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Effects of pacing magnitudes and forms on bistability width in a modeled ventricular tissue
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Bistability in periodically paced cardiac tissue is relevant to cardiac arrhythmias and its control. In the present
paper, one-dimensional tissue of the phase I Luo-Rudy model is numerically investigated. The effects of various
parameters of pacing signals on bistability width are studied. The following conclusions are obtained: (i) Pacing
can be classified into two types: pulsatile and sinusoidal types. Pulsatile pacing reduces bistability width as its
magnitude is increased. Sinusoidal pacing increases the width as its amplitude is increased. (ii) In a pacing period
the hyperpolarizing part plays a more important role than the depolarizing part. Variations of the hyperpolarizing
ratio in a period evidently change the width of bistability and its variation tendency. (iii) A dynamical mechanism
is proposed to qualitatively explain the phenomena, which reveals the reason for the different effects of pulsatile
and sinusoidal pacing on bistability. The methods for changing bistability width by external pacing may help
control arrhythmias in cardiology.
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I. INTRODUCTION

Cardiac arrhythmias are diseases with a prevalence in
human beings, among which ventricular fibrillation may cause
sudden death without immediate treatment [1]. Investigations
from the viewpoint of physics promote the research of cardiac
diseases [2–9]. The interpretations of dynamical properties
of cardiac activities may help to develop safe and effective
therapeutic methods for arrthymias [10–13]. Therefore, the
interdiscipline of cardiovascular physics is expected to con-
tribute more to cardiology.

In the present paper we intend to investigate bistability
in a modeled periodically paced ventricular tissue by physical
analysis. Bistability in the ventricle was reported by Mines [14]
experimentally. Moreover, various kinds of bistability were
found in vivo in hearts and cardiac models, which indicates
that bistability is prevalent in cardiac systems [15–25]. In
periodically paced ventricular tissue, bistability means that
the ventricle responds to the pacing by two possible patterns
(e.g., 1:1 and 2:1 patterns) in a certain range of stimulation
frequency. Generally speaking, two issues about this kind
of bistability are mainly concerned: the ionic mechanisms
[21,24,25] and the nonlinear dynamics of the mapping models
[19,20,22–24]. In Ref. [26] a physical mechanism analyzing
the interactive dynamics of pacing period and action potential
duration (APD) is proposed.

Bistability is relevant to arrhythmias and its control. It was
pointed out that the existence of bistability in ventricles may
cause the breakup of spiral waves and thus the emergence
of fibrillations [27]. On the other hand, bistability may affect
the control of spiral waves. There is a theoretically harmless
and effective method to eliminate spiral waves in ventricular
tissue [12,28]. The idea is to produce regularly propagating
waves by local pacing with a higher frequency than that of the
spirals, and the spirals may be driven out. However, due to the
existence of bistability, the propagating waves may respond to
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pacing in a 2:1 state with a frequency lower than that of the
spirals, and control is considered to fail. But note that under
identical conditions a larger frequency can be obtained on the
1:1 branch and control may succeed [26]. Therefore, the range
of bistability (it is called bistability width in the following
text) is a quantity determining the robustness of bistability,
which affects the occurrence and control of arrhythmias.
Understanding how large and how to vary bistability width in
periodically paced ventricular tissue is a significant problem.

It is revealed that physiological parameters have influences
on the form and width of bistability [24,26]. Also the pacing
magnitude has influences on bistability behaviors of a single
cell [24]. However, the effects of the pacing parameters on
bistability in tissue have not been sufficiently evaluated.

In the present paper, influences of the pacing parameters
on bistability width is studied. It is surprising that pacing
parameters have great effects on bistability width. As pacing
magnitude is increased, the variation tendencies of width
under pulsatile and sinusoidal pacing are opposite. A possible
analytical theory is proposed to explain the phenomena
qualitatively. In a practical situation, physiological conditions
are difficult to change (or to change in a slow process [29]),
while the external pacing can be easily controlled. It is
hoped that our work may provide theoretically reasonable and
practical methods for modulating bistability width.

In the present study, a one-dimensional (1D) phase I
Luo-Rudy model (LRd91) [30] is numerically investigated.
The paper is organized as follows: Section II introduces the
model and methods. Section III shows the influences of the
pacing parameters on the bistability width. The mechanism of
the phenomena is discussed in Sec. IV. The last section is our
summary.

