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Asymmetric patchy particle models have recently been shown to describe the crystallization of small globular
proteins with near-quantitative accuracy. Here, we investigate how asymmetry in patch geometry and bond
energy generally impacts the phase diagram and nucleation dynamics of this family of soft matter models. We
find the role of the geometry asymmetry to be weak, but the energy asymmetry to markedly interfere with the
crystallization thermodynamics and kinetics. These results provide a rationale for the success and occasional
failure of the proposal of George and Wilson for protein crystallization conditions as well as physical guidance

for developing more effective protein crystallization strategies.
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I. INTRODUCTION

Proteins are key biological molecules whose physiological
roles are, for the most part, tightly linked to their three-
dimensional structure. Because x-ray and neutron crystallog-
raphy are the most widely used techniques to detail these
structures [1,2], the difficulty of obtaining diffraction-quality
protein crystals severely limits our understanding of living sys-
tems. Crystallizing a protein typically involves placing a drop
of protein solution near a high-salt aqueous buffer that drives
the vapor diffusion away from the drop. The nonvolatile solutes
then steadily concentrate and, if the initial conditions are prop-
erly chosen, a protein crystal assembles [2]. From a physical
point of view, identifying successful crystallization conditions
is thus equivalent to determining the protein’s solution phase
diagram. The limited usefulness of existing physical descrip-
tions and of knowledge-based approaches [3,4], however,
leaves a vast space of experimental conditions to be screened.
A material understanding of protein assembly is thus essential
to developing more effective crystallization strategies.

Soft matter descriptions of protein assembly based on
particles with isotropic, short-range attractive interactions
[5-7]—as suggested by early structural studies [8—10]—
provide some conceptual guidance. They identify the region
between the solubility line, above which the solution is
stable, and the liquid-liquid critical point, well below which
the system precipitates into amorphous materials [11,12], as
the “crystallization gap” where crystal assembly is possible.
This schematic picture is, however, unable to reproduce
many experimental trends [13—17]. The introduction of bond
directionality in symmetric “patchy” models is aimed at
better representing the effective protein-protein interactions
that drive their crystallization [18,19]. Yet the most com-
monly studied versions of these models have symmetric and
interchangeable patches, which are atypical of real proteins
[4,20-22] and insufficient to describe the assembly of even
the simplest of globular proteins [22,23]. In this article,
we investigate the role of patch geometry and bond energy
asymmetry on the phase diagram and assembly dynamics
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of a coarse-grained protein model of rigid globular proteins
in aqueous solution. This additional anisotropy ‘“direction”
complements earlier experimental proposals [24]. It also maps
onto the assembly of more complex structures in systems such
as DNA-coated colloidal particles, in which the strength of
directional interaction can be finely tuned [25-27]. Our work,
therefore, identifies general regions of parameter space that
should be targeted for specific colloidal assemblies, such as
gel and crystal formation.

The plan for the paper is as follows. In Sec. II, we describe
the model used. In Sec. III, we analyze the phase diagrams of
a collection of models. In Sec. IV, we study nucleation and the
pathways to crystallization. Finally in Sec. V, we determine
how percolation interferes with crystallization.

II. MODEL DESCRIPTION

We describe each protein as a hard sphere of diameter o,
which sets the unit of length, with interacting directional
patches that mimic the effective interactions between solvated
proteins. This schematic description assumes that proteins
maintain their structure throughout crystallization and that sol-
vated electrolytes screen long-range electrostatic interactions,
which is typical of protein solutions that produce diffraction
quality crystals [28,29]. Crystallization cocktails that include
salt as only cosolute indeed account for nearly 50% of success-
ful experimental conditions in typical databases [30]. In these
conditions, attraction is triggered by the specific chemical
details at the protein surface and thus directional interactions
dominate. This treatment complements and supports previous
studies that focused on the interplay between specific and
nonspecific (depletion) interactions [31-33].

We consider a variant of the patchy model of Ref. [34] in
which patch-patch interactions are specific [35] and their range
and strength are independently tunable [36]. The pairwise
interaction between particles 1 and 2, whose centers are a
distance ry, apart, is

$(r12.Q1,2) = Pus(ri2) + Y _[ii—1(r12.21.22)
i=1

+ P2i—1,2i(r12,821,22)1, (1)
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where 2 and €2, are the Euler angles and »n is the number of
pairs of patches. A hard-sphere (HS) potential captures volume
exclusion,
00, r <o,
Pus(r) = (2)

0, r>o.

