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Delay-driven irregular spatiotemporal patterns in a plankton system
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An inhomogeneous distribution of species density over physical space is a widely observed scenario in plankton
systems. Understanding the mechanisms resulting in these spatial patterns is a central topic in plankton ecology.
In this paper we explore the impact of time delay on spatiotemporal patterns in a prey-predator plankton system.
We find that time delay can trigger the emergence of irregular spatial patterns via a Hopf bifurcation. Moreover,
a phase transition from a regular spiral pattern to an irregular one was observed and the latter gradually replaced
the former and persisted indefinitely. The characteristic length of the emergent spatial pattern is consistent with
the scale of plankton patterns observed in field studies.
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I. INTRODUCTION

A heterogeneous distribution of species abundance across
different spatial scales is a pronounced scenario in natural
ecosystems. Understanding the mechanisms responsible for
such pattern formation is one of the central problems in
ecology. During recent decades, pattern formation has been
a major interest of theorists and experimentalists, and it is
generally thought that spatial patterns form as a consequence
of the interplay of various physical and biological processes
[1]. It has been shown that ecological systems even in
perfectly homogeneous surroundings can exhibit inhomoge-
neous patterns [2–4]. Due to widespread environmental noise
[5–10], no ecological system is really homogeneous. Thus,
exploring what contributes to the emergence of self-organized
spatial patterns undoubtedly aids the understanding of pattern
formation.

Spatial patterns were first investigated by Turing [11] in a
reaction-diffusion chemical system. The idea is that an initially
uniform distribution of reacting components could become
unstable as a result of diffusion, whereby a stationary spatial
pattern arises. This is known as diffusion-driven instability or
Turing instability, and this idea has quickly spread to ecological
systems [12]. Similar ideas were used to explain the ecological
spatial patterns arising, for example, in plankton systems [13]
and in semiarid vegetation systems [14].

Apart from the Turing mechanism, attention to spatial
pattern formation has also shifted to non-Turing mechanisms,
e.g., the Hopf bifurcation [15]. Particular attention has been
given to mechanisms that result in irregular spatiotemporal
patterns (e.g., [16,17]). Irregular spatial patterns are considered
ecologically relevant and are well consistent with natural
spatial irregularities of species abundance distributions [18].
Thus, an understanding of which mechanisms may result
in the emergence of irregular spatiotemporal patterns is of
ecological importance. Baurmann et al. [15] showed that
irregular patterns arise in the neighborhood of the Turing-Hopf
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bifurcation, but Banerjee and Petrovskii [18] found in a
ratio-dependent predator-prey model that the Hopf bifurcation
is essential for the onset of irregular spatiotemporal patterns.

Theoretical studies of spatiotemporal patterns are usually
concentrated on ecological interactions that occur sponta-
neously without any delay. Growing evidence suggests that
delay feedback is an important factor affecting the dynamics
of ecological systems as the conversion from food intake to
reproduction is not instantaneous, but mediated by some time
lag required for the growth and maturation of individuals.
Time delay was first considered in a prey-predator system
by Volterra [19], who showed that under certain conditions
a spatial distribution may possess oscillatory behavior. Since
then, several theoretical investigations have demonstrated the
emergence of delay-driven spatial patterns (e.g., [20–29]). An
experimental study of delay feedback in [30] found that time
delay could induce a spiral wave, and when the delay between
the registration of a wave front at the measuring point and
triggering of the stimulus was increased, so was the diameter
of the synchronized trajectory of the spirals.

Motivated by the experimental observation of spiral waves,
we explore the effect of time delay on irregular spatiotemporal
patterns in a planktonic prey-predator system. Our analysis
mainly reveals that, with a proper time delay, regular spiral
patterns emerge for both populations in the beginning, but
they gradually break down, and consequently irregular patterns
appear. The regular and irregular patterns can coexist for a
sufficiently long period before the irregular patterns ultimately
replace the regular ones and persist forever. We argue that the
emerging spatial pattern is consistent with the scale of spatial
plankton abundance patterns observed in field studies.

II. THE PLANKTON MODEL

Phytoplankton and zooplankton are floating organisms
living in the sea, in freshwater lakes, and in larger rivers
[31,32]; they form the basis for the food webs in the ocean.
The population dynamics of plankton species was traditionally
described using Lotka-Volterra equations (e.g., [13]). Taking
into account the results of field and laboratory observations
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on plankton systems [33], it is more realistic to assume that
the phytoplankton species obey logistic growth in the absence
of zooplankton and that zooplankton consume phytoplankton
with a Holling type-II functional response [1,34]. In this case
the reaction-diffusion plankton model can be formulated as
follows:

∂u

∂t
= D�u + α

b
u(b − u) − γ

u

u + H
v,

(1)
∂v

∂t
= D�v + βγ

u

u + H
v − μv,

where u(x,t) and v(x,t) are, respectively, the densities of prey
and predators at space coordinate x and time t . α and b are
the intrinsic growth rate and carrying capacity of the prey. γ

indicates the capture rate of the predator and H is the half-
saturation abundance of prey. β denotes the efficiency of food
utilization and μ is the background mortality of the predator.
D is the diffusion coefficient for both prey and predators. All
parameters are positive constants.