II. MODEL AND METHODS

The partial differential equation for the dynamics of the
cell’s membrane potential Vm (mV) in a 1D tissue is

∂Vm(x,t)

∂t
= −Iion + Ist (x,t)

Cm

+ D∇2Vm(x,t), (1)
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where Cm = 1μF/cm2 is the membrane capacitance, D =
0.001 cm2/ms is the diffusion coefficient, Iion (μA/cm2) is the
total transmembrane ionic current of a cell, and Ist (μA/cm2)
is the stimulating current. In the LRd91 model, the total ionic
current Iion is the summary of six individual ionic currents:

Iion = INa + Isi + IK + IK1 + IKp + Ib, (2)

where INa = GNam
3hj (Vm − ENa), Isi = Gsidf (Vm − Esi),

IK = GKXXi(Vm − EK ), IK1 = GK1K1∞(Vm − EK1),
IKp = GKpKp(Vm − EKp), Ib = Gb(Vm − Eb). Here m, h,
j , d, f , and X are gating variables and the evolvement of
each of them satisfies

dy

dt
= y∞ − y

τy

, (3)

where y represents any gating variable, τy and y∞ are the time
constant and the steady state of y, respectively. The detailed
description of this model was given by Luo and Rudy [30].

For numerical simulation, Eq. (1) is integrated by the ex-
plicit Euler method. Moreover, some other numerical methods
are often used to simulate cardiac models [8,31]. In the present
work, time step dt = 0.02 ms and space step dx = 0.028 cm
are chosen. The 1D chain consists of 200 nodes. The gating
variable equations are solved by the Rush-Larsen method [32].
The pacing is applied on the leftmost cell of the cable and
the no-flux boundary condition is used. The numerical errors
of the method and spatiotemporal resolution are estimated
in the Appendix. All parameters are set to be the same as
the original LRd91 model except Gsi = 0.055 mS/cm2 and
GK = 0.705 mS/cm2. This set of parameters reduces the slope
of APD restitution curve and excludes alternans (the so called
2:2 rhythm) in the distant region of the cable. Under such a
condition, the bistability window is formed between 1:1 and
2:1, which is a typical kind of bistability found in cardiac
tissue [23]. On the other hand, the bistability window has a
large enough width, so that the characteristics of the variations
could be easily observed.

Bistability is depicted by bifurcation diagram of action
potential duration (APD) vs pacing cycle length (PCL). Action
potential duration is defined as the time to reach the fixed
transmembrane voltage Vm = −62 mV in an action potential.
For each PCL, data of the first 100 times of pacing are
discarded and the following 20 times are recorded. Data of
entrainment are collected from the 150th grid-point counting
from the paced end unless specified otherwise. When PCL is
changed downward and upward (by 1 ms for each step) in a
loop continuously (the final state of the cable at the present
PCL is the initial state for the next one), bistability can be
formed in the bifurcation diagram.

Figure 1 is a bistability window shown in the PCL-APD
diagram. The boundaries of the window are defined as follows.
The left boundary is at the point that PCL equals PCL2:1b

(labeled by the arrow on the left in Fig. 1). This point is
obtained by decreasing PCL continuously on the 1:1 branch
until a steady 2:1 state is reached. The right boundary is at
PCL equaling PCL1:1b (labeled by the arrow on the right in
Fig. 1). This point is obtained by increasing PCL continuously
on the 2:1 branch until a steady 1:1 state is reached. Then the
width of the window W (ms) is W = Tp1:1b

− Tp2:1b
(Tp is used

to denote the value of PCL in mathematical expression in the

FIG. 1. Bistability window in 1D cardiac tissue. Pulsatile pacing
with duration of 10 ms and magnitude 30(μA/cm2) is applied on
the left end. Data in the diagram are measured from the 150th
cell counting from the pacing end. The first 100 times of pacing
is discarded. The values of PCL labeled PCL2:1b and PCL1:1b are
defined to be the boundaries of the window.

following text). For each set of pacing parameters, the above
process is repeated to obtain an integral bistability window.
The width W corresponding to the parameter set is measured
from the window.

III. EFFECTS OF PACING MAGNITUDES AND FORMS ON
BISTABILITY IN TISSUE

In this section the effects of the pacing parameters on the
width W is investigated. The two regularly used kinds of
pacing forms, pulsatile and sinusoidal forms, are considered.
Interestingly, in the pulsatile pacing form W decreases as
the pacing magnitude is increased [as shown in Fig. 2(a)
by black solid circles], while in sinusoidal pacing form W

increases as the pacing amplitude is increased [as shown in
Fig. 2(a) by red empty circles]. The variations of the width
show opposite tendencies under the two different forms of
pacing. The variations of W are not smooth, and “increase” or
“decrease” is used to describe the overall variation tendency.
The fluctuations may be partly due to the irregular region
between the stable 1:1 and 2:1 states on the left of the
bistability window (as shown in Fig. 1), which is caused by
complex dynamics of propagation block in the cable [33–35].
Moreover, the fluctuations are also relevant to the artifacts
of numerical result. Sometimes 100 times of pacing are not
enough for eliminating the transient effect, and the position
of the 1:1→2:1 transition is not detected precisely. So that
the range of the region may vary irregularly by 1–2 ms for
different pacing magnitudes. However, the fluctuations do not
imperil the conclusions. For simplicity of presentation in the
paper, the fluctuations are ignored and the words “increase”
and “decrease” are used.