The patch-patch interaction is the product of radial and angular
components,

i 2i-1(r12,821,822) = Vi (r12)wai 2i—1(21,€22), (3)
where
Yilr) = { e TS e )
0, r > Ao
and
I, 612 < &

0, otherwise.

and 6h2i1 < 81,
2 2i-1(821,§2) = {

&)

The interaction range A; is in units of o, 8,; is the semiwidth
of patch 2i, and 6, ,; is the angle between the vector ry;
and the vector defining patch 2i on particle 1. By symmetry,
an analogous definition holds for 6,,;,_;. Here, the short
radial extent of the square-well attraction, A; = 1.1o [37],
and its surface coverage measured by the semiopening angle
of its conical segment, §; = cos~1(0.89), are chosen to be
typical of protein-protein interactions [20,23]. In contrast, the
patch position on the surface and the bond energy ¢; are
randomly chosen, under the sole constraint that the lattice
formed by simply bonding the patches is the orthorhombic
P2,22. This lattice, which is the most commonly observed
in monomeric protein crystals [38,39], has three noninter-
secting twofold screw axes that guarantee a high number
of rigid-body degrees of freedom with minimal symmetry
constraints.

We summarize the patch properties with energy and
geometry asymmetry parameters,

= (€1 — ) + (€1 — &) + (&2 — &3)*
2(ef + €3 +€3)

(= DL+ - LY+ (L — L)
210+ 13+ 13)

where I; represents the ith eigenvalue of the inertia tensor of
the object represented in Fig. 1. Each patch (in red) carries
a mass M at its center. The inertia tensor is computed over
the set of weighted patches. The expression for y guarantees
that its value does not depend on the fictitious mass M nor
on the radius of the particle, as long as they do not vary
from one patch to the other [40]. Note that patches located
on a perfect octahedron have I} = I, = I3, and consequently
y = 0.Both ¢ and y € [0, 1], where O corresponds to an equal
energy distribution (¢€; = €, = €3) and cubically distributed
patches, and 1 corresponds to a complete energy asymmetry
(61 =€, =0 and €3 =€) and a unit cell elongated in a
single direction. Because of the P2;2,2; symmetry constraint
on the crystal, patches cannot be too close to one another.
Otherwise, bonded particles would overlap and the unit cell
would stretch beyond the range of attraction A = 1.1o, which

’

k]

PHYSICAL REVIEW E 88, 012721 (2013)

FIG. 1. (Color online) Sketch of a patchy particle. To determine
the inertia tensor, we treat the patches as spherical balls [red (light
gray)] whose center is at the particle surface.

limits the achievable asymmetry and sets y < 0.1. Because a
cubic symmetry (y = 0 and limiting case of P22,2;) is not
realizable within the three screw axes symmetry of P2,2,2,
y is limited from below as well. The adopted range and
width of the interaction and the P2;2,2; symmetry ensure
that two particles can only interact one bond at a time.
This condition, together with the impossibility for a patch
to interact with its copy, also prevents dimerization. Note that
because the definition of y and ¢ is purely geometrical, there
is no reason to expect that different models with identical
asymmetry parameters should behave identically. Tables I and
II summarize the parameter values used in this work.

III. PHASE DIAGRAM

For these 30 randomly selected sets of patch geometry and
bond energies, we numerically determine the solubility line
using free-energy integration and the metastable vapor-liquid
line using Gibbs ensemble Monte Carlo simulations. We then
compare the results to Wertheim’s theory predictions.

A. Phase diagrams from simulations

Gibbs ensemble MC simulations (GEMC) directly deter-
mine the coexistence densities of the metastable gas and liquid
phases [41]. We simulate a total of N = 1000 particles for
10% MC cycles, where each cycle consists on average of N
particle displacements, N particle rotations, N /10 particle
swaps, and two volume V changes. The critical temperature
T, and density are then estimated using the law of rectilinear
diameters [42].

Because the gas-liquid line is metastable, crystallization
happens so quickly for low-energy asymmetry that deter-
mining the gas and liquid coexistence densities is numer-
ically inaccessible. In such cases, we estimate the critical
temperature from Wertheim’s perturbation theory (WPT)
(see below).

To determine the fluid-solid coexistence curve, we integrate
the Clausius-Clapeyron equation starting from one coexistence
point using a fourth-order predictor-corrector algorithm [5].
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TABLEI. Geometry parameters: the three numbers are the unit vector coordinates of the center of each patch. The center of patch O interacts
with patch 1, patch 2 with patch 3, and patch 4 with patch 5. The case y = 0 is reported for clarity.