To minimize the number of parameters involved in the
model, we introduce dimensionless variables by setting

ũ = u/b, ṽ = vγ /(αb), t̃ = αt, x̃ =
√

α/Dx. (2)

Omitting the tildes, we arrive at a dimensionless plankton
system:

∂u

∂t
= �u + u(1 − u) − u

u + h
v,

(3)
∂v

∂t
= �v + κ

u

u + h
v − mv,

where h = H/b, m = μ/α, and κ = βγ/α.
The above model has received much attention, and many

interesting results derived from it have been reported. For a
detailed description of the model and of results pertaining to
it we refer readers to the review paper by Medvinsky et al.
[1]. A limitation of this model is that it assumes that future
abundances of species depend only on their present states.
Recently, a number of authors have found in predator-prey
systems that a population’s past history has a residual effect
on the course of future species abundances [35–39]. In fact,
the conversion from food energy to reproduction requires some
time. Taking such effects into consideration, we refine system
(3) by adding a time delay τ :

∂u

∂t
= �u + u(1 − u) − u

u + h
v := f (u,v),

(4)
∂v

∂t
= �v + κ

uτ

uτ + h
v − mv := g(uτ ,v),

where (u)τ ≡ u(x,t − τ ), and τ is a positive constant. In the
following sections, system (4) is analyzed under zero-flux
boundary conditions, which biologically means that there is
no population flux across the boundary.

In a plankton system, spatial patterns can be formed due to
many factors. It is generally thought that the spatial dynamics
is shaped by the interplay of physical factors such as light,
temperature, and hydrodynamics, and biological factors such
as nutrient uptake and predation by fish [1]. Since our interest
is in the biological interactions we exclude physical factors
by assuming homogeneous physical surroundings. Petrovskii

and Malchow [34] and Medvinsky et al. [1] both demonstrated
that irregular spatiotemporal patterns can be triggered solely
by nonlinear prey-predator interactions. It remains unclear if
such complex spatial dynamics can also be excited by time
delay. Thus in the following sections we focus on the parts of
parameter space where no spatiotemporal patterns can arise if
time delay is absent.

III. DELAY-DRIVEN SPATIOTEMPORAL PATTERNS

In this section we derive the necessary conditions for
the emergence of spatiotemporal patterns by means of lin-
ear stability analysis. Setting δu = u − u∗ and δv = v − v∗,
where (u∗,v∗) is the uniform equilibrium of system (4), and
linearizing around it in u and v gives

∂δu

∂t
= �δu + fuδu + fvδv,

(5)
∂δv

∂t
= �δv + guτ

δu + fvδv,

where fu = ∂f

∂u
|(u∗,v∗), fv = ∂f

∂v
|(u∗,v∗), guτ

= ∂g

∂uτ
|(u∗,v∗), and

gv = ∂g

∂v
|(u∗,v∗).

Since we have zero-flux boundary conditions, the eigen-
function of (5) is

(δu,δv) = (δu∗,δv∗)eλt cos kx, (6)

where λ is the frequency and k is the wave number in the
x direction. Substituting this form into (5), we obtain the
following matrix equation for the eigenvalues:(

λ − fu + k2 −fv

−guτ
e−λτ λ − gv + k2

) (
δu∗
δv∗

)
=

(
0
0

)
.

Therefore, we have the following characteristic equation for
the eigenvalues:

�(λ,τ ) := λ2 + Aλ + B + Ce−λτ = 0, (7)

where A = −fu − gv + 2k2, B = (−fu + k2)(−gv + k2),
C = −fvguτ

, and k2 = k · k.
Note that in the case of τ = 0, i.e., when the time delay is

absent, the characteristic equation is reduced to the following
quadratic equation:

λ2 + Aλ + B + C = 0. (8)

Since our aim is to understand the role of time delay in
the formation of spatiotemporal chaos, we assume that the
following conditions hold:

A < 0 and B + C > 0, (9)

under which the equilibrium is stable for system (3).
We now consider the effect of time delay and derive the

conditions under which the uniform equilibrium of system
(4) undergoes Hopf bifurcation. According to the instability
theory of [40], in order to prove the instability of the uniform
equilibrium, we need only to show that there exist two roots of
(7) such that �(iω,τ ) = 0, where iω is purely imaginary and
τ is positive and real.

