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We investigate the dynamics of correlations present between pairs of industry indices of U.S. stocks traded
in U.S. markets by studying correlation-based networks and spectral properties of the correlation matrix. The
study is performed by using 49 industry index time series computed by K. French and E. Fama during the time
period from July 1969 to December 2011, which spans more than 40 years. We show that the correlation between
industry indices presents both a fast and a slow dynamics. The slow dynamics has a time scale longer than
5 years, showing that a different degree of diversification of the investment is possible in different periods of
time. Moreover, we also detect a fast dynamics associated with exogenous or endogenous events. The fast time
scale we use is a monthly time scale and the evaluation time period is a 3-month time period. By investigating
the correlation dynamics monthly, we are able to detect two examples of fast variations in the first and second
eigenvalue of the correlation matrix. The first occurs during the dot-com bubble (from March 1999 to April
2001) and the second occurs during the period of highest impact of the subprime crisis (from August 2008 to
August 2009).
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I. INTRODUCTION

The correlation structure of financial asset returns is
key information for several financial activities ranging from
portfolio optimization to risk management and derivative
pricing. The correlation structure of financial asset returns
has been investigated for stock return time series [1–3] (for
recent reviews see Refs. [4,5]), market index returns of stock
exchanges located worldwide [6–13], and currency exchange
rates [14]. The correlation of financial assets is investigated
both by considering the spectral density of the eigenvalues of
the matrix with tools of multivariate analysis and/or random
matrix theory [1,2,5] and by using the concept of similarity-
based graphs, i.e., the association of a network to a similarity
matrix [3,4,15–19]. In both cases, the aim of the analysis is
the selection of information present in the correlation matrix.
The correlation between pairs of financial assets is observed
to fluctuate around a typical value for periods of time that
sometimes last for several years or even decades. However, in
addition to this long-term regularity, a fast dynamics with a
time scale of the order of a few months or even less also has
been detected [12].

In this paper we investigate the fast (monthly) dynamics
of the correlation between industry portfolios of U.S. equity
markets. These indices, compiled by the two well-known
economists Kenneth French and Eugene Fama, are widely
considered by the economics and finance research communi-
ties as reference portfolios for industry portfolios and have
been compiled over a very long period of time starting from
July 1962.

The paper is organized as follows. In Sec. II, we briefly
present the set of investigated data and we discuss the time
scales of the dynamics of correlations of industrial indices.
In Sec. III, we analyze the correlation-based graph associated
with the correlation matrix computed by using all daily records

of the industrial indices. In Sec. IV, we discuss the monthly
dynamics of plenary maximally filtered graphs (PMFGs) and
we compare different correlation-based networks by using a
mutual information measure based on link overlap. In Sec. V,
we investigate the dynamics of the largest eigenvalues and
eigenvectors associated with monthly correlation matrices. In
the last section we present our conclusions.

II. DATA AND TIME SCALES

In this study, we investigate a set of 49 value-weighted
industry portfolios of the U.S. equity markets. The complete
list of industries is given in the appendix. Data are recorded
daily. The time period investigated is the time period ranging
from July 1969 to December 2011 [20]. We perform our
analysis on the daily return ri(t), where the label i indicates
the industry index and t the trading day. Starting from the
return time series, we compute the correlation matrix of
this multivariate set of data at each month tm by using
past returns recorded during an evaluation time period of 3
calendar months. For each month tm, we compute the Pearson
correlation coefficient

ci,j (tm) = 〈[ri(k) − μi][rj (k) − μj ]〉
σiσj

, (1)

where μi and μj are the sample means and σi and σj are
the standard deviations of the two industry index time series i