1% Patch Patch, Patch, Patch; Patch, Patchs
0 1.0 -1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 -1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 -1.0
0.0172 —0.8036 0.8036 —0.5186 —0.5186 0.3081 0.3081
—0.5042 —0.5042 0.2731 0.2371 —0.8084 0.8084
—0.3163 —0.3163 0.8102 —0.8102 0.5016 0.5016
0.0217 —0.7904 0.7904 —0.4227 —0.4227 0.3571 0.3571
—0.5184 —0.5184 0.2807 0.2897 -0.776 0.776
—0.3263 —0.3263 0.8617 —0.8617 0.5199 0.5911
0.0381 —0.7191 0.7191 —0.3813 —0.3813 0.3475 0.3475
0.5659 0.5659 —0.1669 —0.1669 —0.7668 0.7668
—0.4032 —0.4032 —0.9093 0.9093 0.5397 0.5397
0.0631 —0.6167 0.6167 0.6103 0.6103 —0.006 —0.006
0.6521 0.6521 —0.3099 —0.3099 —0.9579 0.9579
—0.441 —0.441 0.729 —0.729 0.2871 0.2871
0.0787 —0.9042 0.9042 —0.6276 —0.6276 0.2859 0.2859
—0.3335 —0.3335 0.5386 0.5386 —0.9074 0.9074
—0.2669 —0.2669 0.5622 —0.5662 0.3081 0.3081
The coexistence point itself is determined using free-energy where
calculations. The free energy of the fluid is computed using cou IN—1 T 3
thermodynamic integration from the free energy of an ideal Blyyns = —5 In ( = ) — ;o InN (7
. ? . 2 N B Etrans 2N
gas [43]. The free energy of the crystal is determined using an
Einstein crystal with a fixed center of mass as in Ref. [44]. Its and
Hamiltonian is BaloM
or

N
Ein/— —
H™"(Eans, Bor) = Birans Z (ri—r;, 0)
N
+ 8, Z £t X0,

where f(0;,¢:i,xi) = 1 — cos(¥;1) + 1 — cos(¥; 2), (0;,¢i, i)
are the Euler angles describing the orientation of particle 7, and
¥; j is the angle formed between the vector defining patch j of
particle i and the corresponding vector in the Einstein crystal.
As explained in Ref. [43], the Helmholtz free energy of the
reference Einstein crystal can then be written as

COM COM COM
Agin = Ayrans + Aor ’ (6)

TABLE II. Energy parameters with €, = 6.

= —n { oz [ d0sin@d0 dx expl—pEuf 0.0, x)]}
The calculation of aSOM is straightforward, but that of a$
requires either a tedious numerical integration or an analytlcal
approximation. We opt for the latter using a saddle-point
approximation, which is accurate and efficient for the high
values of 8 B, used here, because the integrand is then sharply
peaked. Defining (69,0, xo0) as the reference orientation in the
Einstein crystal and changing the variable o = (cos(9),¢, x)
gives

COM

/ dO sin(0)d ¢ d x exp[—B o f ()]

/d“exp —BEor f(e0)]

expl—f Eor f (e0)](27)*"
" (BEo 2 det{HI (@)}

¢ €1 € €3 (27)3/?

0.00 2.0 2.0 2.0  (BEo)¥2det{H[ f(eto)]}1/2’

0.11 1.2462 2.5482 2.2056 such that

0.21 2.1 2.9066 0.9934

0.33 0.4854 2.8266 2.688 BaS™ ~ 2 In(BEq) + 1 In (87 det{ H[ f(@o)]}),  (8)
0.49 3.5756 0.2037 2.2207

0.50 3.0 3.0 0.0 where det{ H[ f(a()]} is the determinant of the Hessian of
0.55 3.96 138 024 function f computed at &t. Its analytical expression is reported
0.64 432 15 0.18 in Appendix A. Once the free energy of the reference crystal
0.79 4.8 0.6 0.6 is known, the free energy of the actual crystal is obtained

following a standard free-energy integration protocol [45].
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FIG. 2. (Color online) Temperature-density p phase diagrams of

patchy models with (a) different y at fixed ¢ = 0.33, and (b) with

different ¢ at fixed y = 0.0172. (c) and (d) depict the same phase diagrams with T rescaled following WPT. The crystal-fluid coexistence lines

(symbols) are then close to, yet distinct from, the WPT solubility line
(black symbols) are reported in (c) and (d). Spontaneous crystallization

(solid black line). For visual clarity, only the gas-liquid critical points
during the simulations prevents the precise evaluation of the gas-liquid

line for low ¢. The specific parameter values are given in Tables I and II.