If iω is a root of (7), then we have

ω2 − B = C cos ωτ,

Aω = C sin ωτ,
(10)
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which leads to

ω4 + (A2 − 2B)ω2 + B2 − C2 = 0. (11)

Noticing that Eq. (11) is a quadratic equation in ω2 and that
by the Descartes rule of signs, Eq. (11) has a unique positive
solution ωc if and only if

B < C, (12)

we can compute the solution of (11) under these conditions to
be

ωc = {2B − A2 + [(A2 − 2B)2 − 4(B2 − C2)]1/2}1/2

√
2

.

Therefore, �(iω,τ ) = 0 has a pair of roots of ωc and τc, where

τc = arccos
[(

ω2
c − B

)/
C

]
ωc

. (13)

In view of the instability theory of [40], to ensure that the
system (4) is unstable, the lower bound of τ must satisfy

τ > τc.

Moreover, it is easy to verify that the uniform equilibrium
(u∗,v∗) of system (4) undergoes a Hopf bifurcation at the
threshold τc.

In conclusion, when the time delay is greater than the crit-
ical value τc spatiotemporal instability in the two-component
reaction-diffusion system occurs. In the coming section, we
shall demonstrate numerically that the dynamics of (4) exhibits
a spatiotemporal pattern.

IV. IRREGULAR PATTERN FORMATION

A. Parameter space of irregular patterns

We now explore the parameter space to find the subspace
where the fulfillment of conditions (9) and (12) is guaranteed.
Considering the specific plankton model (4), we have

fu = u∗
(

− 1 + 1 − u∗

u∗ + h

)
, fv = − u∗

u∗ + h
,

gu = guτ
= κh

1 − u∗

u∗ + h
, gv = 0.

Direct computation shows that the two conditions (9) and (12)
can be fulfilled if the parameters satisfy the following relation:

κ − m

κ + m
< h <

κ − m

m
. (14)

In this paper, we will use the following parameter values:

κ = 2, m = 0.8, h = 0.5.

These parameter values are refined slightly from [34] such that
conditions (9) and (12) are satisfied. Therefore if system (4) ex-
hibits any spatiotemporal chaos it must be due to the time delay.

For this particular choice, the positive uniform equilibrium
is given by

(u∗,v∗) = (1/3,5/9) ≈ (0.3333,0.5556),

and the critical time delay is τc = 0.1177. Therefore the
equilibrium of the system (4) is stable (unstable) when τ <

τc = 0.1177 (τ � 0.1177). In addition we can see from Fig. 1
that the critical time delay for a Hopf bifurcation increases

0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

h

τ Hopf curve

Unstable

Stable

FIG. 1. (Color online) Bifurcation diagram in the τ -h parameter
space. The solid curve indicates the critical bifurcation point τc as a
function of h.

with increasing h. We set τ = 0.3 in the remainder of this
paper.

B. Numerical simulations

Using the Euler forward finite difference method, we give
our numerical results based on the formulas in [41,42]. We
consider system (4) in a fixed spatial domain [0,Lx] × [0,Ly]
(Lx = 900,Ly = 300) and solve it on a grid with 900 × 300
points. The space step is �x = �y = 1, and the time step
is �t = 0.1. At the beginning of the simulation we assume
that the two species are spread over the whole domain. It is
well known that the spatial dynamics of system (4) is affected
by an initial spatial perturbation. If the initial distribution is
spatially homogeneous, then the homogeneous distribution of
species density will remain forever, and therefore it is not so
interesting.

Our numerical experiments start with an inhomogeneous
distribution. To this end, we take the following initial distribu-
tion:

u(x,y,t) = u∗ − ε1(x − 0.1y − 225)(x − 0.1y − 675),

v(x,y,t) = v∗ − ε2(x − 445) − ε3(y − 150),

where ε1 = 2 × 10−7, ε2 = 3 × 10−5, and ε3 = 1.2 × 10−4.
Snapshots of the spatial abundance distribution of the predator
species are shown in Fig. 2 (spatial patterns of the prey abun-
dance are qualitatively similar except for the early stages of the
process when the influence of the initial condition dominates).
We see a gradual formation of an irregular spatial pattern
starting as regular spiral patterns. As the initial condition con-
tains two critical points (245.122,201.22),(684.146,91.463),
that satisfy u(xc,yc)|t=0 = u∗, v(xc,yc)|t=0 = v∗, in the initial
structure [Fig. 2(a)], two spirals emerge around the critical
points [Fig. 2(b)]. The spirals grow slightly in the beginning,
before disappearing [Fig. 2(c)]. The disappearance of the
structures takes place around the center of the spirals where
“embryos” [Fig. 2(d)], once they appear, grow steadily
[Fig. 2(e)]. Eventually, the irregular spatial pattern prevails
over the whole domain [Fig. 2(f)]. The dynamic process of
Fig. 2 is described in the Supplemental Material [43].
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FIG. 2. (Color online) Spatial distribution of predators for (a)
t = 0, (b) t = 500, (c) t = 1000, (d) t = 1500, (e) t = 2000, and (f)
t = 2500. The parameters are given in the text. From (a) to (c), the
distribution evolves to the spiral. From (d) to (f), an irregular patchy
structure arises as a result of the destruction of the spiral.

