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Reverse resonance in stock prices of financial system with periodic information
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We investigate the stochastic resonance of the stock prices in a finance system with the Heston model. The
extrinsic and intrinsic periodic information are introduced into the stochastic differential equations of the Heston
model for stock price by focusing on the signal power amplification (SPA). We find that for both cases of
extrinsic and intrinsic periodic information a phenomenon of reverse resonance emerges in the behaviors of SPA
as a function of the system and external driving parameters. Moreover, in both cases, a phenomenon of double
reverse resonance is observed in the behavior of SPA versus the amplitude of volatility fluctuations, by increasing
the cross correlation between the noise sources in the Heston model.
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I. INTRODUCTION

A new field called econophysics [1,2] has arisen to
investigate the financial markets by the methods of stochastic
dynamics. The most basic model of econophysics is a
geometric Brownian motion model, which is early proposed
to describe the stochastic dynamics of stock prices [3,4].
However, this model cannot agree with some statistical
characteristics of actual financial data, such as the fat tails
(i.e., showing non-Gaussian distribution of returns) [2,5],
long-range memory, and volatility clustering [6]. Afterward,
in order to make up these deficiencies, many valuable models
have been developed to picture the dynamics of the stock
price, for instance, the Black-Scholes option pricing model
[7], the ARCH model [8], GARCH model [9], and Heston
model [10]. Peculiarly, in recent years, researchers have paid
more attention to the Heston model. The Heston model well
describes the dynamics of stock price in actual financial
markets, which consists of two coupled stochastic differential
equations. The equations represent the dynamics of stock price
and volatility by the log-normal geometric Brownian motion
stock process and the Cox-Ingersoll-Ross mean-reverting
process, respectively. Since good agreements between the
Heston model and financial data were found, the Heston model
has been widely verified and used to analyze dynamics of stock
price in financial markets as follows. Since Bouchaud and
Cout obtained the approximative effective potential for stock
market crash or bubble [11], the enhancement of the lifetime
of a metastable state induced by the noise has been discussed
by analyzing the mean escape time in a modified Heston model
with a cubic nonlinearity [12,13]. Moreover, the same effect
was found by studying the statistical properties of the hitting
times in different models for stock market evolution [14,15].
After solving the escape problem for the Heston model, exact
expressions for the survival probability and the mean exit
time have been obtained [16,17]. Recently, the Heston model
has also been used to discuss the effects of the delay time
on the stability of financial markets [18] and on the risks
and returns of stock investment in financial markets [19].
Furthermore, besides the theoretical analysis of the Heston
model, the agreement between theoretical data obtained with
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this model and actual financial data also attracts a wide range
of studies. After the seminal paper by Drăgulescu et al. [20],
where an analytic formula for the time-dependent probability
distribution of returns was obtained, further investigations
using the Heston model were carried out. Specifically, studies
on the probability distribution of returns for the three major
stock market indexes (Nasdaq, S&P500, and Dow-Jones) [21],
the exponential distribution of financial returns obtained from
actual financial data [22], the probability density distribution
of the logarithmic returns of the empirical high-frequency data
of DAX and its stocks [23], and the typical price fluctuations
of the Brazilian Säo Paulo Stock Exchange Index [24] were
done.

The environment of actual financial markets contains many
kinds of extrinsic periodic information, for example, periodic
daily information, weekly information, periodic financial
index information, and conference information. Furthermore,
the roles of extrinsic periodic information have been discussed
on capital structure decisions of the firm [25], implied about
an investor with a higher risk aversion or a longer investment
horizon [26], and analyzed on the Warsaw Stock Exchange in
Poland [27]. At the same time, an actual financial market is
also driven by its corresponding intrinsic periodic information,
e.g., information of economic cycles. In addition, the effects
of intrinsic periodic information of economic cycle have
also been found in property markets [28], investigated in
state highway capital expenditure [29], discussed for financial
stability [30], analyzed on the World Trade Web [31], studied
in continuous time evolving economic models [32], discovered
for income distribution [33], and demonstrated by the research
of fluctuation-dissipation theory [34]. Therefore, the roles of
extrinsic and intrinsic periodic information in financial markets
need to be further investigated.