Several simulations along an isobar starting from the fluid
and from the crystal are then necessary to determine the
temperature at which the chemical potential of the two phases
coincides [43,45].

Figure 2 illustrates the simulated phase diagrams. The
gas-liquid critical temperature 7. generally decreases with
increasing y because patch proximity anticorrelates bond
formation and decreases the liquid entropy, although the
limited number of systems studied partially hides this feature
(Table III). The solubility line, by contrast, is clearly similar
for different geometries at fixed ¢ and monotonically shifts to
lower temperatures with increasing energy asymmetry.

B. Phase diagrams from Wertheim’s perturbation theory

According to Wertheim’s perturbation theory [46,47], the
fluid free energy can be approximated by the hard-sphere free
energy plus a bond free-energy correction,

€))

ay = ays + Avond,

TABLE III. Critical temperatures 7, for the models studied. An
asterisk indicates that the system crystallized spontaneously in GEMC
simulations and Wertheim’s estimate is reported instead. No value
indicates models for which the phase diagram was not determined.
Temperatures are in units of €.

14
;\\\\\\\\\ 0.0172  0.0217 00381  0.0631  0.0787

0.00* 0.052 0.052 0.052 0.052 0.052
0.11* 0.053 0.053 0.053 0.053 0.053
0.21 0.052
0.33 0.057 0.058 0.058 0.055 0.054
0.49 0.059 0.057 0.053 0.050 0.055
0.50 0.061
0.55 0.047
0.64 0.040
0.79 0.026 0.024 0.024 0.019 0.020

where

a

In X X + m
nX, — — —.
) 2
Here m is the total number of attractive sites, X, is the
probability that the molecule is not bonded at site a, and I"

is the set of interacting patches.
Similarly, the chemical potential is given by

(10)

ﬂabond = Z

aell

By = Pas+ '37]) = Baus + Bavond + ﬁIZ)HS + 'prond,

0
(11)

where the pressure p contribution to bonding is

0X, 1 1
,prond:pzz< ><X__§>
Bps

X
ael’ ap
In the solid, Bay; ~ Bu,, because the ratio - is small
[35,48]. The energetic contribution to the free energy is the
energy of the fully bonded system — B¢, while the entropic
term is approximated using the range of interaction and the
width of the patches [35],

(12)

3

72

Bus = Bay

= 3ln(r—1)— ln( ) — Bewr.  (13)

At phase coexistence, the temperature, pressure, and
chemical potential of the fluid and solid phases have to be
identical. The pressure of the solid is once again ignored, so
the only remaining constraint is Beoex 4 f = Beoex ths- Using the
equations above, it follows that

Beoex Poond
0

) - IBCOeX €tot- (14)

Beoex PHS

Beoexans + Bavona +

3

72

8
—31In( — 1)—ln(
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FIG. 3. (Color online) (a) WPT difference between rescaled
melting temperature 7, and rescaled critical temperature 7. at the
critical density p. ~ 0.2, i.e., the crystallization gap. Each circle
represents a distinct {¢;} realization and is colored by its In[— B,(T)]
value (higher values in the top right corner). (b) WPT predictions
(black crosses) compared with simulation results for different patch
geometries [symbols as in Fig. 2(a)]. The area within the dashed
lines indicates the values covered by WPT in (a). (c) Phase diagram
for {e; = 4.6655,6, = 1.2908,€3 = 0.0437} for which WPT predicts
a stable gas-liquid coexistence. Even for an interaction range and
patch coverage that would normally result in a metastable gas-liquid
line, the bond energy asymmetry can lift 7, above the solubility line
(Appendix B).

