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Localized buckling of a microtubule surrounded by randomly distributed cross linkers
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Microtubules supported by surrounding cross linkers in eukaryotic cells can bear a much higher compressive
force than free-standing microtubules. Different from some previous studies, which treated the surroundings as a
continuum elastic foundation or elastic medium, the present paper develops a micromechanics numerical model to
examine the role of randomly distributed discrete cross linkers in the buckling of compressed microtubules. First,
the proposed numerical approach is validated by reproducing the uniform multiwave buckling mode predicted
by the existing elastic-foundation model. For more realistic buckling of microtubules surrounded by randomly
distributed cross linkers, the present numerical model predicts that the buckling mode is localized at one end in
agreement with some known experimental observations. In particular, the critical force for localized buckling,
predicted by the present model, is insensitive to microtubule length and can be about 1 order of magnitude lower
than those given by the elastic-foundation model, which suggests that the elastic-foundation model may have
overestimated the critical force for buckling of microtubules in vivo. In addition, unlike the elastic-foundation
model, the present model can capture the effect of end conditions on the critical force and wavelength of localized
buckling. Based on the known data of spacing and elastic constants of cross linkers available in literature, the
critical force and wavelength of the localized buckling mode, predicted by the present model, are compared to
some experimental data with reasonable agreement. Finally, two empirical formulas are proposed for the critical
force and wavelength of the localized buckling of microtubules surrounded by cross linkers.
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I. INTRODUCTION

The microtubule is one of the most important cytoskeletal
elements in eukaryotic cells [1]. Although mechanical behav-
iors of microtubules in vitro were well predicted by the elastic
column model, microtubules in vivo (typically tens of microns
in length) can bear a much higher compressive force than that
in vitro. The increase in critical buckling force is attributed
to surrounding cross linkers, which are often modeled as a
continuous and homogenous elastic foundation [2–4]. As a
result of the lateral elastic constraint, the multiwave buckling
mode charactzerized by uniform short buckling waves with
smaller deflection is energically favorable over the single-wave
buckling mode predicted by the free-standing elastic column
model. With such an elastic-foundation model, the critical
compressive force and associated wavelength of the buckling
modes can be calculated by the conventional method of elastic
buckling [5]. In particular, the predicted critical force and
wavelength are insensitive to the length of the microtubules
and the end conditions.

Despite the success of the elastic-foundation model in
explaining the higher critical buckling force, this model
suffers several limitations. First, the relationship between
the elastic-foundation modulus and the properties of discrete
cross linkers remains a problem to be addressed [3,6–9].
Actually, the commonly used approach to determine the
elastic-foundation modulus is under the assumption of in-plane
two dimensional (2D) buckling [5], which is inappropriate
for the three dimensional (3D) microtubule cross linker
system. More importantly, refereed as “localized buckling” by
some authors (see, e.g., Brangwynne et al. [2]), microtubule
buckling in vivo exhibits a localized buckling mode in which
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the magnitude of deflection quickly decays from the site
where the compressive force is applied. Similar localized
buckling modes are observed in other experiments [10,11]. The
observed localized buckling is inconsistent with the uniform
multiwave buckling mode predicted by the elastic-foundation
model [3,8,9]. In addition, the possible effect of end conditions
(e.g., free or clamped), which may lead to different buckling
wavelengths and critical forces, cannot be captured by the
elastic-foundation model. In view of the fact that the critical
force for observed localized buckling could be much lower
than that given by the elastic-foundation model based on the
uniform multiwave buckling mode, this discrepancy deserves
further study. To this end, it is crucial to examine the role of
discrete cross linkers in vivo, which are laterally attached to
microtubules and are distributed randomly in both longitudinal
and circumferential directions [1]. Furthermore, as suggested
by the “tensegrity” model [12,13], the cross linkers have
negligible bending rigidity and cannot bear compressive force,
a feature which cannot be well modeled by the existing
elastic-foundation model.

In the present paper, a micromechanics numerical model
is developed to simulate buckling behavior of microtubules
based on the measured properties and observed morphology
of microtubules and cross linkers. The proposed numerical
model is validated by comparing its predictions with the
elastic-foundation model for simple 2D in-plane buckling of
a microtubule supported by continuously distributed linear
springs. The validated model is then employed to investigate
3D buckling behaviors of the microtubule cross linker system.
Based on our numerical simulations, two empirical relations
are proposed for the critical force and wavelength of the
localized buckling of microtubules. As will be shown in the
paper, the localized buckling of microtubules, predicted by the
present model, is in reasonable agreement with some recent
experimental data.
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FIG. 1. The present numerical models: (a) equivalent 2D elastic-
foundation model; (b) randomly distributed 3D cross linkers model.

