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Order, intermittency, and pressure fluctuations in a system of proliferating rods
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Nonmotile elongated bacteria confined in two-dimensional open microchannels can exhibit collective motion
and form dense monolayers with nematic order if the cells proliferate, i.e., grow and divide. Using soft molecular
dynamics simulations of a system of rods interacting through short range mechanical forces, we study the effects of
the cell growth rate, the cell aspect ratio, and the sliding friction on nematic ordering and on pressure fluctuations
in confined environments. Our results indicate that rods with aspect ratios >3.0 reach quasiperfect nematic states
at low sliding friction. At higher frictions, the global nematic order parameter shows intermittent fluctuations
due to sudden losses of order and the time intervals between these bursts are power-law distributed. The pressure
transverse to the channel axis can vary abruptly in time and shows hysteresis due to lateral crowding effects. The
longitudinal pressure field is on average correlated to nematic order, but it is locally very heterogeneous and its
distribution follows an inverse power law, in sharp contrast with nonactive granular systems. We discuss some
implications of these findings for tissue growth.
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I. INTRODUCTION

Active suspensions of bacteria or other motile particles
commonly exhibit collective motion and rich nonequilibrium
structures at the hydrodynamic scale, such as swarming [1–3],
instabilities [4], turbulent vortical flows [5–7], jamming [8], or
aggregation in clusters with giant number fluctuations [9,10].
Systems of self-propelled rods that interact through short
range mechanical forces may provide minimal models for
describing colonies of active elongated particles [11–14].
Despite the fact that such models ignore chemotaxis and
other biological signaling processes that may occur in real cell
colonies, they are thought to be relevant at high cell densities
and have actually been able to account quantitatively for
many experimental observations. For instance, rich dynamical
features can emerge in active rod models with varying only
the density and the particle aspect ratio [5,6,15].

Whereas most research on active matter has considered
motile particles, the effects of cell proliferation on collective
motion are less understood. Here we investigate the dynamics
of colonies of nonmotile but growing and dividing rods. Such
systems are relevant to the formation or renewal of biofilms
and tissues, and their study may help us to understand the role
played by physical constraints during collective cell processes
such as the growth of a column of hydra [16], tissue growth and
repair [17,18], or tumor growth [19]. Even in the absence of
self-propulsion of individual cells, cell proliferation generates
motion due to excluded volume effects, which, in combination
with cell anisotropy, can lead to nematic ordering and coherent
flow patterns [20–22]. An important difference with the self-
propelled case is that density is no longer a control parameter
since the system typically self-organizes into dense states,
starting from a small number of initial cells. In addition, as
expansive flows are often generated during growth, pressure
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gradients can be high and may trigger secondary instabilities
particular to these systems [21].

In this paper, inspired by experiments performed with a
nonmotile strain of Escherichia coli bacteria (division time,
∼20 min) in microfluidic devices [20], we perform molecular
dynamics simulations of a system of growing and dividing
rods with repulsive interactions. This system is confined by
the lateral walls of a two-dimensional channel of finite length
and open at both ends, where the particles can exit the channel.
In the microfluidic experiments, the channel is limited in the
third dimension by two walls whose separation distance is
barely larger than the diameter of one bacteria. Therefore,
although the rods are three-dimensional objects in the model,
they form a single layer and their motion is assumed to be
two-dimensional.

As shown by continuum theories of self-propelled particles
[11,23], the effect of boundaries and confinement have a strong
impact on the ordering of active flows, where, for instance,
the presence of the walls can induce a nonzero polarization.
Similarly here, nonmotile elongated particles push each other
while they grow and tend to align parallel to the walls of the
channel. In the long time regime, the rods that flow out of
the channel are constantly replaced by new rods which form
a dense model tissue inside the channel, with relatively small
local density fluctuations [20]. In Ref. [21], it was shown with
the use of a phenomenological continuum theory and discrete
element simulations that the perfectly ordered active nematic
state was unstable with respect to small perturbations when a
friction parameter exceeded a threshold value. This instability
is analogous to a buckling instability and provokes the growth
of the angles between the rods and the channel axis, allowing
the release of the high compressive stresses generated by fully
ordered configurations.