and j , respectively, computed during the 3-month evaluation
time period. We have chosen a 3-month evaluation time period
because this value is the shortest value leaving the correlation
matrix positive definite. In fact, 3 months are approximately 60
trading days and the number of industry indices is 49. In this
way, we can investigate the fast dynamics of the correlation
matrix by ensuring that all the eigenvalues of the matrix remain
positive [21]. A similar analysis was performed in the recent
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FIG. 1. (Color online) Monthly time evolution of the average
correlation of the nondiagonal elements of correlation matrices
estimated by using an evaluation time period of 3 months. The time
evolution shows a fast dynamics and an overall slow behavior. Vertical
red lines (gray lines located at the top of the figure) indicate months
when prominent events occurred. Specifically, from left to right,
we have (1) October 1973 first oil embargo, (2) October 1986 tax
reform act, (3) October 1987 stock market crash, (4) October 1997
Asian crisis, (5) August 1998 Russian crisis, (6) March 2000 Nasdaq
reaches its maximum value during the dot-com bubble, (7) September
2011 9/11 terrorist attack, (8) August 2007 interbank market freezes,
(9) September 2008 Lehman’s bankruptcy, (10) May 2010 Eurozone
and International Monetary Fund decide the first bailout for Greece,
and (11) August 2011 onset of the European sovereign debt crisis.
Vertical blue lines (gray lines located at the bottom of the figure)
indicate the months with the top 10 monthly negative returns of the
Standard & Poor’s 500.

investigation of 57 indices of stock markets located all over
the world [12].

In Fig. 1 we show the average correlation of the nondiagonal
elements of monthly correlation matrices estimated for the 49
industry indices. The figure suggests that the fast time scale
of the average correlation among indices might be sometime
shorter than 3 trading months. Unfortunately, we cannot
use shorter evaluation time periods without altering the
positive definite nature of the correlation matrix [21]. The
figure also show that fast changes of the average correlation
are detected both in the presence of events that are exogenous
to the market (like, for example, the Asian crisis of 1997
or the sovereign debt crisis of 2011) and in the presence of
events endogenous to the market with apparently no external
explanation triggering large variations of representative market
indices (like, for example, the market decline of October 1978
or market crash of October 1987).

III. CORRELATION-BASED GRAPHS

Correlation-based graphs are powerful tools detecting,
analyzing, and visualizing in an efficient way part of the
most statistically robust information which is present in the
correlation matrix [4]. Here we start our investigation by
considering the PMFG [17] of the 49 industry indices obtained
from the correlation matrix estimated by using all the 10 621

FIG. 2. (Color online) PMFG of the set of 49 industry indices
obtained from the correlation matrix of daily index returns estimated
by using all daily records during the period from July 1969 to
December 2011. The most connected industry indices are BusSv
(business services), Mach (machinery), and BldMt (construction
materials).

daily records of the selected time period (July 1, 1969 to
December 31, 2011). The PMFG obtained for the entire period
is shown in Fig. 2. It should be noted that industry indices
present a tendency to cluster in groups of indices of related
economic sectors.

We detect clusters of industry indices present in the
PMFG by using the Infomap method proposed by Rosvall
and Bergstrom [22]. This algorithm is considered one of the
best algorithms of community detection in networks [23,24].
The method uses the probability flow of random walks to
identify the community structure of the system. We repeat the
application of the method 100 times to detect a minimum value
of the fitness parameter estimating the goodness of the partition
and to evaluate the robustness of the partition obtained.

The result of the partitioning of the PMFG is shown in
Fig. 3. The method identifies four distinct clusters. The top
left cluster is a cluster of 18 industry indices dealing with
commodities, basic materials, and transportation. In the top
right one, there are 17 indices of stocks belonging to the
sectors of financial services, personal and business services,
construction and building materials, wholesale, and utilities.
The other two clusters are smaller ones. The one at the bottom
left comprises 9 indices of stocks of economic sectors as food,
pharmaceuticals and medical equipment, consumer products,
and retail. The last one at the bottom right is a cluster of
5 indices belonging to the information technology economic
sector. In fact, it comprises chips manufacturing, hardware and
software, and laboratory equipment.