Since Benzi et al. [35–37] found that warm climate could
significantly enhance the response of the Earth’s climate to the
weak perturbations caused by the Earth’s orbital eccentricity,
stochastic resonance (SR) has been found in many dynamic
systems driven by a combination of a periodic signal and noise.
Then the SR has obtained comprehensive applications and
discoveries in various fields, such as bistable systems [38–41],
linear systems [42–44], biological systems [45], chemical sys-
tems [46], ecosystems [47,48], a tunnel diode [49–51], etc. For
a comprehensive review, see Ref. [52]. Even in some financial
systems, SR has also been discussed in a bistable model with

012811-11539-3755/2013/88(1)/012811(11) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.012811


JIANG-CHENG LI AND DONG-CHENG MEI PHYSICAL REVIEW E 88, 012811 (2013)

information-carrying signal for financial market crashes and
bubbles [53] and demonstrated via the signal-to-noise ratio
on the specific example of an interacting-agent model of
speculative activity [54]. Particularly, a phenomenon of reverse
resonance has been found in a constant-potential system driven
by multiplicative dichotomous noise and an input oscillatory
signal [55], in a linear system driven by a multiplicative
multistate noise and an input temporal oscillatory signal [56],
and in a delay bistable dynamical system [57,58].

In this paper, we introduce a periodic function into the
Heston model to describe the periodic information. Then the
signal power amplification (SPA) [52,59,60] is employed to
investigate the stochastic resonance induced by the extrinsic
and intrinsic periodic information. In Sec. II, a Heston model
with extrinsic and intrinsic periodic information is presented.
In Sec. III, the statistical properties of stock price returns
are discussed in the case of extrinsic and intrinsic periodic
information. The analysis of SPA on the extrinsic and intrinsic
periodic information are given in Sec. IV. In Sec. V, a brief
conclusion ends the paper.

II. HESTON MODEL WITH PERIODIC INFORMATION

The Heston model is defined by the following coupled Ito
stochastic differential equations [10]:

dr(t) =
(

μ − ν(t)

2

)
dt +

√
ν(t)dξ (t),

(1)
dν(t) = a(b − ν(t))dt + c

√
ν(t)dη(t),

where r(t) describes the log of the stock price, ν(t) denotes
the volatility of the stock price, a denotes the mean reversion
of the ν(t), b denotes the long-run variance of the ν(t), c is
often called the volatility of volatility, i.e., it is the amplitude
of volatility fluctuations. The deterministic solution of the ν(t)
process has an exponential transient with characteristic time
equal to a−1, after which the process tends to its asymptotic
value b [61], ξ (t) and η(t) are correlated Wiener processes.

Intuitively, each financial market is a part of economic
system and surrounds in a variety of economic entities and
political organizations. The economic entities and political
organizations will generate multiple extrinsic periodic in-
formation to influence investors. Finally, the stock price
in a financial market will be impacted by many kinds of
extrinsic periodic information. At the same time, each financial
market is influenced by its corresponding intrinsic periodic
information. Each stock of a financial market is also impacted
by the information of economic cycle of the corresponding
company. The information of economic cycles over several
months or years has four stages: (i) expansion, i.e., an increase
in production and prices under the condition of low interests
rates; (ii) crisis, i.e., stock exchanges crash and multiple
bankruptcies occur in firms; (iii) recession, i.e., drops occur in
prices and in output, with high interests rates; (iv) recovery, i.e.,
stock prices recover as the fall in prices and incomes. As large
as a country and as small as a corporation, their development
is motivated by their own and the integrated economic
cycles. In addition, the synchronization between periodic
information in financial markets and the willingness of the
investor’s investment can induce financial market crashes or

bubbles (i.e., SR), because investor’s sentiment can greatly
magnify the effects of the extrinsic and intrinsic periodic
information. Conversely, antisynchronization [62] between
them can lead to price consolidation in financial markets
(i.e., a phenomenon of reverse resonance). In this condition,
a wait-and-see approach of most investors is induced, due
to inconsistent between periodic information and investment
expectations, i.e., changes in the stock price are relatively
stable.