The aim of the present study is to investigate numerically
the partially disordered states formed by these confined
proliferating systems in the long time regime, when the
statistical properties of the flow do not depend on time. We
first quantify the effects on nematic ordering of the rod aspect
ratio and of the friction that opposes the rod motion. We then
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show that the nematic order parameter exhibits intermittent
dynamics at intermediate frictions. We next focus on how
the diagonal stress components fluctuate in time and space.
We find that configurations subjected to larger longitudinal
stresses are more ordered on average, whereas, locally, the
distribution of contact forces is very heterogeneous and follows
a power-law distribution in most cases.

II. MODEL DESCRIPTION

In our approach, thermal noise is neglected and rod
dynamics is essentially deterministic. The discrete element
soft-particle model used in this paper was described in previous
works (see, e.g., Refs. [20] and [21]). Briefly, each cell is
represented as a rigid rod consisting of a cylinder of fixed
diameter set to unity for convenience and of two hemispherical
caps at its ends. The length l(t) of a given rod grows
exponentially at a certain rate, ag , and the rod divides into
two collinear rods of equal lengths when l(t) reaches an
assigned maximal length, denoted as �m. To avoid spurious
synchronization of cell divisions across the population, the
division length �m is chosen randomly at the birth of each
cell from a narrow normal distribution centered at a certain
value, 2�0, and with standard deviation 0.2 × 2�0. Similarly,
ag is chosen from a distribution centered at a value, a, and
with standard deviation 0.1a. Therefore, a represents the mean
growth rate of the rods in the system and l0 the mean rod length
at birth.

The rods are confined in a channel composed of two parallel
walls separated by the distance Lx (the transversal unit vector
is denoted as x̂) and length Lz ≡ 2L (the longitudinal unit
vector is denoted as ẑ). We set Lx = Lz = 55 in the following.
The rods cannot form more than one layer in the ŷ direction;
therefore motion is bidimensional. The channel boundaries at
z = ±L are open: when the center of mass of a rod crosses
one of the boundaries, the rod is removed from the system.

The normal contact forces between rods are obtained with
the Hertzian model applied to the overlap of virtual spheres
centered at the nearest points on the axes of interacting
spherocylinders; similarly, the tangential (frictional) forces are
given by the dynamic Coulomb friction (νcc is the coefficient
of friction between cells) [24]. The microscopic parameters
characterizing the elastic and dissipative properties of the cells
coincide (unless indicated) with the ones used in Refs. [20,21].
In the experiments of Ref. [20], each cell is also subjected to
forces due to the surrounding fluid and to the horizontal walls
of the microfluidic chamber. These forces are modeled here by
a Stokian drag force:

F(i)
f = −μm(i)v(i), (1)

with v(i) and m(i) being the velocity and mass of rod i,
respectively, and μ a drag friction constant. The contact and
friction forces above are then used to compute the motion of
each rod by integrating Newton’s equations.

For systems of rods that are perfectly oriented along the z

direction, simple continuum arguments predict that the flow
is expansive and the pressure parabolic along the channel
[20]: Assuming that the system reaches a steady state with
constant rod density (while new rods are created, others
exit the channel), the continuity equation reads ∇ · v = a

and can be integrated as v(0)
z (z) = az and v(0)

x = 0. In the
overdamped limit, the momentum conservation equation reads
∇ · σ − μv = 0, where σ is the stress tensor. Imposing the
boundary condition σ = 0 at z = ±L, one deduces that

σ (0)
zz (z) = 1

2μa(z2 − L2). (2)

Hence, in response to the necessary growth of the rods the
pressure adopts a parabolic profile and is maximal at the
center of the channel (z = 0), where vz vanishes. As illustrated
by Eq. (2), varying the parameter μ allows one to vary the
magnitude of the average compressive load in the system.