For a cardiac cell, depolarizing current and hyperpolarizing
current have different effects on cell dynamics [36,37]. The
obvious difference between pulsatile and sinusoidal pacing
is that sinusoidal pacing possesses a hyperpolarizing part but
pulsatile pacing does not. Thus hyperpolarizing stimulation
may be the reason for the opposite tendencies. Based on the
above consideration, we do further investigations as follows:
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FIG. 2. (Color online) Bistability window width varied by in-
creasing magnitudes of pulsatile and sinusoidal pacing. Pacing forms
are shown in the top of the panels. (a) Situations of pulsatile and
sinusoidal pacing. The duration of pulse (represented by Tpos) is
10 ms. For pulsatile form the width is decreased by the increase of
the magnitude (shown by black solid circles), while for sinusoidal
form it is increased by the increase of the amplitude (shown by red
empty circles). (b) Situations of rectangular and shifted sinusoidal
pacing. In rectangular form duration of the positive stimulation is
Tpos = 40 ms. The sinusoidal signal is wholly shifted by M so that
the negative part is eliminated. Interestingly, the variation tendency of
width increases under rectangular form and decreases under shifted
sinusoidal form.

(i) The sinusoidal pacing is changed to Ist = Msinωt + M so
that the hyperpolarizing effect is eliminated. (ii) The pulsatile
pacing is changed to rectangular form so that it possesses a
hyperpolarizing part, i.e., Ist = M [mod(T ,Tp)� Tpos]; Ist =
−M [mod(T ,Tp)> Tpos], where M is the magnitude, Tp is the
pacing period (Tp equals PCL) and Tpos is the time range for
which the stimulation magnitude is positive M . The influences
of magnitude on width in the two modified cases are shown in
Fig. 2(b). We can see that pacing without the hyperpolarizing
part [the red empty circles in Fig. 2(b)] has a similar effect
to the pulsatile form [the black solid circles in Fig. 2(a)],
while pacing with the hyperpolarizing part [the black solid
circles in Fig. 2(b)] has a similar effect to the sinusoidal form
[the red empty circles in Fig. 2(a)]. Therefore, the variation
tendency of W depends on the magnitudes of the depolarizing
and hyperpolarizing parts instead of pacing forms.

Besides the magnitude M , there are still multiple pa-
rameters of pacing, which change the pacing form. The
parameters in the two kinds of pacing are presented by the
following symbols: (i) R[M(Tpos), − M + rM], which means
the pacing form is rectangular, M is the positive magnitude and
−M + rM is the negative magnitude, Tpos is the functioning
time range of positive M in a period, and r determines the
relative value between the positive and negative magnitudes;
(ii) S[M + rM, − M + rM], which means the pacing is
sinusoidal, and M is the amplitude. As the shape of the
sinusoidal curve is fixed, only the parameter determining the
upwards and downwards shifting extents of the whole curve is
changed, which is determined by r .

Our ideas for investigating the effects of the parameters
are as follows. Each set of Tpos and r determines the form
of pacing. For a given form of pacing, the effect of M on
bistability width is shown in the M-W coordinate (just like
Fig. 2). When Tpos and r are changed, the M-W curve will

FIG. 3. (Color online) The influences of pacing parameters on
bistability width. Pacing signals varied are shown in each panel.
�W describes the variation tendency as magnitude is increased for
a given form of pacing, and �W > 0 means the variation tendency
is ascending while < 0 means descending. WM roughly positions the
M-W curve. (a) The effect of depolarizing part of pulsatile pacing
(represented by variations of Tpos). (b) The effect of the ratio of Tpos to
pacing period Tp in rectangular pacing. For example, Tpos/Tp = 0.5
means the functioning time range of positive M is kept to be 0.5Tp

during PCL is changed in a loop. (c) The effect of r in rectangular
form, which determines the relative value of positive and negative
magnitudes. For example, r = 0.4 means the negative magnitude is
0.4 times less than the positive one. Tpos is 0.5Tp during changing r .
(d) The effect of the shifted degree of sinusoidal signal (represented
by r). From the four pictures it can be seen that hyperpolarizing
part plays a much more important role in varying the bistability
width. Increase of hyperpolarizing ratio transforms the pacing type
from pulsatile to sinusoidal [see blue crosses in (c) and (d) moving
from below to above 0], and evidently reduces WM [see pink empty
triangles in (c) and (d) descending as Tpos/Tp and r are decreased],
which means evident downward shift of the M-W curve. However,
change of depolarizing ratio does not have the effect.