II. THE MICROMECHANICS NUMERICAL MODEL

The microtubule cross linker system, studied in the present
paper, is composed of a microtubule surrounded by cross link-
ers randomly distributed along the longitudinal direction, see
Fig. 1. The microtubule is modeled as an elastic hollow cylin-
der column as presented in Sec. II A, whereas, the modeling of
cross linkers is illustrated in Secs. II B1 and II B2. The two key
parameters of the cross linkers are the spring constant k and the
spacing of cross linkers Ld , whose values will be given based
on available experimental data. Buckling of microtubules is
stimulated by imposing compressive axial displacement at one
end of the microtubule with the other end fixed.

A. Microtubule modeling

The microtubule is modeled as a hollow cylinder column
with an outer diameter of 25 nm and a thickness of 1.86 nm
[9,14]. The geometry of the cross section and Young’s modulus
E of 1 GPa [15] give the bending rigidity EI of 9.034 ×
10−24 Nm2, which is within the range of the measured values
of several experiments [16]. The length of microtubule L in
the present study is between 300 nm, which is almost the
minimum length of the microtubules in experiments [17], and
a few tens of microns. As our major concern is the localized
mode or uniform multiwave buckling mode with a shorter
wavelength (typically, around 1–3 μm), the length dependency
of bending rigidity [18] is not included in the present paper.
Thus, the 3D Timoshenko shear deformable beam elements
are used to mesh the microtubule. The microtubule is always
clamped on one end as it is anchored in the centrosome in
living cells [1,17]. Another end of the microtubule is subjected
to a compressive load under different types of end conditions
(e.g., free or clamped) [1]. To initiate the buckling of the
microtubule, an extremely small perturbation force is applied
at the end in the direction perpendicular to the microtubule. Our
simulations show that the magnitude of the small perturbation
force is irrelevant to simulation results.

B. Modeling of cross linkers

All cross linkers are modeled as linear springs with one
end permanently attached to the microtubule and the other
end fixed in all degrees of freedom. The spring constant k of
the cross linkers (of length 45 nm) used here, 39 pN/nm, is

taken from Ref. [19]. As the spring constant k may change
for different types of cross linkers, a wider range of the
spring constant (which may depend on the length of the cross
linkers) is also considered in the present paper. On the other
hand, the spacing Ld ranging from 25 to 300 nm [19,20]
will be considered. The 3D elastic linear spring elements
are used to mesh the cross linkers. Two numerical models,
characterized by different distributions and constitutive laws of
cross linkers, are illustrated below, referred to as the equivalent
elastic-foundation model and the randomly distributed 3D
cross linker model, respectively.

1. Equivalent elastic-foundation model

To demonstrate the efficiency of the present numerical
model, first, we will apply it to the simple 2D in-plane
uniform multiwave buckling and compare its results with the
elastic-foundation model. For the 2D in-plane buckling of a
microtubule supported by a continuum elastic foundation, the
wavelength and critical buckling force are given by [4]

λ = 2π

(
EI

Ec

)1/4

, (1)

and

Fcr = 2
√

EcEI = 8π2 EI

λ2
, (2)

where EI is the bending rigidity of the microtubule and
Ec is the elastic-foundation modulus. The elastic-foundation
modulus Ec in the 2D condition is directly proportional to the
spring constant k and is inversely proportional to the spacing
Ld of the uniformly distributed linear springs [5] as

Ec = k

Ld

. (3)

This formula (3) is commonly used provided that Ld is much
smaller than the wavelength.

To compare the present numerical model with the elastic-
foundation model, a 2D numerical model is shown in Fig. 1(a)
where all cross linkers are aligned on the same plane
and are perpendicular to the microtubule. All out-of-plane
displacements and rotations are not allowed. In addition, as
assumed in the elastic-foundation model, all cross linkers in
the equivalent elastic-foundation model shown in Fig. 1(a) are
capable of bearing both compressive and tensile forces [12,13].