III. BEHAVIOR OF THE NEMATIC ORDER PARAMETER

We simulated growing colonies starting from a few ran-
domly oriented rods distributed in the channel. At large times,
the density is roughly constant over time and the channel is
filled with approximately 1000 rods in the examples of Fig. 1.
To measure the degree of alignment of the rods we calculated
the scalar nematic order parameter:

Q = [〈cos 2φ〉2 + 〈sin 2φ〉2]1/2, (3)

where φ is the angle between the rod axis and some reference
axis (the channel axis ẑ). The brackets above denote averages
over all rods (spatial averaging) and the overbar denotes
temporal averaging. In other words, Q/2 is the time average
of the largest eigenvalue of the tensor order parameter in
two dimensions, 〈uαuβ − 1

2δαβ〉, where the uα’s are the
components of the orientational unit vector of a rod [25]. When
the colony is in the disordered state Q is close to zero, while
perfect nematic order corresponds to Q = 1.

A. Effects of rod shape and of friction

We first consider systems with vanishing frictions (μ = 0,
νcc = 0) and varying �0 [Figs. 1(a)–1(c)]. Even in this case
where stresses are very small, the system may not be able to
order perfectly. Figure 2(a) shows the nematic order parameter
as a function of �0. It is observed that for �0 > 3 perfect nematic
order is reached, whereas it decays rapidly if �0 < 3. In systems
of short rods [e.g., �0 = 2, Fig. 1(a)] many disoriented regions
are present and persist over time (see animation in Ref. [26]).
It is worth noting that many bacteria such as E. coli have
aspect ratios larger than 3 [6] and may therefore be prone to
form dense ordered colonies in the presence of boundaries.
The growth rate, on the other hand, has little impact on Q in
the asymptotic regime, as the three curves with a = 0.1, 0.5,
and 1.0 collapse onto each other in Fig. 2(a).

When the friction μ is finite, the nematic order can be
significantly lower than in the case of μ = 0, even for colonies
of long rods (�0 � 3). As shown by Fig. 1, the ordered states
are roughly composed of flowing columns of rods parallel
to each other. A larger friction should increase the pressure
−σzz exerted along the channel axis and thus increase the
repulsive interaction forces between neighboring rods of the
same column. According to the continuum analysis presented
in [21] this compressive energy can be released if the columns
of rods bend (or buckle), producing less ordered configurations
(Q < 1). As expected from this scenario, we observe that Q

decays with μ [Fig. 2(b)]. For a fixed μ, systems with larger
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FIG. 1. (Color online) Typical configurations of simulated bacterial colonies filling the channel, with the rods colored according to their
orientation. (a)–(c) Systems of low drag friction (μ = 10−6) and different rod aspect ratios: �0 = 2.0 (a), �0 = 3.0 (b), and �0 = 4.0 (c). The
growth rate is a = 1.0. Systems of longer rods have higher nematic order. (d)–(f) Systems with �0 = 4.0 and of varying drag friction: μ = 0.45
(d), μ = 0.50 (e), and μ = 0.55 (f), where disordered regions appear intermittently.

�0 are more ordered. This is also in qualitative agreement with
the prediction of Ref. [21], where the bending constant ξ in
the elastic free energy of the system was estimated from the
overlap of a rod with the rods of the neighboring columns,
leading to ξ ∝ �3
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FIG. 2. (Color online) (a) Mean order parameter Q as a function
of the mean length of the rods at division (μ = 0, νcc = 0). The
growth rate a has a little impact on Q, as shown by the three
overlapping curves. (b) Mean order parameter Q as a function of
μ for different mean rod lengths (νcc = 0). (c) A time series Q(t)
showing intermittent behavior at μ = 0.45 and �0 = 4. (d) Probability
distribution function of the global order parameter Q(t) for different
friction coefficients μ. As μ increases, the most probable Q(t) takes
lower values.