be changed correspondingly. It is impossible to figure out
all the curves with each set of pacing parameters. Therefore,
variations of the M-W curve are described by the following
two quantities for simplicity: �W and WM . The quantity �W

is the difference between WM1 and WM2 (�W = WM2 − WM1 ).
For R form pacing M1 = 30 and M2 = 80, and for S form
pacing M1 = 28 and M2 = 48. �W describes the variation
tendency of the width as the magnitude M is increased
(�W > 0 means ascending and �W < 0 means descending).
Another quantity WM is the width of a certain M (M = 50 for
the R form and M = 38 for the S form), which can roughly
position the curve in the M-W plane.

Figure 3 shows the effects of the pacing parameters. We
discuss three problems by this figure as follows:
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(i) Classification of the pacing forms. According to the
variation tendency of W , the pacing forms can be classified into
two types: the sinusoidal type and the pulsatile type. Pacing
forms that give �W � 0 are regarded to be the sinusoidal type
because they have a similar effect to the normal sinusoidal
pacing. The sinusoidal type increases bistability width as its
amplitude is increased [�W � 0, as shown by the blue crosses
in Fig. 3(b) with Tpos � 0.75Tp, Fig. 3(c) with r � 0.8, and
Fig. 3(d) with r � 0.8]. The characteristic of the sinusoidal
type is that hyperpolarizing part occupies a certain degree in
the pacing. Pacing forms that give �W < 0 are regarded to
be the pulsatile type because they have a similar effect to
the normal pulsatile pacing. The pulsatile type decreases the
width as its magnitude is increased [�W < 0, as shown by blue
crosses in Fig. 3(a), Fig. 3(b) with Tpos � 0.8Tp, Fig. 3(c) with
r � 0.9, and Fig. 3(d) with r � 0.9]. The characteristic of this
type is that the depolarizing part takes absolute advantage over
the hyperpolarizing one.

(ii) Effects of depolarizing part in the pacing. In pulsatile
pacing, the variation of the depolarizing part ratio in a pacing
period (represented by Tpos) changes W50 scarcely, and reduces
|�W | as its ratio is increased in a period [Fig. 3(a)]. That
means that an increase of the depolarizing part in pulsatile
pacing will flatten the M-W curve, and will hold the curve in
an approximately invariant position.

(iii) Effects of hyperpolarizing part. When the hyperpolar-
izing part appears in the pulsatile pacing with a very small and
increased ratio [decreased Tpos/Tp and r mean an increased
ratio of the hyperpolarizing part in Figs. 3(b)–3(d)], it greatly
reduces |�W | [see the blue crosses below 0 in Figs. 3(b)–3(d),
which move towards 0]. When the ratio becomes larger, �W

becomes positive and the pacing transforms to the sinusoidal
type [see the blue crosses above 0 in Figs. 3(b)–3(d)]. On the
other hand, variations of the hyperpolarizing ratio evidently
change WM . The quantity increases as the hyperpolarizing
ratio is decreased [as shown in Figs. 3(b)–3(d) by pink
empty triangles]. But in sinusoidal pacing, when r � 0.8, WM

becomes decreased. However, in a large range of parameters
the above conclusion is held.

From the above discussions, it can be seen that changes
of hyperpolarizing ratio in a pacing period may transform the
pacing type between pulsatile and sinusoidal types and evi-
dently change the bistability width. But the depolarizing part
does not possess the ability. In conclusion, the hyperpolarizing
part influences bistability width in a much greater degree than
the depolarizing one. The results in the present section may
provide effective ways to adjust bistability width by varying
pacing parameters.

IV. THEORETICAL EXPLANATION OF THE
PHENOMENA

In this section we want to qualitatively explain the contrary
tendencies of width variation under pulsatile and sinusoidal
pacing [the phenomena shown by Fig. 2(a)].