IV. DYNAMICS OF THE PMFGS

For each month of the time period ranging from September
1969 to December 2011 we obtain a correlation matrix, and
from each correlation matrix we construct the associated
PMFG. We therefore investigate how links of the PMFGs
change from month to month. Specifically, we consider the
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FIG. 3. (Color online) Clusters (communities) of industry indices
detected into the PMFG (computed by using records for the period
from July 1969 to December 2011) by the Infomap community
detection algorithm. The algorithm detects four clusters of indices
of stocks acting in different sectors of the economy. Top left: C2,
in this cluster we have industries dealing with commodities, basic
materials, and transportation. Top right: C1, industries dealing with
financial services, personal and business services, construction and
building materials, wholesale, and utilities. Bottom left: C3, food,
pharmaceuticals and medical equipment, consumer products, and
retail. Bottom right: C4, information-technology-oriented industrial
sectors.

time evolution of the degree of each vertex, the time evolution
of the vertex betweenness [25], and the time evolution of the
link mutual information as defined in Ref. [12]. In Fig. 4 we
show a grayscale representation of the monthly time evolution
of the degree of each industry index of the PMFGs for the
investigated time period (1969–2011). In the figure, different
industry indices are ordered according to their rank within the
four clusters obtained by the Infomap algorithm during the best
partitioning of the PMFG computed by using the correlation
matrix estimated using all daily records of the time period
1969–2011 (see Fig. 2 and Fig. 3 of Sec. III).

Figure 4 shows that the time evolution of the degree of
industry indices is for several indices quite stable over time
for a time period as long as 40 years. For example, in cluster
C2 (top-right panel), the most connected index is the Mach
(machinery) index and this index maintains this role over
the entire time period. Similarly, one of the least connected
indices (Gold) of the cluster also maintains this status over the
entire period of time. However, different time evolutions of the
degree are also observed. For example, in cluster C1 (top-left
panel), the trading industry index (Fin) is characterized by
two different time periods, one occurring before 1987 and the
other after. Similar time-localized periods of high (or low)
degree are observed, for example, (i) for the retail industry
(Rtail) and the medical equipment industry (MedEq) in cluster
C3 and (ii) for the computer software industry (Softw) and
the measuring and control equipment industry (LabEq) in
cluster C4. These results show that there is an underlying
dynamics of the correlation present between pairs of industry
indices. The presence of a dynamics observed for the degree is

FIG. 4. Grayscale representation of the time evolution of the
degree of industry indices of the PMFGs computed monthly from
September 69 to December 2011 by using a 3-month evaluation
time period. Industry indices are shown in four panels, each one
representing industry indices of one of the four clusters detected by
use of the Infomap algorithm. Specifically, we have grouped industry
indices by ordering them from bottom to top in each of the C1 (top
left), C2 (top right), C3 (bottom left), and C4 (bottom right) clusters.
For clusters C3 and C4, the short names of industry indices are
provided in the figure. For clusters C1 and C2, the complete sequence
of industry indices is as follows from bottom to top: C1: BusSv,
BldMt, Whlsl, Insur, Banks, Clths, Books, Fin, Cnstr, PerSv, Rubbr,
Telcm, Txtls, RlEst, FabPr, Util, and Hlth; C2: Mach, Chems, Trans,
Mines, Steel, ElcEq, Aero, Paper, Autos, Oil, Boxes, Fun, Toys, Coal,
Ships, Guns, Agric, and Gold. Within each cluster, industry indices
are ordered from bottom to top according to the rank provided by
the Infomap algorithm applied to the correlation matrix of the entire
period (1969–2011). The grayscale is provided on the right of the
figure. Values higher than 30 are black spots. The PMFGs subgraphs
of the four clusters are shown in Fig. 3.

supported and complemented by observing the dynamics of the
vertex betweenness, which is another key network indicator of
network topology. In fact, in Fig. 5 we see, even more clearly
than in the case of the degree, that, for some indices, vertex
betweenness changes over time. Again, a striking example
is the behavior of the trading industry index (Fin). For this
vertex, the betweenness is very high during the period from
1969 to 1987 and decreases significantly after that year. It
should be noted that degree and betweenness may carry, in
general, different information. This is somewhat evident when
one analyzes the precious metals industry (Gold). For this
index (index at the top of cluster C2 in Figs 4 and 5), the
degree is very low (see Fig. 4), whereas the vertex betweenness
occasionally presents intermediate values (green or gray spots
in the time evolution of Fig. 5), indicating that this index is
typically outside the core region of cluster C2 but often acts as
a bridge across different clusters of the entire network.