In all the following, we fix �0 = 4. Figure 2(c) shows a
typical time evolution of the order parameter Q(t), obtained by
taking the space average only, at relatively high friction (μ =
0.45). The colony can exhibit long periods of high nematic
order, interrupted once in a while by bursts of disorder or
“turbulence” (see animation in Ref. [26]). This intermittent
behavior of Q(t) is observed in a relatively narrow range of
frictions, μ = 0.40–0.50.

B. Intermittent dynamics

Following a method similar to that proposed in Ref. [27]
to characterize the intermittent dynamics of an ordered active
system, we extract from the corresponding time series the prob-
ability distribution function of Q(t), for different values of the
friction drag. As shown by Fig. 2(d), with μ = 0.4 (or lower)
the distribution of Q(t) is very peaked near unity, whereas
with μ = 0.6 (or larger) completely ordered configurations
are never reached during a typical simulation time. In the latter
high friction range, the distribution has a most probable value
<1 and a larger variance. There is an intermediate regime,
roughly in the range μ ∈ [0.4,0.6], where the distribution is
peaked at Q = 1 and also has a second local maximum at
some value Qmax < 1. We thus consider in this regime that, at
any given time, the system can be either in an “ordered” phase
or in a “disordered” phase, depending whether Q(t) > Q∗ or
Q(t) < Q∗, respectively, where Q∗ is a crossover value. Here
we choose Q∗ as given by the secondary maximum Qmax of the
distribution. The results are not very sensitive to other choices
of Q∗.
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FIG. 3. (Color online) Probability distribution functions for the
duration τQ of the laminar periods, with μ = 0.45–0.55. All curves
show an inverse power-law behavior. The lines are best fits to the
data, with their respective exponent estimates.

In this intermediate friction range, we can thus define an
ordered (or “laminar”) time interval [28] as the duration τQ

separating two consecutive disordered episodes. To measure
these durations, we record the time periods during which Q(t)
remains larger than Q∗ without interruption. The probability
distribution function of τQ is shown in Fig. 3 and exhibits
a clear inverse power-law behavior over 3 decades, F (τQ) ∼
τ

−β

Q . The typical value of β is 1.2 and depends little on μ.

IV. PRESSURE FLUCTUATIONS

We next monitor the virial stress tensor caused by pairwise
interactions between rods and defined as

σαβ(r,t) = 1

2V
∑
c,i

r ic
α F ic

β , (4)

where ric is a vector from the center of mass of the rod i to
a point of contact with another rod, the index i runs over all
rods in a small mesoscopic volume V around the position r,
and the index c runs over all points of contacts.

A. Global fluctuations

To study the temporal fluctuations of the stresses in the
system as a whole, we consider the spatially averaged stress:

〈σαβ〉(t) = 〈σαβ(r,t)〉. (5)

Typical time series of 〈σxx〉 = −〈Px〉 and 〈σzz〉 = −〈Pz〉 for
different values of μ are shown in Fig. 4. In order to investigate
possible hysteresis effects, we varied μ cyclically in the same
simulation. In the left panel of Fig. 4, a system is prepared
with μ = 0.1 and evolves during 1500 time units. The friction
is then increased by 0.05 and kept constant for another 1500
time units. The procedure is repeated up to μ = 0.80 (“↑”
branch). From there, the friction is decreased in a similar way
with decrements of 0.05 down to 0.1 again (“↓” branch, right
panel of Fig. 4).