Figure 4(a) shows two bistability windows under an
identical form of pacing with different magnitudes. It can be
seen that the left boundaries of the windows are nearly at the
identical PCL, and the difference of the width comes from
the right boundaries. Figure 4(b) shows the spatiotemporal

FIG. 4. (Color online) Dynamical mechanisms of bistability in
tissue and a single cell. (a) Bistability windows produced by pulsatile
pacing with Tpos = 10 ms. The window made up of black solid
circles and red empty circles are produced by M = 30(μ A/cm2)
and 80(μA/cm2), respectively. The width difference is mainly due to
the difference of the right boundaries. (b) Spatiotemporal pattern of
1:1 lost. The pacing period is 72 ms. Synchronization of 1:1 is lost
in the distant region and 1:1 is approximately held in the adjacent
cells. (c) Spatiotemporal pattern of 1:1 recovery from 2:1 (PCL is
varied from 108 to 109 ms). The whole cable follows the adjacent
cells to fall in 1:1. (d) Dynamical process of APD and SIC when PCL
is decreased. The process is as follows: PP moves leftward→APD
reduces→SIC moves leftward. (e) DAPDRC of a paced single cell.
As PCL is decreased, the solid line representing Tp = A + D moves
downward, and APD is reduced. When 1:1 transforms to be 2:1, APD
is enlarged (point A jumps to point B). (f) SIC movement when 2:1
is reached. Corresponding to APD enlargement, SIC jumps from the
dashed position to the solid one with a distance L.

pattern of the critical state that 1:1 is lost. It reveals that
desynchronization of 1:1 is due to the propagation block
in the region distant from the paced end, and is irrelevant
to pacing magnitude, so that the left boundaries of the two
bistability windows shown in Fig. 4(a) coincide with each
other. Figure 4(c) shows the transition from stable 2:1 to 1:1.
It reveals that if 1:1 is recovered on the cells adjacent to the
paced end, it would also be recovered on the whole cable.
Therefore, the differences of width under different magnitudes
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is determined by the dynamics of cells adjacent to the paced
end rather than the distant ones.

Additionally, in regard to the wave propagation block shown
in Fig. 4(b), a number of works have discussed its mechanisms
in detail [33–35]. When the APD of a certain cell in the cable
is too large and pacing is fast, the following stimulus will meet
the refractory period and fail to excite the cell, and propagation
is blocked at this site. The previous studies revealed that
propagation block is associated to three factors: dispersion of
velocity (represented by CV restitution curve), APD restitution
property (represented by APD restitution curve), and coupling
strength of the cable. The irregular region in the bistability
window shown in Fig. 4(a) is partly due to the complex
dynamics of propagation blocks, the width of which may
fluctuate by 1–2 ms irregularly.

Based on the above findings, it can be concluded that the
bistability dynamics of the adjacent cells roughly determine
that of the whole tissue. In this section, the sixth cell is selected
to investigate the mechanism of width variation. But note that
investigations on another adjacent cell (such as the fifth, fourth,
etc.) provide similar results.

A. Mechanism of bistability in a single cell

In Ref. [26] a dynamical mechanism of bistability between
1:1 and 2:1 in a single periodically paced cardiac cell is
proposed. The theory will be applied to investigate bistability
width in our work. In this subsection a brief review of the
mechanism is given.

Pulsatile pacing is usually applied and the results in this
subsection are founded on this type of pacing. Figures 4(d)–
4(f) are schematic diagrams showing the mechanism. In
Fig. 4(d) the solid curve labeled AP (action potential) is the
transmembrane potential elicited by one time of stimulation
in the pacing (labeled S1). The solid disk labeled PP (pacing
point) represents the stimulus following S1 (labeled S2) with
time interval S1S2 equal to PCL and a certain magnitude.
The solid curve labeled SIC (strength-interval curve), corre-
sponding to the solid AP, indicates the minimum magnitude
of S2 needed to elicit another AP at certain time intervals
following S1 [38]. If the PP is above SIC, 1:1 could be
obtained, while below SIC 1:1 would be lost and 2:1 takes
place. Here the vulnerable window [6,37] is not considered,
because the mechanism of bistability depends on the relative
positions of PP and SIC, and the vulnerable window has little
influence on the results.

When the PCL is decreased [the PP moves leftward,
indicated by a left pointed arrow in Fig. 4(d)], the APD is
reduced. Such a variation is shown by Fig. 4(e), which is the so
called dynamic APD restitution curve (DAPDRC) [4,19]. The
steady 1:1 state is represented by the intersection point of the
DAPDRC and the solid straight line representing Tp = A + D

[A and D mean the values of the APD and the DI (diastolic
interval) in a mathematical expression]. Therefore, when the
PCL is decreased, the solid straight line in Fig. 4(e) moves
to the position of the dashed one, and the APD is reduced.
Correspondingly, in Fig. 4(d) the AP curve shrinks to be the
dashed one, and the SIC moves leftward to be the dashed one
as a result. The dynamical process is as follows: PP moves
leftward→APD reduces→SIC moves leftward.

