turn increases the likelihood of
citation in general and therefore the chances of reciprocated
citation. In the case of previous coauthors, the chances of
working in the same field are likely even higher. Unfortunately,
we currently do not have any model of the citation process
detailed enough to make a quantitative prediction of the size of
this effect against which we could compare our measurements
to test for significance.

E. Transitivity

Transitivity, in the context of networks, refers to the
observation that “the friend of my friend is also my friend”
[31]. In the context of coauthorship, for example, it is observed
that if A has coauthored a paper with B and B with C, then
A and C are more likely also to have coauthored a paper. One
can define a so-called clustering coefficient that quantifies this
effect, measuring the average probability that the friend of
your friend is also your friend [32], and such coefficients have
been measured in many networks [12,33–35]. Typically one
finds that the values are significantly higher than one would
expect if network connections were made purely at random
and our coauthorship network is no exception. For the data
set studied here we find a clustering coefficient of 0.212,
which is comparable to other figures reported for coauthorship
networks [5].

In this case, however, the nature of the data set allows us to
go further. The conventional explanation for high transitivity
in networks relies on a triadic closure mechanism, under
which two authors who share a common coauthor are more
likely to collaborate in future, perhaps because they revolve
in the same circles, attend the same conferences, work at
the same institution, or are introduced to one another by
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FIG. 10. Probability of future coauthorship with another author
as a function of the number of shared coauthors. The number of
shared coauthors is counted at the time of first coauthorship or
the date of either coauthor’s last published paper, whichever comes
first.

their common acquaintance [11–13]. The present data set’s
time-resolved nature allows us to test this hypothesis directly.
We can calculate what fraction of the time individuals who
share a common coauthor but have not previously collaborated
themselves later write a paper together. When we make
this measurement for the Physical Review data we find the
fraction of such author pairs to be only 0.0345—a much
smaller fraction than the clustering coefficient of the whole
network reported above. One reason for this small figure is
that a large fraction of the transitivity seen in coauthorship
networks comes from papers with three or more authors,
which automatically contribute closed triads of nodes to the
coauthorship network. Such triads, however, are excluded from
our calculation of the probability of later collaboration. The
large difference between the two probabilities we calculate
implies that only a small fraction of the network transitivity
comes from true triadic closure processes.

Nonetheless, the triadic closure process does appear to be
present in our data set. Figure 10 shows the probability of future
coauthorship between two individuals as a function of their
number of common coauthors and we see that the probability
increases sharply, a finding that is consistent with previous
results [11,36].

IV. DISCUSSION AND CONCLUSIONS

In this paper we have analyzed a large data set from
the Physical Review family of journals, taking a network
perspective. Rather than focus solely on either citation or
coauthorship networks, as most previous studies have done,
we have instead combined the two, which allows us to study
questions about the ways in which people—and not just
papers—cite one another and the extent to which scientists
collaborate with those they cite or cite those with whom they
collaborate. The time span of the data set is unusually large,
covering more than a century of publication, which allows
us to study long-term changes in collaboration and citation
patterns that are not accessible with smaller data sets.

Our main findings are that the Physical Review appears
to be growing exponentially, with a doubling rate slightly
less than 12 years, and the number of citations per paper
within the journals also appears to be growing. The fraction
of self-citations and citations among coauthors is more or
less constant over time and authors tend to cite their own
papers sooner after publication than do their coauthors, who
in turn cite sooner than noncoauthors. We observe a strong
tendency towards reciprocal citations, researchers who cite
another author often receiving a citation in return later on,
with especially high rates for citations between coauthors.
Contrary to some previous claims [11–13], however, there
is only a small triadic closure effect in the coauthorship
patterns: Two researchers who share a common coauthor
but have never collaborated themselves have only a rather
small probability of collaborating in future, about 3.5%. This
number is nonetheless much higher than the probability for two
randomly chosen researchers and moreover increases sharply
as the number of common coauthors increases.

A limitation of our analysis is that the data we use come
from a single family of journals in a single field. There are,
however, some results for other journals and fields that suggest
that the patterns we observe extend beyond physics and the
Physical Review. In one recent study, for example, Huang
et al. [37] examined a collection of papers in computer science
drawn from the CiteSeer database of online preprints. They
found, as we also do, that the number of papers and number of
authors both increase roughly exponentially over time, while
the number of authors per paper and number of coauthors per
author increase roughly linearly. Wuchty et al. [38] examined
a large set of papers drawn broadly from the sciences and
engineering, using data from the commercial Web of Science
database (formerly the Science Citation Index). They observe
in particular that the average number of authors on a paper has
increased steadily over time, at least for papers with more than
one author, which again agrees qualitatively with our observa-
tions. Wagner-Döbler [39] studied a data set representing the
fields of mathematics, logic, and physics from 1800 to 1998
and found again that collaboration has increased over time,
albeit intermittently, and at a rate that depends on the field.