To obtain a measure of the overlap of a PMFG obtained
for a certain calendar month with another one, we compute
the mutual information of links between all pairs of monthly
PMFGs. The mutual information of links was defined in
Ref. [12]. The result of this estimation is shown in the mutual
information matrix of Fig. 6. The mutual information matrix
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FIG. 5. Grayscale representation of the time evolution of the non-
normalized vertex betweenness of industry indices of the PMFGs
computed monthly form September 69 to December 2011 by using
a 3-month evaluation time period. As in the previous figure, industry
indices are shown in four panels, each one representing industry
indices of one of the four clusters detected in the PMFG of the entire
time period by the Infomap algorithm. The grayscale is provided on
the right of the figure. Values higher than 200 are black spots. Industry
indices are ordered as in Fig. 4. The ordering of the indices is the same
as in Fig. 4.

presents an approximate blocklike structure. Specifically, a
first block is detected during the period approximately ranging
from 1969 to 1987. A second block, more internally structured,
is observed from the end of 1987 to 1999 and a third one is
observed after 2004. We interpret the first and the last of these
periods as periods characterized by a relatively high stability
of the PMFGs, indicating that the relative ordering of the
correlation values among the pairs of stocks is approximately
maintained. On the other hand, from one period to another and,

FIG. 6. Grayscale representation of the mutual information of
links between all pairs of a PMFG estimated at month i (raw of the
matrix) and a PMFG estimated at month j (column of the matrix).
The time increases from left to right and from bottom to top. The
grayscale is provided on the right of the figure. Values of mutual
information higher than 0.1 are black spots.

FIG. 7. Grayscale representation of the Spearman rank correla-
tion between all pairs of ranks of Pearson correlation coefficients
estimated at month i (raw of the matrix) and the rank of Pearson
correlation coefficients estimated at month j (column of the matrix).
The time increases from left to right and from bottom to top. The
grayscale is provided on the right of the figure.

to a lesser extent, within the second period, transitions from
one period to another are observed and imply the variation of
the ranking of the most intense correlations detected among
pairs of industry indices. For example, Figs. 4 and 5 show
that the trading industry index (Fin) has a behavior that differs
markedly before and after 1987. This implies that its ranking in
the ordered list of the correlation similarity measure between
pairs of industry indices jumped from high values to relatively
low values around the end of 1987.

A. Spearman correlation of the similarity measure

The results of Fig. 6 show that the highest correlation
values of pairs of stocks experienced changes in their rank
of the Pearson correlation in 1987, 1999, and in 2004 and
perhaps also in other years to a lesser degree. These changes
are certainly due to relative variation of the highest values
of the Pearson’s correlation because the PMFGs structure
is controlled by correlation values that are primarily among
the highest values of correlation for each element of the
system [18]. It is, therefore, of interest to evaluate whether
there is also a change of the global ranking of the Pearson
correlation between pairs of industry indices.

We consider this problem by measuring the Spearman
rank correlation [26], i.e., the Pearson correlation coefficient
between the ranked variables associated with the value of
the correlation of each pair of index indices. The Spearman
rank correlation is, therefore, quantifying the similarity of
the ranking of the distinct correlation coefficients measured
monthly by the Pearson correlation matrix. In Fig. 7 we show
a grayscale representation of the Spearman rank correlation
observed among all Person’s correlation matrices computed
for all the investigated months. As in the case of link mutual
information discussed previously, Fig. 7 also shows a blocklike
structure but the boundaries of the blocks are, in most cases,
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FIG. 8. (Color online) Monthly time evolution of the first [black
(top) line], second [red (middle) line], and third [green (bottom) line]
eigenvalues of the correlation matrices computed by using a 3-month
evaluation time period. The dates of the most prominent spikes of the
second eigenvalue are reported in the figure.

observed for times that differ from the ones characterizing the
mutual information (see Fig. 6). In fact, Fig. 7 shows major
boundaries among blocks in 1978, 1992, 1999, and 2001. The
behavior during the time interval 1999–2001 markedly differs
from any other past and future period, indicating that during the
dot-com bubble the rank of the correlation coefficients among
industry indices of the U.S. market significantly differed from
all other time periods. Figure 7 also shows that the rank of the
Pearson correlation coefficient among industry indices of the
period 2001–2010 significantly differs from the rank observed
in the past, especially when compared with the time period
prior to 1978.