The moving velocity of the SIC is determined by the varying
rate of the APD. Note that the PP moves faster than the SIC
when the PCL is changed (the variation of the APD is smaller
than that of the PCL). When the PP goes leftward and locates
below the SIC [see Fig. 4(f); PP1:1c moves left to the position
of PP2:1c, and goes under the dashed SIC], 1:1 is lost. In the
2:1 state the actual excitation period is 2PCL. As indicated by
DAPDRC in Fig. 4(e), the APD of the 2:1 state (represented
by point B) is larger than the 1:1 state (represented by point
A). Therefore, when the 2:1 entrainment is reached, the APD
enlarges and the SIC jumps rightward by a certain distance
correspondingly [see Fig. 4(f); the dashed SIC jumps rightward
to the solid one]. If the PCL is increased again, the PP would be
below the solid SIC, and 2:1 would be obtained in the original
1:1 region. The above is the dynamical process of hysteresis
and bistability.

Therefore, the bistability width depends on the distance
that the PP chases up the solid SIC rightward. In Ref. [26] a
formula calculating the width W is obtained. The basic idea of
the formula is to solve the simple traditional chasing problem:

L =
∫ Tp2:1c

+W

Tp2:1c

�vdt, (4)

where L is the initial distance between the PP and the SIC
[labeled L in Fig. 4(f)], �v = vPP − vSIC = 1 − vSIC is the
velocity difference between the PP and the SIC, and Tp2:1c

is
the PCL corresponding to PP2:1c in Fig. 4(f).

B. Mechanism of bistability in a paced tissue

The dynamics of tissue is more complex than that of a single
cell. Because of coupling, stimulation on a cell in the cable does
not function as pulsatile pacing with determined magnitude
and duration. Therefore, it is difficult to determine the SIC of
a cell and the corresponding PP in tissue, and Eq. (4) cannot
be directly applied. However, we can qualitatively calculate
the width in tissue. If the SIC is regarded to move at an
invariant velocity [it is reasonable because the APD is changed
approximately linearly with the PCL in the 2:1 branch; also
see Fig. 4(a)], Eq. (4) can be simpler, which becomes

W = L

�v
= L

1 − vSIC

. (5)

In approximation L and vSIC can be qualitatively obtained.
The initial distance L is approximately determined by the APD
(denoted by A in the following formulas) difference between
critical 1:1 and 2:1 states, so that it is represented as

L = A2:1c − A1:1c. (6)

Here critical 1:1 and 2:1 refer to the last steady 1:1 state and
first steady 2:1 state as the PCL is decreased continuously. The
velocity of the SIC is regarded to be the varying rate of the
APD as the PCL is changed. Therefore

vSIC = A2:1(Tp1) − A2:1(Tp2)

2(Tp1 − Tp2)
, (7)

where A2:1(Tp1) and A2:1(Tp2) are APDs on the 2:1 branch at
the PCL equaling Tp1 and Tp2, respectively, and Tp1 and Tp2

are any two different pacing periods in the bistability region.
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FIG. 5. (Color online) Explanation of the descending tendency
of W under pulsatile pacing with Tpos = 10 ms. Data are taken from
the sixth cell in tissue. (a) The upper trace is APDs of the critical 1:1
(red empty circles) and 2:1 (black solid circles) states as functions of
pacing magnitude. The lower trace is the velocity difference between
PP and SIC (1-vSIC) as a function of magnitude. (b) Comparison of
the theoretical and numerical results. Numerical result (empty red
circles) is just that shown by Fig. 2(a), and theoretical result comes
from Eq. (5). Theoretical result qualitatively fit the numerical one.

Figure 5 is the situation of the sixth cell under pulsatile
pacing [form of R[M(10 ms),0]]. Figure 5(a) shows A1:1c,
A2:1c and 1 − vSIC of the cell as functions of pacing magnitude.
The black solid circles in Fig. 5(b) are the results obtained
from Eq. (5). Theoretical results fit well qualitatively with the
numerical ones. The theory provides the descending tendency
as that measured numerically, and the order of magnitude of
the theoretical result is correct. The reason of the descending
tendency of W under pulsatile pacing is that the difference
between A1:1c and A2:1c is evidently decreased, and �v is
slightly increased as pacing magnitude is increased.

Figure 6(a) shows the APDs and �v under sinusoidal
pacing (form of S[M, − M]). However, W would be decreased
if the quantities are substituted into Eqs. (5)–(7), which does
not conform with the numerical result. In sinusoidal pacing
the movement of the PP may be more complex, which cannot
be regarded to be moving horizontally towards the SIC and
thus Eq. (5) should be revised. To reveal such a movement, we
define the effective magnitude (Meff) of the cell at x yielded
by the coupling current from the neighboring cells:

Meff = 1

tup

∫ tup

0
D∇2Vm(x,t)dt. (8)

D∇2Vm(x,t) is the coupling term of point x. About tup
demonstrations are given as follows. In the 2:1 state, if one
time of stimulus (called S1) successfully elicits an AP in the
cable, the stimulus immediately following S1 (called S2) fails
to do that. However, S2 still depolarizes the cells adjacent to
the paced end. tup is measured during the period that the cell
at x is depolarized by S2. Hence, in Eq. (8) tup is the time
interval in which D∇2Vm(x,t) > 0 and dVm(x,t)

dt
> 0. In such a

definition, Meff can be regarded as the stimulating magnitude
of the PP.