There are many other questions that could be addressed
with the data we have analyzed, the unusually long time
span and combination of publication and citation data opening
up a variety of possibilities. For instance, we know which
papers are published in which of the various Physical Review
journals and hence we have a crude measure of paper topic,
which would allow us to answer questions about how the
patterns of coauthorship and citation vary between fields
within physics. We could also study geographical variations
by making use of the data on authors’ institutional affiliations
[40]. Our analysis of long-term historical trends could also
be extended; for the researcher interested in the history of
US physics, there are no doubt many interesting signatures of
historical events hidden within the data. The data set also offers
the possibility of tracking the careers of individual scientists,
possibly over long periods of time, or of tracking research
on a particular topic. Finally, any of our analyses could be
extended to data sets that cover other journals or fields other
than physics, if and when such data become available. All of
these would make excellent subjects for future investigation.
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APPENDIX: DATA PROCESSING

As mentioned in the main text, we performed some
preprocessing on the raw Physical Review data to disam-
biguate author names and remove extreme outliers. This
Appendix describes the steps taken.

1. Author name disambiguation

The data were supplied in two blocks: (i) a list of papers
with associated information, such as authors, author affiliation,
journal, and year of publication, and (ii) a list of citations, using
unique paper identifiers that correspond to entries in the first
block. There are, however, no unique identifiers for authors that
are consistent between papers, making unambiguous author
identification difficult. Not all authors use the same form for
their name on every publication and there are many examples
of distinct researchers with the same name. Before using the
data set, therefore, we made an effort to associate names of
authors with unique people. As in previous work on author
disambiguation, our process starts by assuming every name
on every paper to represent a different individual [10], then
computes a number of measures of author similarity, and
assumes authors who are sufficiently similar by these measures
to be the same person. After completing this disambiguation
process we checked a subset of the results by hand to estimate
error rates for the process and found that it performs well.
Details are as follows.

Our approach relies not only on the author names
themselves to establish similarity, but also on collaboration
patterns and institutional affiliation, since authors with similar
names who have many of the same collaborators or who
are at the same institution are more likely to be the same
person. Affiliation information, however, like the author names
themselves, tends to be ambiguous and inconsistent, so our first
step is to combine affiliations that are deemed similar enough.
We measure similarity using a variant of edit distance applied
to the affiliation text strings, implemented using the Python
difflib library.

Once the affiliations are processed in this way, we process
the author names as follows.

(a) We combine all authors with identical names who share
an institutional affiliation. It appears to be uncommon for two
physicists at the same university to publish under identical
names, so this seems to be a safe step.

(b) We find author pairs with similar but not identical
names. Our criterion for similarity at this stage is that authors
should have identical last names and compatible first and
middle names (i.e., identical if fully written out or compatible
initials where initials are used). Also authors should not have
published together on the same paper (which rules out, for
example, family members with similar names who publish
together). For all pairs with similar names we then calculate a
further similarity measure based on how many affiliations they
share, how many coauthors they share, whether their full names
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FIG. 11. (Color online) Histogram of the number of papers with
a given number of authors. The vertical line falls at 50 authors and
corresponds roughly to the point at which the distribution deviates
from the power-law form indicated by the fit. The data for ten authors
and more have been binned logarithmically to minimize statistical
fluctuations.

are identical, and whether they have published in the same
journal. Authors with a high enough similarity are combined,
most similar pairs first.

We have tested the accuracy of this process by drawing two
lists at random from its output, the first containing 79 instances
in which authors with similar names have been combined into
a single author and the second containing 111 instances in
which they have not. We then performed, by hand, a blind
search—without knowing the choice the algorithm has made—
for publicly available on-line information about the names in
question, to determine whether they do indeed represent the
same or distinct researchers. We find the false positive rate to
be 3% (i.e., 3% of pairs are incorrectly judged to be the same
person when in reality they are distinct) and the false negative
rate to be 12%.

We also tested the effect on our results of the disambiguation
process by calculating a number of the statistics reported in this
paper both for the disambiguated data and for the raw data set
before disambiguation, in which we naively assume that every
unique author string represents a unique author and every pair
of authors with the same string are the same person. We found
substantial differences between the two in some of the most
basic statistics, such as total number of distinct authors: The
number was 328 938 in the raw data set, but fell to 235 533
after disambiguation. In contrast, some other statistics changed
very little, indicating that these are not particularly sensitive
to details of author identification. For example, the clustering
coefficient changes from 0.222 in the raw data set to 0.212 in
the disambiguated data set.

2. Data culling

In addition to author disambiguation we cull the data
according to a few simple rules. There are a number of papers in
the data set that have no authors listed, primarily editorials and
other logistical articles without scientific content. These we
remove entirely. As mentioned in the text, we also identify all
papers with 50 or more coauthors and many of our calculations
are performed in two versions, with and without these papers.
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The choice of 50 authors as the cutoff point was made by in-
spection of the distribution of author numbers shown in Fig. 11.
As the figure shows, the number of papers with a specific num-
ber of coauthors appears, roughly speaking, to follow a power
law (in agreement with some previous studies [41], but not
others [42]), but there is a marked deviation from the power-
law form for the highest numbers of coauthors, above about 50,
indicating potentially different statistical laws in this regime
and possibly different underlying collaborative processes.

We also removed from the data a small number of citations.
In a few cases a paper is listed as citing itself, which
we assume to be an error. In a number of other cases
papers cite others that were published at a later time, which
violates causality. These too are assumed to be erroneous
and are removed. Finally, the data indicate that some papers
cited the same other paper several times within the one
bibliography; such multiple citations we count as a single
citation.
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