The spatially averaged pressure in the longitudinal di-
rection, 〈σzz〉(t), fluctuates little in time and does not show

μ = 0.15 ↑ μ = 0.15 ↓

μ = 0.30 ↑ μ = 0.30 ↓

μ = 0.40 ↑ μ = 0.40 ↓

μ = 0.45 ↑ μ = 0.45 ↓

t

μ = 0.50 ↑

t

μ = 0.50 ↓

σzz σxx

FIG. 4. (Color online) Time evolution of the spatially averaged
stress tensor components 〈σxx〉(t) [continuous orange (gray) line] and
〈σzz〉(t) (dotted black line) for different values of μ during a cycle.
Left panel: System with increasing friction (↑ branch). Right panel:
System with decreasing friction (↓ branch).

clear signs of hysteresis (see also the lower panel of Fig. 6).
However, the pressure in the direction transverse to the channel
axis, 〈σxx〉(t), exhibits much larger temporal variations [orange
(gray) curves of Fig. 4]. In Fig. 4, for μ = 0.30 and 0.40 in
the ↑ branch, for instance, one observes steplike variations
or abrupt jumps occurring at random times between different
stationary values. The average pressure in the x̂ direction can
vary in time by a factor of ∼7 in the same dynamics.

As shown by Fig. 5, these practically discrete jumps in
the transversal pressure are due to the rapid formation (or
elimination) of one or more columns of rods, which are
oriented along the ẑ direction. The number of rod columns
exhibits a similar steplike dynamics. As a new rod column
appears, the system becomes more crowded in the x̂ direction,
resulting in a sharp increase in |〈σxx〉|. On the contrary, when
a column disappears, the pressure is relaxed.

Higher frictions cause an increase in both Px and Pz on
average (see Fig. 6). The increase of Pz with μ is due to the
higher friction forces exerted on the particles, as qualitatively
predicted by Eq. (2). The increase in Px is due to the
fact that at higher frictions the system tends to form more
columns and thus denser populations along the x̂ direction.
This densification was already noticed right after the buckling
instability in Ref. [21]. If the friction is further decreased, the
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t

FIG. 5. (Color online) The spatially averaged stress tensor com-
ponent 〈σxx〉(t) (upper panels) at a given time is closely related to the
number Nc of rod columns that fill the channel at the same time in
the transverse direction (lower panels).
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FIG. 6. (Color online) Time averages 〈σxx〉 and 〈σzz〉 of the
spatially averaged stress tensor components. The ↑ and ↓ branches of
the cycle are labeled with blue up-triangles and black down-triangles,
respectively.

high transverse densities may persist. For this reason, at the
end of the hysteresis loop (μ = 0.15 ↓, Fig. 4) the transverse
pressure can be much higher than what it was at the beginning
(μ = 0.15 ↑). The upper panel of Figure 6 illustrates the
hysteretic behavior of the time averaged pressure |〈σxx〉|. Note
that at the beginning of the loop the time intervals between
jumps can be large and thus the time averages may vary
from one simulation to another due to the limited observation
time.

B. Distribution of local stresses

To examine how the local pressure fluctuates in space and
time, we display in Fig. 7 the probability distribution functions
of the local stresses Px and Pz, given by Eq. (4). These
probability distribution functions are obtained by aggregating
all positions and times of a given simulation.

The hysteresis effects observed above on 〈σxx〉 are notice-
able in the full distribution, which has a characteristic scale
given by its most probable value. In the ↑ branch, the most
probable values of −σxx for μ � 0.25 are much lower than
the most probable values for μ � 0.60. When low friction
values (μ � 0.25) are reached again in the ↓ branch, the most
probable −σxx returns to a value larger than its initial value
(middle curves of Fig. 7, upper panel).

The distribution of Pz, shown in Fig. 7, lower panel, does
not exhibit such hysteresis and has a markedly different shape:
it is monotonic decreasing and independent of μ at small Pz.
In this regime, the distribution is approximately scalefree, i.e.,
well described by a power law with exponent ≈-0.7. Hence, the
gradual increase of the average longitudinal stress produced by
increasing μ (see Fig. 6) does not modify much how stresses
are distributed locally among the rods: it only produces a
broadening of the tail of the distribution. Many regions carry
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FIG. 7. (Color online) Probability distribution function of the
local pressure for different values of μ, which is varied cyclically:
μ = 0.1 → 0.8 → 0.1. For clarity, only the cases μ � 0.25 and
μ � 0.60 are shown. Upper panel: Distributions of Px , where the
curves for μ � 0.25 (↑), μ � 0.60 (↑ and ↓), and μ � 0.25 (↓) are
located on the left part, the right part, and the middle part of the graph,
respectively. Lower panel: Distributions of Pz, where the curves with
broader tails correspond to μ � 0.60.