Interestingly, when the PCL is changed, in pulsatile pacing
Meff keeps approximately identical [red empty circles in
Fig. 6(b)] so that the PP moves horizontally towards the
SIC, while in sinusoidal pacing Meff descends approximately
linearly as the PCL is increased [black solid circles in

FIG. 6. (Color online) Explanation of the ascending tendency of
W under sinusoidal pacing. Data are taken from the sixth cell in tissue.
(a) Action potential durations of critical 1:1 and 2:1 states and 1-vSIC

as functions of pacing amplitude. (b) Variations of Meff of the sixth cell
as PCL is increased under pulsatile (red empty circles) and sinusoidal
(black solid circles) pacing, respectively. The pacing magnitudes
(amplitudes) are both 50μA/cm2. (c) A schematic figure showing
the relative movement of PP and SIC under sinusoidal pacing, which
leads to Eq. (10) in text. The small frame in the upper right is M2:1c as
the function of M . (d) Comparison of the theoretical and numerical
results. Numerical result (empty red circles) is just that shown by
Fig. 2(a), and theoretical results come from Eq. (10) by setting
C = 1.0, E = 6.225, and β = 1.0. Theoretical results qualitatively
fit the numerical one.

Fig. 6(b)]. When the pacing magnitude is changed, the value
of Meff will be changed, but the slope remains nearly invariant.
The reduction of Meff in Fig. 6(b) can be interpreted as
follows: As the PCL is increased, the functioning time of the
hyperpolarizing part is increased, and consequently the cell
adjacent to the pacing will be more hyperpolarized. Hence,
the coming perturbation (S2) needs more time to depolarize
the cell. As Meff is defined to be the time averaged magnitude,
it will be decreased. The decrease of Meff is a result of the
strengthening of the hyperpolarizing effect. As the distance
becomes further from the paced end, the hyperpolarizing effect
is “forgotten” by the cable, and the property does not hold. The
reduce of Meff can only be seen when x � 0.196 cm (within
seven cells from the paced end). As we have already seen that
distant cells always follow the adjacent cells to fall in 2:1 and
1:1 states, the characteristic in the region x � 0.196 cm just
reveals the difference between pulsatile and sinusoidal pacing.

For sinusoidal pacing, by taking into account the descend-
ing movement of Meff , Eq. (5) is revised as follows. First, we
conjecture that the SIC can be expressed as f (x) = Ceβ/x + E

[conjectured from Fig. 4(d), where x → 0 means Tp → 0].
The initial positions of the PP and the SIC are shown in
Fig. 6(c), which is just a schematic diagram and not created
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by actual data. The initial Meff is measured by the critical 2:1
state, and is called M2:1c. Suppose the vertical velocity of the
PP is α [equal to the slope of the PCL-Meff curve in Fig. 6(b),
which is constant despite M variations]. The tilt dashed line
represents the trace of the PP movement. That means the PP
has to move a larger distance than L to chase up the SIC.
Therefore, Eq. (5) should be rewritten as

L + �L = �vW. (9)

When the PP chases up the SIC, it has taken a distance of αW

vertically. In linear approximation, �L = αW/k, where k is
the slope of the SIC at x0. So that k = C

β

x2
0
eβ/x0 , and x0 satisfies

M2:1c = Ceβ/x0 + E. Consequently, k = (M2:1c−E)
β

ln2(M2:1c−E

C
).

Finally, Eq. (9) is rewritten as

W = L

�v − α
(M2:1c−E)

β
ln2( M2:1c−E

C
)

. (10)

The initial effective magnitude M2:1c as a function of pacing
magnitude M is plotted by the small frame in the upper
right of Fig. 6(c). If the following values are taken: α = 0.13
[measured from Fig. 6(b)], β = 1.0, E = 6.225, and C = 1,
and by substituting the quantities shown in Figs. 6(a) and 6(c),
the results of Eq. (10) qualitatively fit well with those measured
numerically, which are shown in Fig. 6(d) by solid black
circles. The values of C, E, and β are essentially determined by
the shape of the SIC, and the present values are conjectured to
fit the results. For different cells, the parameters are different
because they are influenced by pacing in different extents.
Although the parameters cannot be determined physically in
the present study, the revision term in the denominator of
Eq. (10) should be the reason for the W ascending under
sinusoidal pacing. If α = 0, Eq. (10) becomes Eq. (5), which
is the formula for pulsatile pacing.