The dξ (t) in Eq. (1) can be understood as the interference
of external environment on the stock price. When the periodic
information can not be ignored, the dξ (t) is influenced by
the extrinsic periodic information. Just allowing for the roles
of extrinsic periodic information on stock price, the dξ (t) is
approximatively simplified to contains two parts: the sum of
extrinsic (i.e., multiplicative) periodic information Asin(�t)dt

and Wiener process dξ ′(t), i.e., dξ (t) = Asin(�t)dt + dξ ′(t),
where A is the amplitude of extrinsic (i.e., multiplicative)
periodic information and � is frequency of extrinsic periodic
information. As for intrinsic periodic information, the growth
rate μ is oscillated. The μ is consisted of the information
of economic cycles Aecos(�et + φe) and the growth rate μe,
i.e., μ = μe + Aecos(�et + φe), where Ae is the amplitude
of intrinsic (i.e., additive) periodic information, �e is the
frequency of intrinsic periodic information, and φe is the
initial phase difference between extrinsic and intrinsic periodic
information. Then Eq. (1) becomes

dr(t) =
[
μe + Aecos(�et + φe) − ν(t)

2

]
dt

+
√

ν(t)Asin(�t)dt +
√

ν(t)dξ ′(t),

dν(t) = a(b − ν(t))dt + c
√

ν(t)dη(t), (2)

where ξ ′(t) and η(t) are correlated Wiener processes and have
the following statistical properties:

〈dξ ′(t)〉 = 〈dη(t)〉 = 0,

〈dξ ′(t)dξ ′(t ′)〉 = 〈dη(t)dη(t ′)〉 = δ(t − t ′)dt, (3)

〈dξ ′(t)dη(t ′)〉 = 〈dη(t)dξ ′(t ′)〉 = λδ(t − t ′)dt,

λ denotes the cross correlation coefficient between ξ ′(t) and
η(t), other parameters are the same as Eq. (1). Let x(t) =
r(t) + μet , then Eq. (2) is changed as

dx(t) =
[
Aecos(�et + φe) − ν(t)

2

]
dt

+
√

ν(t)Asin(�t)dt +
√

ν(t)dξ ′(t),

dν(t) = a(b − ν(t))dt + c
√

ν(t)dη(t). (4)

III. STATISTICAL PROPERTIES OF STOCK RETURNS

In this section, the statistical properties of stock price
returns (	x) are numerically simulated with Eq. (4). The stock
price returns are defined as [63,64]

	x = xi − xi−1, (5)

where xi is the logarithmic price of ith time point (i =
1,2,3, . . .).
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FIG. 1. The PDF versus stock price returns (	x) with different
trading days for A = 0 and Ae = 0 in (a), A = 0.05, � = 0.05, and
Ae = 0 in (b) and Ae = 0.05, �e = 0.05, and A = 0 in (c).

In order to compare the probability density function (PDF)
of 	x with that from other literatures, we choose the values of
parameters in Ref. [21] and use 	t = 0.01 as a unit to describe
a trading day. Let λ = 0.0, a = 24/2.525, b = 0.02/2.525,
c = 0.94/2.525, and initial position x0 = c/a ≈ 0.039, be-
cause each year has about 252.5 trading days averagely

TABLE I. Comparison of the kurtosis of the Dow Jones data in
Refs. [65,66] with Fig. 1 at various trading days.

trading days Dow Jones Fig. 1(a) Fig. 1(b) Fig. 1(c)

1 69.26 69.280 69.278 69.072
5 19.68 19.730 19.728 19.459
20 7.80 7.850 7.844 7.429
40 6.02 6.052 6.045 5.431
250 −0.33 −0.318 −0.320 −0.578

obtained from 1982–2001 Dow Jones data in Ref. [20]. The
PDF is numerically simulated over 105 paths with a multiple
of periods based on Eqs. (4) and (5), and the results are plotted
in Figs. 1–3.