As the hard-sphere system itself is temperature-independent,
it holds that

Pbond

,Bcoex <ab0nd + + Eto[) = C(,O), (15)

where

Bpus

3
C(p) = —Paus — —3ln(A —1)—1In (%) (16)
is a function that only depends on p. It thus follows that ayong +
2 h/‘)‘““‘ + €t TEpresents a good temperature rescaling factor to
obtain the master solubility line across the different models.
When compared with the simulated results, WPT overesti-
mates the solubility temperature at all densities p, but nonethe-
less remarkably collapses the simulation results [Figs. 2(c) and
2(d)]. The numerical validation of WPT’s T, predictions—
accurate to within 10-15%—allows us to estimate the size
of the “crystallization gap” for a broader variety of models
(Fig. 3) [49]. Interestingly, we find that for patch energy
sets {€;} giving the same ¢, a lower second virial coeffi-
cient B, results in a larger crystallization gap (Fig. 3). In
contrast to the proposal by George and Wilson (GW) that
In(—Bj) < 5 identifies facile crystallization [3], the asym-
metric models reveal that B, does not by itself set the size
of the crystallization gap. The proposal is thus reasonable at
low ¢, but breaks down at high ¢, where it even encompasses
systems for which the critical point is fully stable [red star in
Figs. 3(a) and 3(c), Appendix B]. In such systems, access to
the crystal from a slowly concentrating, low-density solution
would have to sidestep the metastable gas-liquid coexistence
regime. This regime typically prevents the formation of all but
the smallest crystallites [50,51]. High interaction asymmetry
therefore provides a microscopic rationale for the failure of
the GW proposal [52,53], which complements and supports

PHYSICAL REVIEW E 88, 012721 (2013)

previous suggestions that were based on a balance of specific
and nonspecific interactions [31,32].

IV. CRYSTALLIZATION

Even if crystallization is thermodynamically possible, the
free energy drive may be insufficient to induce a phase
transition on experimentally relevant time scales. The role of
asymmetry on homogeneous nucleation is thus examined.

We consider systems near their critical density p. ~ 0.2 at
different degrees of supersaturation n = ;::;[_, where T, is
the solubility temperature at that density. We determine the
size of the crystal clusters in the simulation box following a
standard procedure that defines a crystal-like bond and crystal-
like particles [54]. Due to the highly specific patch-patch
interactions of our model, we generally define a crystal-like
bond between particles 1 and 2 when they are actually bonded:
r <o, 012 <6, and 6,2, < & for some i. A particle is
considered to be crystal-like if it has six crystal-like bonds,
and two crystal-like particles belong to the same crystal
cluster if a crystal-like bond connects them. Visual inspection
of these “crystals” confirms that the criterion selects actual
crystal clusters. For the umbrella sampling simulations, we
use a biasing harmonic potential with spring constant « that
varies between 0.07 and 0.12, depending on the model and the
temperature studied,

HO = (s — 50)?, (17)

where s is the size of the largest crystal cluster and sq is
the target cluster size in the sampling window. Sampling
windows are typically positioned every three particles, but
denser sampling is sometimes required. The results of each
simulation are then analyzed following a standard umbrella
sampling protocol [54].

Unsurprisingly, the lower supersaturations correspond to
higher free-energy barriers and larger critical nuclei [Fig. 4(c)].
Across various patch geometries, qualitatively similar results
are obtained, but increasing the energy asymmetry signifi-
cantly lowers the chemical potential difference, 8 A u, between
the fluid and the crystal. At high bond energy asymmetry, fewer
patches dominate the energy of the two phases, which makes
that contribution in the two phases more similar and reduces the
drive to crystallize. Higher densities are then needed to obtain
a comparable nucleation barrier. Although this effect is not a
fundamental limitation for particles to crystallize, real proteins
in high-density solutions may partially unfold and aggregate,
which interferes with their crystallization [50]. In addition,
at high ¢ the narrow crystallization gap results in larger
free-energy nucleation barriers. High-energy asymmetry thus
hinders nucleation kinetics.

Classical nucleation theory (CNT) describes crystal forma-
tion reasonably well far above the critical point, but near and
below 7, the assembly behavior is more complex. Previous
studies of isotropically attractive systems have shown that
well below T, spinodal decomposition leads to dynamical
arrest [11,12], because spontaneous density fluctuations result
in dense regions within which binding is irreversible. In
similar systems near the critical point, “two-step” nucleation
is favored [7]. Crystal formation is then easier in high-density
than in low-density fluid regions. The corresponding assembly
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FIG. 4. (Color online) (a) Rescaled size of the largest liquid
cluster N compared to that of the largest crystal cluster N for a
model with ¢ = 0 and y = 0.017 [blue (upper), red (dark gray), and
green (light gray)] and ¢ = 0.2 and y = 0.017 (black). The liquid
cluster size is rescaled by the number of particles in the system (N =
864) and the crystal cluster size by the size of the largest crystal cluster
that fits in the simulation box (600). The different trends correspond to
initial homogeneous fluid configurations under different conditions,
as illustrated in (b). (c) Above the critical point, nucleation barriers
can be computed (blue circle n = 0.37, red squares n = 0.46, green
triangles n = 0.55, and magenta right-pointed triangles n = 0.64).
(d) The height of the nucleation barrier for different models (blue
circles ¢ =0 and y = 0.017, red squares ¢ =0 and y = 0.021,
green right-pointed triangles ¢ = 0 and y = 0.065, black triangles
¢ =0.1 and y = 0.017, magenta left-pointed triangles ¢ = 0.2 and
y = 0.017).