V. SPECTRAL ANALYSIS OF
THE CORRELATION MATRICES

In the previous section, we have seen that both the highest
values of the pair correlation and, more generally, the entire
set of Pearson correlation coefficients have changed rank
over time with abrupt changes in a few cases localized at
specific times. Here we continue the analysis of the properties
of the Pearson correlation as a function of the time by
investigating the spectrum of eigenvalues and eigenvectors
of the correlation matrices. In our analysis, we mainly focus
on the time dynamics of the largest eigenvalues and of
their corresponding eigenvectors. In Fig. 8 we show the
time evolution of the first, second, and third eigenvalue of
the monthly correlation matrices. The time profile of the
first eigenvalue is highly correlated with time profile of the
average correlation (see Fig. 1) and, therefore, no additional
information can be easily extracted from him. The time
evolution of the second eigenvalue is more informative because
it shows a few abrupt changes in specific periods of time. In
Fig. 8 we point out that biggest changes are observed during
April–June 1999, March–May 2000, June–March 2001, and
July–September 2008. The third eigenvalue has a more limited
excursion; its mean value is equal to 1.82 and the standard

FIG. 9. Grayscale representation of the components of the first
eigenvector as a function of time (vertical axis). The direction of
the eigenvector is selected by making positive the component of the
BusSv industry index. Industry indices are ordered from bottom to
top according to the clusters detected by the Infomap algorithm in
the unconditional PMFGs of Fig. 2. C1 to C4 are the clusters shown
in Fig. 3.

deviation is 0.46. It therefore will be very difficult to extract
the information associated with this eigenvalue in a statistically
reliable way. In summary, the first two eigenvalues are the
only large eigenvalues carrying information that is statistically
reliable and easily distinguishable from fluctuations induced
in the estimation process by the limited number of records
used to compute the correlation matrix [1].

We interpret the spikes observed in the time evolution of the
second eigenvalue of the correlation matrix as an indication of
changes occurring in the correlation matrix and, specifically,
changes affecting the correlation of some specific sets of
industry indices against all the others. This conclusion is also
consistent with the results obtained investigating the Spearman
rank correlation discussed in the previous section. It should be
noted that the main spikes are localized during the time period
from April 1999 to March 2001, when the market experienced
the strongest manifestation of the dot-com bubble (NASDAQ
index reached its maximum value on March 10, 2000) and
its deflation (NASDAQ index declined to half its value within
a year from the maximum value). The other most prominent
spike is observed for the time period July–September 2008,
which was the hottest period of the 2008 financial crisis that
led to the Lehman’s failure of September 15, 2008. The spikes
of the second eigenvalue therefore indicate two major crises
experienced by the U.S. equity markets in recent years.

We investigate the nature of information present in the
two eigenvalues by analyzing the profile of the eigenvectors
associated with the two largest eigenvalues. In Fig. 9 we show a
grayscale representation of the components of the eigenvector
associated with the first eigenvalue for all 508 investigated
months. When the spectral analysis of a matrix is performed,
the direction of the eigenvector is arbitrary. In the figure we
select the direction associated with a positive component of the
eigenvector by setting positive the component of the business
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FIG. 10. (Color online) Grayscale representation of the compo-
nents of the second eigenvector as a function of time. The direction
of the eigenvector is selected by making positive the component
of the BusSv index. Market indices are ordered from bottom to top
according to the clusters detected by the Infomap algorithm in the
unconditional PMFGs of Fig. 2. C1 to C4 are the clusters shown in
Fig. 3. The top panel describes the entire time period investigated,
whereas the bottom panel refers to the dot-com time period from
March 1999 to May 2001.

services industry index (BusSv). The eigenvector components
are almost all positive, indicating the presence of a common
factor driving all industry indices. The only significant excep-
tion is the last industry index of cluster C2. This industry index
is the precious metals industry index (Gold).