The plots of PDF versus stock price returns (	x) under
different trading days are shown for different periodic in-
formation in Fig. 1. For the case of no periodic information
(A = 0 and Ae = 0), the same results as Fig. 2 in Refs. [20,21]
and Fig. 1 in Refs. [65,66] are shown in Fig. 1(a). For small
extrinsic or intrinsic periodic information in Fig. 1(b) or 1(c),
we find good agreements between PDF and that in Fig. 1(a).
In addition, it is difficult to find the difference between Figs.
1(a) and 1(b) [or Fig. 1(c)] visually. To quantitatively compare
Fig. 1(a) with Fig. 1(b) [or Fig. 1(c)], we obtain the kurtosis of
1982–2001 Dow Jones data from Refs. [65,66] and calculate
the kurtosis of Fig. 1 as shown in Table I. We can find that the
deviation of kurtosis is very small between Dow Jones data
and Figs. 1(a) [1(b) or 1(c)] at various trading days and also
conforms to the Table I in Ref. [66]. It shows that the model
[Eq. (4)] is consistent with the actual financial market. Then in
order to discuss the effects of extrinsic and intrinsic periodic
information on the PDF, the calculate results are plotted on
Figs. 2 and 3, respectively.

Just considering the roles of extrinsic periodic information
(i.e., Ae = 0.0) on PDF, we present the discussion in detail for
Fig. 2. To discuss the influences of A for shorter and longer
trading days, Figs. 2(a) and 2(b) are given, and the results show
that increment of A very weakly reduces the peak value of PDF
for shorter trading days [i.e., five trading days in Fig. 2(a)],
conversely visibly reduces the peak value of PDF for longer
trading days [e.g., 250 trading days in Fig. 2(b)]. Moreover,
to discuss the effects of � for shorter and longer trading
days, Figs. 2(c) and 2(d) are also given. Figures 2(c) and 2(d)
show that whether shorter [in Fig. 2(c)] or longer trading days
[in Fig. 2(d)], increments of frequency of extrinsic periodic
information weaken the peak value of PDF, and the behavior
for longer trading days is more apparent than for shorter
trading days. In other words, the increments of strength and
frequency of extrinsic periodic information weakly impacts
the stability of returns for shorter trading but visibly reduces
the stability of returns for longer trading. Here the stability
of returns is described by the peak value of the PDF. In
addition, from a financial point of view, the longer trading days
are, the longer investors are influenced by extrinsic periodic
information in actual financial market. Then, an increase
of strength or frequency of extrinsic periodic information
increases investment uncertainty due to the diversity of
investors’ assessment in extrinsic periodic information. An
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FIG. 2. The PDF versus 	x with � = 0.05 and different values of A for five trading days in (a) and 250 trading days in (b); with A = 0.1
and different values of � for five trading days in (c) and 250 trading days in (d).

increase of investment uncertainty also reduces the stability of
investment returns.

Only considering the roles of intrinsic periodic information
(i.e., A = 0.0) on PDF, we present the discussion in detail
in Fig. 3. To discuss the influences of Ae for shorter and
longer trading days, the curves of PDF versus 	x are plotted
in Figs. 3(a) and 3(b). One can see that increments of Ae very
weakly influence the peak value of PDF for shorter trading days
(e.g., five trading days) in Fig. 3(a), but distinctly reduces the
peak value of PDF for longer trading days (e.g., 250 trading
days) in Fig. 3(b). Moreover, to discuss the roles of �e for
shorter and longer trading days, the curves of PDF versus
	x are also plotted in Figs. 3(c) and 3(c). One can see that
for shorter trading days, increments of �e weakly reduce the
peak value of PDF in Fig. 3(c), but for longer trading days,
increments of �e weakly enhance the peak value of PDF in
Fig. 3(c). Obviously from a financial point of view, the longer
trading days are, the longer investors are influenced by intrinsic
periodic information in actual financial market. Meanwhile,
the stronger amplitude of information of economic cycles is,
the larger absolute value of long-term return is, i.e., the lower
probability of zero return is. In addition, for the higher the
frequency of information of economic cycles, the time for

long-term investment is easily across multiple cycles to cause
higher probability of zero return.