Although the theory provides a qualitative explanation
of the width variations, there are quantitative discrepancies
between the theoretical and numerical results. The main
reasons may be the following: (1) the linear approximation of
the theory; (2) a lack of taking into account the spatiotemporal
properties of tissue; (3) the simple conjecture of the analytical
expression of the SIC and the related parameter values. A more
precise theory concerning the quantitative accuracy is awaited.

V. SUMMARY

The present paper investigates the variations of bistability
width in periodically paced cardiac tissue as the pacing
magnitudes and forms are varied. The following conclusions
are obtained:

(i) Pacing forms can be classified into two types: the
pulsatile type and the sinusoidal type. In a given form of
pacing, as the magnitude (amplitude) is increased, for the
pulsatile type, bistability width is decreased while for the
sinusoidal type the tendency is the opposite.

(ii) The hyperpolarizing part influences bistability width
in a greater extent than the depolarizing part of the pacing.
The emergence of the hyperpolarizing part may evidently
change the variation tendency of the width. Further increase
of the hyperpolarizing ratio in a pacing period transforms the
pacing from pulsatile to the sinusoidal type. An increase of

FIG. 7. (Color online) Estimations of numerical errors. The
system is paced by pulsatile stimulation with M = 50(μA/cm2) and
duration of 10 ms. The estimations are carried out under 1:1 state of
Tp = 85 ms. The APD and CV of entrainment are measured on the
150th grid point. APD0 and CV0 are APD and CV in the dt → 0
and dx → 0 limits, and the ratio of APD/APD0 and CV/CV0 are
used to show the error. (a) Errors of APD and CV produced by dx.
Conduction velocity is more sensitive than APD to dx. The choice
of dx = 0.028 cm is indicated by the dashed line, which produces an
error of 1.5% in APD and 11% in CV. (b) Errors of APD produced by
dt . Two cases are shown: APD of single wave and APD of wave train.
Time step dt has little influence on APD in both cases. In dt = 0.02
ms, indicated by the dashed line, the error is less than 1%.

the hyperpolarizing ratio can evidently reduce the width. In
comparison, the depolarizing part has less effect on the width.

(iii) A theoretical formula is used to calculate the width
approximately: W = L/�v. The descending of the width
under the pulsatile type pacing is due to that L is reduced
(i.e., the difference of APDs between critical 1:1 and 2:1
states is reduced), and �v is increased. However, in sinusoidal
pacing, the formula should be revised to be W = L/(�v −

α
(M2:1c−E)

β
ln2( M2:1c−E

C
)
), which takes into account the factor that

effective stimulation magnitude is reduced as the PCL is
increased. The revision term in the denominator implies the
ascending tendency of width.
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APPENDIX: ERROR ESTIMATIONS OF
THE NUMERICAL METHOD

The numerical errors are estimated by varying the spatial
and temporal resolutions of dx and dt . The system is paced
by pulsatile stimulation with M = 50(μA/cm2) and duration
of 10 ms. The estimations are carried out under the 1:1 state
of Tp = 85 ms. The APD and conduction velocity (CV) of
entrainment are measured on the 150th grid point (which is
kept to be far from the paced end as dx is varied). Figures 7(a)
and 7(b) are created following the idea of Refs. [31,39]. APD0

and CV0 are APD and CV in the dt → 0 and dx → 0 limits.
For each dx or dt choice, the ratio of APD/APD0 and CV/CV0

is used to show the error.
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Figure 7(a) shows the CV and the APD affected by dx. As
indicated by Clayton et al. [39], the CV is more sensitive than
the APD to spatial resolution. The dashed line indicates that
dx used in our work (dx = 0.028 cm). This choice produces
an error of 1.5% in the APD and 11% in the CV. The relatively
large error of the CV will not violate the basic properties
of bistability. The conduction velocity may influence the
propagating block dynamics in cable, but the properties of the
APD and the related bistability are little influenced. Figure 7(b)
shows the influence of dt . Action potential durations of two

cases are measured: the APD of a single wave, and the APD of
the wave under overdrive pacing (Tp = 85 ms). The error of
overdrive pacing is larger than the single wave case. However,
in the choice of dt = 0.02 ms in the present work (indicated
by the dashed line), the error of the APD is less than 1%, which
shows that the numerical results are robust to dt .

The numerical errors of the choice of dx and dt in the
present work are of an acceptable degree. The robustness of
the numerical results indicates that the method can meet the
computational needs.
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