The time evolution of the components of the eigenvector of
the second eigenvalue has a less-straightforward interpretation.
During the time period before 1987, clusters C1 and C3 show
values of the components of the eigenvector with values
preferentially positive or negative, respectively (see the top
panel of Fig. 10). After 1987 the general behavior is much
more complex, although some local regularities emerge. For
example, one prominent case is observed during the period
from March 1999 to April 2001, i.e., the period when the
second eigenvalue shows prominent spikes. During this time
period, the values of the components of the eigenvector of
industry indices of the C4 cluster assume, with the only

exception being the index Other, very high positive values,
while the large majority of all other industry indices assume
values close to zero or that are negative (see the bottom panel
of Fig. 10). This is a direct manifestation of the fact that,
during that period of time, there was a strong decoupling of the
correlation present between industry indices directly related
to information technology, computers (Hardw), computer
software (Softw), electronic equipment (Chips), measuring
and control equipment(LabEq), and the rest of indices.

In summary, our analysis of the dynamics of the first two
largest eigenvalues shows a strong alteration of the value of
eigenvalues for the time period associated with two of the
most prominent market periods of the past 40 years, which
are the dot-com bubble and the peak of the subprime crisis.
Concerning the relevance of the second eigenvalue in terms
of explained variance, it is worth noting that, in absolute
terms, the second eigenvalue explains a maximal amount of
approximately 16% of the variance during the two periods
of time discussed here. Moreover, in relative terms the two
periods differ substantially because for the dot-com period the
first eigenvalue explains approximately 31% of the variance,
whereas, during the 2008–2009 crisis, the first eigenvalue
explains roughly 70% of the variance. In other words, the
2008–2009 crisis affects all the industry indices, whereas
the dot-com bubble was primarily affectcting the information
technology industry sector.

VI. CONCLUSIONS

In this paper, we investigate the dynamics of correlation
present among pairs of industry indices of U.S. stock traded
in U.S. markets. The study is performed by using 49 industry
index time series computed by K. French and E. Fama since
1962. By investigating this set of industry indices over a
period of time spanning more than 40 years, we discover
that the correlation between industry indices presents both
a fast and a slow dynamics. The slow dynamics indicates
that a different degree of diversification of the investment is
possible in different periods of time and that the time scale
of these changes is at least as slow as 5 years. On top of
this slow dynamics, we also detect a fast dynamics associated
with exogenous or endogenous market events. Specifically, by
computing the correlation matrix for each trading month using
a 3-month evaluation time period, we show that the correlation
matrix presents both very long periods of time during which
the relative rank of Pearson correlation coefficients between
pairs of industry indices is rather stable and periods when there
is a significant modification of relative correlation in relatively
short periods of time. Two major examples of these abrupt
changes are observed during the dot-com bubble (March 1999
to April 2001) and during the period of highest impact of the
subprime crisis (August 2008 to August 2009).
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APPENDIX: SET OF MARKET INDICES

We investigate the daily synchronous dynamics of 49
industry indices compiled by K. French and E. Fama during the
time period June 1969 to December 2011. The industry indices
investigated are as follows: agriculture (Agric), food products
(Food), candy and soda (Soda), beer and liquor (Beer),
tobacco products (Smoke), recreation (Toys), entertainment
(Fun), printing and publishing (Books), consumer goods
(Hshld), apparel (Clths), healthcare (Hlth), medical equip-
ment (MedEq), pharmaceutical products (Drugs), chemicals
(Chems), rubber and plastic products (Rubbr), textiles (Txtls),
construction materials (BldMt), construction (CNstr), steel
works etc. (Steel), fabricated products (FabPr), machinery

(Mach), electrical equipment (ElcEq), automobiles and trucks
(Autos), aircraft (Aero), shipbuilding, railroad equipment
(Ships), defense (Guns), precious metals (Gold), nonmetallic
and industrial metal mining (Mines), coal (Coal), petroleum
and natural gas (Oil), utilities (Util), communications (Telcm),
personal services (PerSv), business services (BusSv), comput-
ers (Hardw), computer software (Softw), electronic equipment
(Chips), measuring and control equipment (LabEq), business
supplies (Paper), shipping containers (Boxes), transportation
(Trans), wholesale (Whlsl), retail (Rtail), restaurants, hotels,
motels (Meals), banking (Banks), insurance (Insur), real estate
(RlEst), trading (Fin), and others (Other). The order of the
indices, the definition and the descriptive codes are the ones
used by French and Fama [27].
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