In a word, an increase of both amplitude and frequency
for extrinsic and intrinsic periodic information reduces the
stability of returns, except for the roles of frequency of
intrinsic information for longer trading days. In addition, as
increasing the trading days, the difference for the presence
of information or not is enhanced. The same behavior in
Refs. [20,21,65,66] shows that as increasing the trading days,
the discrepancy between the empirical and the theoretical
cumulative distributions increases

IV. SIGNAL POWER AMPLIFICATION

In order to investigate the stochastic resonance in the
market system [Eq. (4)], the SPA is employed to characterize
the stochastic resonance of the system [52,59,60]

η = 4A−2|〈ei�tX(t)〉|, (6)

where X(t) is obtained from the ensembles average over the
stochastic path x(t) realizations. Through integrating Eq. (4)
with a forward Euler algorithm, x(t) can be obtained. After
fast Fourier transformation of X(t), we obtain the amplitude
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FIG. 3. The PDF vs 	x with �e = 0.05 and different values of Ae for five trading days in (a) and 250 trading days in (b); with Ae = 0.1
and different values of �e for five trading days in (c) and 250 trading days in (d).

of the first harmonic of the output information and η from
Eq. (6).

In the following, in addition to analytical parameters, we fix
parameters a = 2, b = 0.05, c = 1 due to relative stability of
financial system from Ref. [12,13] and parameters A = 0.05,
� = 0.05, Ae = 0.05, �e = 0.05 due to good agreements
between model and other literatures [20,21,65,66] (see Fig. 1).
After numerically simulating the signal power amplification,
we discuss the stochastic resonance for the case of extrinsic or
intrinsic periodic information, respectively.

A. Extrinsic periodic information

Only considering the roles of extrinsic periodic information
(i.e., let Ae = 0.0), Eq. (4) becomes

dx(t) = −ν(t)

2
dt + A

√
ν(t) sin(�t)dt +

√
ν(t)dξ ′(t),

(7)
dν(t) = a(b − ν(t))dt + c

√
ν(t)dη(t).

Then SPA η can be numerically calculated based on Eqs. (6)
and (7), and results are shown in the Figs. 4–7.

The SPA η versus the mean reversion a, the long-run
variance b, and the amplitude of volatility fluctuations c for

different λ are plotted in Figs. 4(a)–4(c), respectively. In
Fig. 4(a), the SPA monotonically decreases as increasing a

for nonpositive λ, but for positive λ has a minimal value,
which indicates a phenomenon of reverse resonance [55–57].
In Fig. 4(b), the SPA monotonically increases as increasing
b for nonpositive λ, but has a minimum for positive λ too.
Meanwhile, in Fig. 4(a) [and 4(b)] the minimum value
increases and moves to shorter a (and larger b) when the values
of λ increases. In Fig. 4(c), the SPA monotonically increases as
increasing b for nonpositive λ, but for positive λ, the SPA first
displays a minimum value and then two minimum values (i.e.,
a phenomenon of double reverse resonance) as λ increases.
In addition, in Fig. 4(c) the minimum values are away from
each other as λ increases. From previous description, we
can find that the SPA η displays reverse-resonance behavior
as a function of a, b, and c, respectively, i.e., there is an
optimal value of a, b, and c for minimum extrinsic periodic
information output. Especially, η vs c presents double reverse-
resonance phenomenon as λ increases. From a financial point
of view, an increase of the mean reversion a reduces the
action time of extrinsic periodic information. An increase
of b and c enhances the volatility of the stock price, and
stock in higher volatility implies more investors who easily
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FIG. 4. The SPA η vs a in (a), vs b in (b) or vs c in (c) with
different values of λ.

amplify the effects of extrinsic periodic information. Hence
the monotonic behaviors of Fig. 4 well agree with actual
financial market. From a physical point of view, the presence
of the noise should have two roles [55–57]: it drives the
motion of the particles, and at the same time reduces its
motion. When the frequency of the input information is in the
vicinity of the intrinsic frequency, either stochastic resonance
or reverse resonance is induced because of the synchronization

FIG. 5. The SPA η vs � in (a) or vs A in (b) with different values
of λ.