small stresses and contribute little to the average pressure,
even at high μ, whereas a few rare places have stresses much
higher than average. Therefore, the longitudinal pressure field
is very heterogeneous in space and time. For μ � 0.25, a fit
shows that the distribution decays exponentially at very large
Pz. However, for μ � 0.60, the tail of the distribution is better
described by a second power-law, with a steeper exponent
≈−2.

For comparison, it is instructive to calculate the probablility
distribution function F (0)(Pz) predicted by the continuum
theory where the rods are assumed to be perfectly aligned and
where Pz(r,t) is stationary and only depends on z. From the
parabolic profile given by Eq. (2) and from the general property
|F (0)(P )dP | = |g(z)dz|, where g(z) is the distribution of z

(g(z) = cst along the channel), one obtains

F (0)(Pz) ∝ 1

(1 − Pz/P0)1/2
. (6)

According to this result, elementary regions of space where
the pressure is larger (close to the maximum P0, at the center
of the channel) should be more frequent than regions with
lower pressures. Such behavior is opposite to that of the
distributions of Fig. 7 (lower panel). This result illustrates
that local disorder profoundly reorganizes the system by a
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σxx (t) σzz (t)

μ = 0.50 ↑ μ = 0.50 ↓

FIG. 8. (Color online) Parametric plots Q(t) vs 〈σxx〉(t) and Q(t)
vs 〈σzz〉(t) at μ = 0.50.

redistribution of stresses. This situation is reminiscent of
the heterogeneous distributions of contact forces in static
granular systems. Nevertheless, contact force distributions are
exponential in static systems and thus have a typical scale [29].

C. Correlations with Q

To investigate the interplay between nematic order and
pressure at a given time, we calculated the Pearson correlation
coefficients between Q(t) and 〈σxx(zz)〉(t). Given two arbitrary
discrete time series ai and bi of means a and b, respectively,
this coefficient is defined as

ρab =
∑n

i=1(ai − a)(bi − b)√∑n
i=1(ai − a)2

√∑n
i=1(bi − b)2

. (7)

The cases ρab = 1, −1, and 0 correspond to perfectly corre-
lated, anticorrelated, and not correlated variables, respectively.
In Fig. 8, each dot represents a particular time step of a
dynamics.

Table I shows that Q(t) tends to be significantly anticorre-
lated to 〈σzz〉(t), independently of μ. This property indicates
that, at a given time, a more ordered configuration is likely
to be subjected to larger longitudinal stresses. This finding is
consistent with the fact that gradients in the rod orientations
(misalignments) actually release the compressive longitudinal
energy [21].

To check whether there exists a relationship between the
steplike variations of 〈σxx〉(t) at intermediate frictions (see
Fig. 4) and the intermittent dynamics of Q(t) observed in about
the same friction range, we calculated the Pearson coefficient
between (i) Q(t) and 〈σxx〉(t), (ii) Q(t) and |d〈σxx〉(t)/dt |, and
(iii) |dQ(t)/dt | and |d〈σxx(t)〉/dt |. As shown by Table I, very
weak correlations are found in almost all cases. Therefore,
there seems to be no systematic correlations between the fast
variations in 〈σxx〉(t) and the intermittent bursts of nematic
disorder, except maybe for lower frictions (see μ = 0.4 and

TABLE I. Numerical values for the Pearson correlation coeffi-
cient from the time series where Q(t) has an intermittent behavior.
These values correspond to the ↓ part of the cycle (similar values are
found for the ↑ part).