behavior of patchy systems, whose low-density crystals may
not be favored by spontaneous fluid density fluctuations [31], is
studied here in unbiased constant Np7 MC simulations. These
simulations sketch out the minimum free-energy path for the
assembly, which we track along the largest drop and the largest
crystal cluster reaction coordinates [Fig. 4(a)]. The largest
crystal cluster is determined as described above. Similarly,
liquid-like particles are defined as those that have at least four
close neighbors (particles whose centers are within Ao of each
other). Two liquid-like particles belong to the same liquid
cluster if they are close neighbors. These trajectories follow
a fictitious dynamics without accounting for collective moves
and where time should be properly rescaled. As previously
shown [55], such trajectories are representative of Brownian
dynamics configurational space sampling for sufficiently short
steps. The robustness of our observations is also confirmed
by repeating the simulations using the virtual-move MC of
Ref. [56], which allows for collective rearrangements (for
details, see Appendix C) [31-33]. We obtain for the symmetric
case, { = 0, far above T, that the largest cluster formation
is always crystalline and CNT applies. Near the critical point
(within ~10% of T,), a growing liquid drop first forms and only
subsequent structural reorganization of the many microcrystals
results in a large crystal cluster.

PHYSICAL REVIEW E 88, 012721 (2013)
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FIG. 5. (Color online) Distribution of crystal cluster sizes along
the unbiased NpT MC simulations, respectively, for (a) ¢ =0 at
T>T, b)) ¢=0atT=T,and (c) (=02 at T =T, for a
system of 864 particles. The distribution of crystal cluster size from
instantaneous snapshots is represented. White indicates the lack of
clusters of that size, orange (lighter gray) indicates one cluster being
present, red (darker gray) indicates between two and five clusters
(few), and black indicates that more than five clusters are present
(many). Five snapshots cover 10° MC sweeps in the first two panels,
and 5 x 10° in the last panel.

We can gain additional physical insights into the dynamical
assembly pathway by characterizing the distribution of crystal
clusters within the largest liquid drop. Figure 5 reports the
distribution of crystal cluster sizes from simulation snapshots.
Panel (a) shows a classical nucleation scenario in which,
after a waiting time (2 x 10% MC sweeps), a critical nucleus
appears and grows rapidly. No secondary nucleation event
is observed. Panel (b) illustrates the status of the system
with symmetric interactions at the critical point. Almost
instantaneously, microcrystals (with fewer than 50 particles per
cluster) form, and many of them survive the whole simulation.
The formation of the largest cluster is much less smooth than
in the classical nucleation limit. Note that the size of the largest
cluster does not grow monotonically. Noise results from the
slow annealing of defects, which contrasts with what happens
for a single nucleation event.

Figure 4 shows that the behavior at the critical point
between low- and intermediate-energy asymmetry models
is similar (black and red dots). Yet a closer analysis reveals
that the cluster distribution exhibits a significant difference
[Fig. 5(c)]. In the asymmetric case, a single nucleation event
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is followed by the growth of a single crystal cluster rather
than the re-organization of many microcrystals. Despite this
resemblance to classical nucleation, the time between the
appearance of a first critical nucleus and its full growth is long
compared to a nucleation scenario in which crystallization is
rare yet rapid. Crystallization occurs on a time scale similar
to percolation, and it is possible that the interplay between
the two phenomena underlies the observed slow growth. It is
interesting to note that we do not observe any crystal cluster
of significant size above the critical temperature within the
simulation time, even though the crystallization barrier height
is similar to that of the symmetric case [Fig. 4(d)]. This
feature is left for future enquiries.