and antisynchronization corresponding to two roles of noise,
respectively. Analogously, the presence of noise originated
from investors should also have two roles in financial system.
As a, b, c increase, the intrinsic frequency of stocks in a finance
system achieves to the vicinity of the frequency of the extrinsic
periodic information (� = 0.05). Here the intrinsic frequency
of stocks can be approximatively obtained from the Eq. (20) in
Ref. [20]. Then “good” and “bad” information are synch with
stock falling and rising, respectively. At this time the motion of
stock price is weakened. Consequently, the reverse-resonance
behaviors in Fig. 4 result from antisynchronization between
a stochastic time scale (determined by financial system)
and a deterministic time scale (determined by the extrinsic
periodic information). Particularly, double reverse-resonance
phenomenon in Fig. 4(c) emerges in two regions corresponding
to the lower and higher volatility. In addition to the reasons in
antisynchronization, this is also because risk and return weakly
attract investors for some stocks related to double reverse
resonance, e.g., low risk with relatively low profit in lower
volatility and high risk with low profit in higher volatility.
Meanwhile, the Fig. 4(b) in Ref. [12] indicates that increase
in λ is associated with decrease in the volatility. For fixing the
intrinsic frequency of volatility of stocks corresponding to the
frequency of information (� = 0.05) in reverse resonance, an
increase of λ is associated with decrease in a and increase in b
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or c. Therefore the nonmonotonic behavior is consistent with
Fig. 4.

Then to analyze roles of the extrinsic periodic information
on SPA, the results are presented in Fig. 5. For negative λ, the
η monotonically decreases as increasing � in Fig. 5(a) and
A in Fig. 5(b). As increasing the λ, a minimum value of η

vs � or A emerged in Fig. 5(a) or 5(b), respectively. From

FIG. 6. The SPA η vs λ with different values of a in (a), b in (b),
or c in (c).

a financial point of view, an increase in � reduces the time
of “good” or “bad” information impacting investors, so that
amplified action of investors to information is weakened by
the increase in �, as the monotonic decreasing behaviors in
Fig. 5(a). The presence of nonmonotonic behaviors originate
from antisynchronization, which is induced by varying � to
near intrinsic frequency of system (determined by financial
system parameters). We analogously find increasing � reduces
SPA and the SR emerges at some driving frequency in
physical systems [57,67]. Meanwhile, an increase in A implies
an increase in the scope of information dissemination, i.e.,
the asymmetry of information to investors is reduced. It
is suggested that the amplified effects of extrinsic periodic
information by investors are weakened as increasing A, as the
monotonic decreasing behaviors in Fig. 5(b). At some values of
�, investors are impacted by a certain amount of periodic force
of information, and the volatility of stock price is enhanced,
i.e., intrinsic frequency of original stock is influenced. Then the
antisynchronization can be induced at some value of A, as the
nonmonotonic behaviors in Fig. 5(b). The similar behaviors
can be found in some systems [57,60].

In the end of the Sec. IV A, to understand the effects of λ on
stochastic resonance, the results are shown in Figs. 6 and 7. A
minimum value of SPA η versus λ is displayed in Figs. 6 and 7.

FIG. 7. The SPA η vs λ with different values of � in (a) or A in (b).
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FIG. 8. The SPA η vs a in (a), vs b in (b), or vs c in (c) for
different values of λ.

As increasing a in Fig. 6(a), the minimum value moving to
shorter λ first decreases and then increases. As increasing b in
Fig. 6(b), the minimum value moving to longer λ first decreases
and then increases. As increasing c in Fig. 6(c), the increasing
minimum value first moves to smaller λ and then to larger λ.
As increasing � in Fig. 7(a) or A in Fig. 7(b), the minimum
value first decreases and then increases. In other words, A
phenomenon of reverse resonance is observed in the behavior

FIG. 9. The SPA η vs �e in (a) or vs Ae in (b) for different values
of λ.

of SPA versus λ with varying a, b, c, �, and A in Figs. 6(a),
6(b), 6(c), 7(a), and 7(b), respectively. From a financial point
of view, the monotonic decreasing behaviors are induced by an
increase in λ, due to a decrease in volatility. For nonmonotonic
behaviors, the reason can be found from description of Fig. 4.
In addition, a positive correlation is more easy to cause reverse
resonance as shown in Figs. 4 and 5, and a phenomenon of
reverse resonance is easily produced at positive correlation as
shown in Figs. 6 and 7. This is because a positive correlation
is associated with low volatility [12] and positive skewness
of stock returns [10,68] besides antisynchronization. Then the
influences of information to rational investors are weakened
for some stocks in low risk and high profit concerning low
volatility and positive stock returns. Finally, to lock the
frequency of information (� = 0.05) corresponding to the
intrinsic frequency of stock in volatility at reverse-resonance,
the movement of the minimum value is reasonable in Figs. 4–7.