μ Q & σzz Q & σxx Q & |σ̇xx | Q̇ & |σ̇xx |
0.40 −0.27 −0.17 −0.03 ∼0
0.45 −0.38 −0.20 0.03 ∼0
0.50 −0.34 0.04 −0.01 ∼0
0.55 −0.34 0.04 −0.00 ∼0

0.45 in Table I). This suggests that the mechanisms by
which the system modulates its transversal pressure under
confinement (through the formation or elimination of columns
of growing rods) are not directly related to the ordering
dynamics itself. The misalignment of some rods does not
preferentially leads to a lower transverse pressure, contrary
to what happens in the longitudinal direction.

V. CONCLUSIONS

We have studied with molecular dynamics simulations the
ordering of systems of growing elongated particles confined
in a channel. We find that the average nematic order parameter
depends crucially on the rod aspect ratio, a parameter which
is difficult to incorporate in continuum theories. Colonies fail
to order parallel to the side walls if �0 < 3, even when the
drag friction is vanishing. For �0 > 3 and at finite friction,
intermittent bursts of disorder can take place and the periods
during which the system remains well ordered are power-law
distributed. In another context, intermittent dynamics for the
global order parameter have already been observed in active
systems of self-propelled particles governed by the Vicsek
model rules [27].

Our results also show that the stress tensor is very
anisotropic and that the pressure field has markedly different
properties in the directions transverse and longitudinal to the
channel axis (x̂ and ẑ, respectively). Whereas Px is relatively
homogeneously distributed in space, its spatial average can
vary very rapidly in time due to stochastic and abrupt density
variations in the lateral direction. This density can remain
constant for long periods of time at low friction, which leads to
hysteresis effects [30]. The fast variations of the spatial average
〈Px〉(t) at intermediate frictions do not seem to be correlated
to the intermittent dynamics of the nematic order parameter.
Comparatively, the spatially averaged 〈Pz〉(t) has a much
smoother behavior in time and does not present hysteresis,
but it is correlated to the global nematic order parameter.
This is to be expected from theoretical arguments that predict
that longitudinal stresses should be released in systems of
misaligned rods [21].

We emphasize that, unlike Px , the longitudinal pressure Pz

is very heterogeneously distributed in space, in such a way
that most of the rods are subjected to small stresses while
very large stresses are supported by a few rods. This trend
is opposite to the prediction of a simple continuum theory
(which ignores granularity), which is that not-so-stressed
rods should be less numerous than highly stressed rods. The
distribution of Pz is well fitted by a truncated power law
at low friction and by two power-laws at large friction. For
comparison, the probability distribution function of the contact
forces in jammed packings of nonactive grains is generically
exponential, i.e., comparatively much more homogeneous
[29]. Contact forces also remain exponentially distributed in
sheared packings of elongated particles [31].

In the proliferating systems studied here, a global state of
compressive stress thus emerges from individual cell growth
and division. This parallels the case of advancing sheets of
epithelial cells in a channel, where global states of tensile stress
have been observed in experiments [32]. In those experiments,
traction did not result from leader cells at the edge of the
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sheet dragging those behind, but from the cells located deep
inside the tissue. It was observed that the traction force also
followed a profile approximately parabolic and exhibited, at a
fixed location, large temporal fluctuations. These fluctuations
were exponentially distributed, though, as in static granular
materials [32].

Previous studies have shown that dense colonies of growing
bacteria are able to self-organize and form crowds that
efficiently escape from confining domains [22]. Our results
further suggest that active systems subjected to external
perturbations (such as an average pressure increase) could
have the ability to self-organize in such a way that only a few
particles would actually be affected by the perturbation. Our

findings could have implications for understanding the growth
of real tissues and biofilms, where individual cells subjected
to large stresses are known to grow at a reduced rate or not
to grow at all [19,20]. Colonies of bacteria or other cell types
may be able to keep growing in adverse conditions and the
study of such robustness should motivate further studies.
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