V. PERCOLATION

We finally consider whether direct percolation dynamically
competes with crystallization. Below the percolation threshold
T,(p), the system forms infinitely large spanning networks that
can be long-lasting when bonding is strong [57,58].

To explore the interplay between percolation and bond
energy asymmetry (patch geometry asymmetry has only a
weak impact), we determine T),(p.) using finite-size rescaling
[59]. We run 20 NV T simulations with, respectively, N =
2048, 4000, and 6912 for several temperatures at p = 0.2.
During the simulation, we determine the size of the biggest
network defined as the largest set of particles connected by at
least two bonds. If such a cluster spans the whole simulation
box along one dimension within 10° MC sweeps, the system is
deemed percolating. The percolation probability is the fraction
of simulations showing such a percolating cluster. The data are
in agreement with the tabulated 3D critical exponent to within
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FIG. 6. (Color online) Percolation behavior for ¢ = 0.2 (top)
and ¢ = 0.55 (bottom). Left panels show the probability P of
observing a spanning network as a function of temperature for a
system of size N = 2048 (blue circles), 4000 (red squares), and
6912 (green triangles). The superimposed vertical lines indicate the
critical temperature (dashed), the melting temperature (solid), and the
percolation temperature (dot-dashed) estimated by finite-size scaling
(inset). The right panels show the distribution of bond lifetime in the
network at 7 = 0.055 and 0.048, respectively (orange stars in the left
panels). Blue circles indicate the strongest bond, red squares the
intermediate bond, and green triangles the weakest bond.
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1% [60,61]. For finite-size rescaling, we use the tabulated
critical exponents and the standard procedure [59].

Figure 6 shows the results for systems with relatively low
(¢ = 0.22) and high (¢ = 0.55) asymmetry. In the first system,
the percolation threshold lies just above 7, while in the second,
in which the strongest bond is much longer-lasting, T, is
well above the solubility line. The dynamical relevance of
percolation on crystallization is estimated from the distribution
of bond lifetimes within the crystallization gap. At low bond
energy asymmetry, the rearrangement of all bonds is observed
within a few thousand MC steps. At high asymmetry, in
contrast, the lifetime of the strongest bond (blue circles) is
comparable to the length of the simulation (10° MC sweeps).
The network is frozen, the bonds are almost irreversible,
and no rearrangement takes place. This observation suggests
that identifying the crystallization gap may be insufficient for
crystallizing particles with high-energy asymmetry, because a
long-lasting gel caused by direct percolation then dynamically
interferes with crystallization within the gap. Weakening the
strongest bonds may be the only way to allow crystallization
in these systems.

VI. CONCLUSION

To gain insights into protein crystallization and soft matter
assembly more generally, we have considered the role of patch
geometry and bond energy asymmetry on the crystal assembly
of a family of schematic models. We find patch geometry
asymmetry to have a weak effect, but bond energy asymmetry
to severely impede crystallization thermodynamics and kinet-
ics. The crystallization gap shrinks, gel formation is favored,
and nucleation shifts to higher supersaturations. The union of
these observations suggests that to facilitate locating proper
crystallization conditions, it is sometimes more effective to
symmetrize the directional pair interactions between colloids
or proteins, rather than specifically strengthen one of them,
as is sometimes implicitly suggested [4,23]. It also offers a
rationalization of the GW crystallization slot proposal as well
as of its occasional failure. At low bond energy asymmetry,
the B, prescription falls within the crystallization slot; at high
asymmetry, a large crystallization gap is only observed for
values of B, below the prescribed ones, which corresponds to
long-living gels, while for B, within the slot the crystallization
gap is very small or even negative. The GW crystallization
prescription is therefore a necessary but insufficient condition
for detecting optimal experimental conditions.

Although we are now markedly closer to understanding
simple, monomeric protein crystallization, the assembly fea-
tures of more complex proteins remain a challenge. Some
proteins dimerize or change conformation on a time scale
comparable to their crystallization, while membrane proteins
typically require entirely different crystallization approaches
from the one considered in this work. Further modifications to
patchy particle models, such as self-interacting or dynamically
evolving patches, may thus guide our understanding of the
assembly of these complex yet crucial molecules.
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APPENDIX A: SADDLE-POINT APPROXIMATION