B. Intrinsic periodic information

Only considering the roles of intrinsic periodic in-
formation (Let A = 0.0) and fixing φe = 0, the Eq. (4)
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reads

dx(t) =
[
Aecos(�et) − ν(t)

2

]
dt +

√
ν(t)dξ (t),

(8)
dν(t) = a(b − ν(t))dt + c

√
ν(t)dη(t).

(a)

(b)

(c)

FIG. 10. The SPA η vs λ for different values of a in (a), b in (b),
or c in (c).

Then SPA η can be numerically calculated based on Eqs. (6)
and (8) and results are shown in the Figs. 8–11.

To compare with Fig. 4, the effects of volatility on SR are
presented in Fig. 8. We can also find that, for λ � 0 monotonic
increase in SPA is related to a decrease in a and an increase
in b and c in Figs. 8(a)–8(c), respectively. Furthermore, for
λ > 0 a reverse resonance is induced in Figs. 8(a) and 8(b),
and double reverse resonance is observed in Fig. 8(c). These
results are the same as Fig. 4, i.e., whether for extrinsic or
intrinsic information, the η shows the same characteristics on
the parameters in volatility. The monotonic and nonmonotonic
behaviors can be understood similarly from description in
Fig. 4. Especially the nonmonotonic behaviors are also induced
by the antisynchronization, when the intrinsic frequency
of stocks is close to the frequency of intrinsic periodic
information originating from their corresponding companies.
In other words, a stock rising and falling are synchronized
with recession and expansion in its corresponding companies.
In the following for comparing with Fig. 5, we also show the
roles of the intrinsic periodic information on SR in Fig. 9, and
find that reverse resonance is observed in the behavior of η

versus Ae and �e as shown in Figs. 9(a) and 9(b). Obviously,
the monotonic and nonmonotonic behaviors are the same as

FIG. 11. The SPA η vs λ for different values of �e in (a) or
Ae in (b).
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Fig. 5. For detailed reason of the behaviors, we can understand
from previous discussion in Fig. 5.

In the end of the Sec. IV B, to understand the influ-
ences of λ on stochastic resonance for the case of intrinsic
periodic information, the results are plotted in Figs. 10
and 11. For comparing with Figs. 6 and 7, as one can see
that a phenomenon of reverse resonance for η versus λ also
emerge in Figs. 10 and 11 and are easily induced at positive
correlation. For monotonic and nonmonotonic behaviors and
movement of the minimum value, the reason can be understood
from previous description.

V. CONCLUSION

In this paper, we have investigated the stochastic resonance
of the stock prices in finance system with the Heston
model. The extrinsic and the intrinsic periodic information
are introduced to the stochastic differential equations of the
Heston model for stock price, respectively. First, we discussed
the probability density function of stock price returns. Our
numerically simulated results are compared with that in
literatures, and good agreements are found between them.

Then, the SPA η in the Heston model is numerically simulated.
The numerically simulated results are found as follows: (i)
For the case of extrinsic periodic information, a phenomenon
of reverse resonance emerges, when η is a function of the
mean reversion a, long-run variance b, the amplitude c of
volatility fluctuations, the amplitude A, and frequency � of
extrinsic periodic information, respectively, for λ > 0 (λ is the
correlated strength between two Wiener processes of the stock
price and the volatility); (ii) For the case of intrinsic periodic
information, a phenomenon of reverse resonance also emerges,
when the η is a function of a, b, c, the amplitude Ae, and
frequency �e of intrinsic periodic information, respectively,
for λ > 0; (iii) For the cases both extrinsic and intrinsic
periodic information, as increasing λ, a phenomenon of double
reverse resonance is produced when the η is a function of c.
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