Now we explore this regime of the system dynamics in
more detail. This can be seen from Figs. 3 and 4. Figure 3
demonstrates the spatially averaged population density over
time, which is thought to be an appropriate indicator of
irregular spatial dynamics [34]. It clearly shows that after
a sufficiently long time, the dynamics of the spatial pattern
is irregular. Figure 4 shows the moving trajectory in the
phase plane obtained at a fixed point (x,y) = (450,150). Note
that the phase planes are qualitatively similar at other fixed
points. The local phase plane shows that the trajectory fills
nearly the whole domain inside the limit cycle. Inside the
limit cycle irregular spatiotemporal oscillations occur, while
in the neighborhood of the limit cycle we see instead regular
spatiotemporal oscillations with roughly constant amplitude.
Until the irregular spatial pattern spreads over the whole
domain, there exists a distinct boundary that divides the

0 1 2 3 4 5

x 10
4

0.30

0.34

0.38

0.42

t

v

FIG. 3. (Color online) Time series of spatially averaged predator
density.

domain into two regions with different dynamic regimes,
namely, the “jagged” and smooth patterns (see also Ref. [34]).
Later the boundary moves steadily at roughly constant speed
and the jagged irregular region eventually occupies the whole
region. However, before the irregular region replaces the
regular one, the two dynamic regimes can coexist for a long
period of time. The displacement of the regular regime by the
irregular one demonstrates a phase transition between regular
and irregular phases.

Combining the observations from Figs. 2, 3 and 4, we see
that a time delay can eventually trigger the emergence of an
irregular spatiotemporal pattern, and once it appears, it persists
forever. We now determine how the theoretical finding agrees
with the results from field observations. Clearly, Fig. 2(f)
shows that the characteristic length of the spatial pattern is
roughly between 20 and 40 in dimensionless units. Equation
(2) indicates that the magnitude of these values in dimensional
units is dependent on the maximal phytoplankton growth rate
α and the diffusive coefficient D. The value of α ranges from
10−5 to 4 × 10−5 s−1, at its peak [1]. The turbulent diffusion
D, although dependent on the scale of the phenomenon for
the open sea [44–46], varies much less in coastal regions
such as bights and harbors, and in these regions we have

0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.4

0.6

0.8

1

u

v

FIG. 4. (Color online) Phase plane of the system (4) at a fixed
spatial location (450,150) inside the domain occupied by irregular
spatiotemporal oscillations. The arrow indicates the direction of
movement of the trajectory and the solid circle shows the starting
point.
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D = 103 cm2 s−1 [44,47]. Substituting these estimates for
D and α into Eq. (2), we find that the dimensionless unit
length corresponds to approximately 50–100 m in the original
dimensional units, which gives a characteristic length of the
spatial patterns of the order of 1 km. This scale of the spatial
patterns agrees well with field observations [33,48,49].

V. DISCUSSION

Irregular spatiotemporal patterns have important implica-
tions for population dynamics [16,17], and are widely thought
to be of high ecological relevance as they can emerge under
less restrictive conditions than Turing patterns [18]. Since
most ecosystems, if not all, are affected by environmental
noise [5–10], the emergence of irregular spatial patterns might
be very likely to occur in real ecological communities.

In our prey-predator plankton system, we have shown
that irregular spatial patterns can be excited near the Hopf
bifurcation point of a time delay, beyond which the spatially
uniform equilibrium loses its stability. This finding confirms
once again that a Hopf bifurcation is a necessary condition
for the onset of irregular spatiotemporal patterns [18]. The
reason for the appearance of the irregular patterns that result

from the destruction of a regular spiral pattern remains
poorly understood, but a plausible explanation might be that
a dynamical system with delay is many dimensional, and
therefore a few modes selected by the boundary conditions
actively interact, leading to the breakup of the coherent
structure of the spirals [50].

The emergent irregular patterns are fairly robust. Use of
periodic boundary conditions gives rise to similar patterns. In
addition, the domain size and initial conditions are not crucial
for exciting irregular patterns, but the number of spirals is
positively correlated with the number of critical points appear-
ing in the initial perturbations. Since the predicted irregular
pattern shows good agreement with field observations, the
proposed approach may have broader applicability to other
reaction-diffusion systems with time delay, such as those with
competitive and mutualistic interactions.
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