The analytical expression for f(a) in Eq. (8) is

f(a) = % {4 —3y/1 — y2cos() cos(¢ho) sin(@y) — /1 — y2 cos(x) cos(xo) sin(6y) + v/ 1 — y2 cos(x) cos(xo) cos>(¢) sin(bp)
—v/1 — y%cos(¢) cos(¢h) cos(2¢) sin(fy) — 24/ 1 — y? cos(¢) cos(¢) sin(¢hy) sin( xo) sin(¢)
—2y cos(xo) cos(¢) sin(By) sin(¢) + 2y cos(¢) cos(x ) sin(g) sin(xo) sin*(¢) — 2 cos(¢) cos(¢) sin(x) sin(xo) sin*(¢)

—/1 = y2cos(x) cos(xo) sin() sin>(¢)+y cos() cos(¢o) cos(x ) sin(fy) sin(2¢)+ cos(¢) sin(¢y) sin(x) sin(f) sin(2¢)
+cos(6) [—3y 4 cos(¢o) cos(xo) sin(e) sin(x) + cos*(£) (—y + y cos(x) cos(xo) sin(¢) sin(gho)

— cos(¢hn) cos(xo) sin(@) sin(x)) — 2y/1 — y2 cos(x) cos(¢) sin(¢) + y sin*(¢) + cos(go) cos(xo) sin(¢) sin(x) sin*(¢)
—2 cos(¢) cos(xo) sin(go) sin(x ) sin*(¢) — y cos(x) cos(xo) (2 cos(¢) cos(gy) sin*(¢) + sin() sin(go)(1 + sin*(¢)))

/1 — 2 cos(¢) cos(do) cos(xo) sin(2¢) + /1 — y2 cos(xo) sin(¢) sin(¢o) sin(2¢ )]
+sin(@)[ — sin(¢o) (2 sin(x) sin(xo) sin®(¢) + sin(@)(3y/1 — y2 + /1 — y2 cos(2¢) — 2y cos(x) cos(¢) sin(¢)))
+ cos(¢po)(—2 cos(¢) sin(x) sin(Bp) sin(¢) + sin(xo)(—2y cos(x) sin*(¢) + /1 — y2sin(2¢))] }.

APPENDIX B: GRAND-CANONICAL MC
APPROXIMATION FOR THE CRITICAL POINT

To check the position of the critical point for the extreme
case of Fig. 3(c) () = 4.6655,¢, = 1.2908, and €3 = 0.0437),
we perform grand-canonical MC (GCMC) simulations. Be-
cause one of the patches is markedly stronger than the
others, percolation takes place at a relatively high temperature.
Consequently, GCMC samples phase space slowly and poorly,
and thus the critical temperature estimate is affected by large
errors. To obtain a better estimate of the phase diagram, we
perform GCMC simulations for systems with an increasing
strength of the strongest patch (keeping the other patches
identical) and we fit a power law to the resulting critical
temperatures (Fig. 7). The value of the fit for €; = 4.6655
(T = 0.045 in units of €,) confirms the stability of the critical
point with respect to the solubility line.

APPENDIX C: VIRTUAL MOVE MC

Standard MC simulations are based on sequential per-
turbation of the system and do not directly account for
the collective moves through which the system sometimes
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FIG. 7. (Color online) Fit of the critical point determined with
GCMC simulations for systems with an increasingly strong strongest
patch.

relaxes. Although it has been shown that for small enough
displacements, MC recovers the Brownian dynamics of
patchy particle models [55], it is reasonable to wonder
if collective moves could nonetheless affect the system’s
dynamics. To check this possibility, we implement the vir-
tual move MC algorithm [56], which accommodates cluster
displacement and rotations and prevents the system from
becoming stuck in unphysical traps. This commonly used
algorithm has been shown to reproduce real dynamics of
short-range attractive systems and it is commonly used for this
purpose [31-33,56].

A virtual move consists of identifying a cluster to randomly
displace or rotate. Each displacement draws from a uniform
distribution between 0 and 0.20, and each rotation uniformly
selects an axis of rotation and an angle of rotation. Following
Ref. [56], to avoid generating large clusters whose moves will
often be rejected, we draw the cutoff . of the cluster size from

FIG. 8. (Color online) Crystallization pathways as in Fig. 3(a)
using virtual move MC to simulate the dynamics. Comparison with
Fig. 3(a) indicates that the crystallization pathways do not depend on
the microscopic dynamics.
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P(n.) o n'. The results in Fig. 8 are in agreement with those
generated by the standard NpT MC (Fig. 4), and they confirm

PHYSICAL REVIEW E 88, 012721 (2013)

the robustness of the phenomenology with respect to changes
in the microscopic dynamics.
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