2. Randomly distributed 3D cross linker model

The major goal of the present study is buckling behaviors of
a microtubule surrounded by 3D randomly distributed discrete
cross linkers. The morphological details of the cross linkers are
modeled based on experimental observations. All cross linkers
are attached to the microtubule in random directions assigned
by the uniform distribution rule, see Fig. 1(b). The cross linkers
are modeled as linear springs with negligible bending rigidity
[9,21], thus, they can bear axial tension but are vulnerable to
any axial compression. To realize this, the load increments are
sufficiently small, and every spring element is verified after
each load increment and will be permanently removed if the
axial force becomes compressive (actually, if a small nonzero
threshold value of compressive force, such as 1 to 2 pN, is
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FIG. 2. A typical relation between the compressive axial force or
the maximum deflection and the nominal axial strain given by the
present model.

used, our results remain essentially unchanged. Therefore,
we have simply set the threshold value as zero). Different
from the equivalent elastic-foundation model described in
Sec. II B 1 (where out-of-plane displacements and rotations
are not allowed), the 3D buckling behaviors are modeled by
allowing buckling deflections in all directions.

III. NUMERICAL RESULTS AND TWO EMPIRICAL
RELATIONS

In all numerical simulations presented in this section,
the applied axial displacement is given in terms of the
dimensionless nominal axial strain (defined by the ratio of the
applied axial displacement to the length of the microtubule),
and the associated axial force (in piconewtons) is calculated
based on the deflected equilibrium state of the microtubule.
The axial force at the node where the axial compressive
displacement is applied is defined as the axial compressive
force applied to the microtubule.

A. Classical uniform multiwave buckling mode

First, let us consider the classic 2D uniform multiwave
buckling mode, which evenly spreads over the entire mi-
crotubule [5]. In this case, the results given by the present
equivalent elastic-foundation model are compared with the
classical elastic-foundation model.

First, compared are the critical buckling forces predicted
by the present numerical model and the classical formula
Eq. (2). From the present numerical model, a curve of the axial
compressive force versus the nominal axial strain is plotted in
Fig. 2 with k = 39 pN/nm and Ld = 25 nm. From Fig. 2, it is
seen that the axial compressive force linearly increases with the
nominal axial strain until a plateau is reached. Also included
in Fig. 2 is the maximum deflection of the microtubule, which
upturns remarkably as the plateau is approached. Therefore,
the critical buckling force Fcr from our numerical simulations
is defined as the axial compressive force on the plateau. From
Fig. 2, it is seen that, after the critical force is reached, the
axial compressive strain increases quickly without significant
change in the axial force (for example, the axial force changes
only by less than 5% as the axial strain doubles). From Fig. 3,

FIG. 3. Critical buckling forces Fcr predicted by the present
equivalent elastic-foundation model compared with the elastic-
foundation formulas Eqs. (1) and (2) with k = 39 pN/nm.

it is seen that the critical buckling force Fcr, given by the
present numerical model, is in good agreement with Eq. (2).
In particular, consistent with the elastic-foundation model,
the critical buckling force predicted by the present numerical
model is insensitive to the microtubule length.

Three buckling modes given by our numerical models are
shown in Fig. 4 with a good comparison to the classical
wavelength formulas Eqs. (1) and (3). In Fig. 4(a), the shorter
wavelength is associated with the highest spring constant
k = 39 pN/nm and the shortest spacing Ld = 25 nm. In
particular, our numerical results confirm that the buckling
predicted by the 2D equivalent elastic-foundation model is
characterized by the uniform multiwave mode rather than the
localized mode, and the predicted wavelength is insensitive to
the length of the microtubule.

B. Localized buckling mode

Now, let us investigate 3D buckling behaviors of the
microtubule cross linker system using the randomly distributed
3D cross linkers model. From Fig. 5, it is seen that a remarkable
feature of the buckling behavior given by our 3D cross linkers
model is that the buckling mode is highly localized near
the end, which bears great similarity with the microtubule
buckling observed in vivo by Brangwynne et al. [2] and
refereed as localized buckling. Although the localized buckling
mode, obtained in our simulations, is actually 3D in nature,
the out-of-plane helical deflection is much smaller than the
in-plane deflection. Here, it should be noted that the localized
buckling mode, predicted by the present static 3D cross linkers
model, is significantly different from those reported in some
previous papers, say, the localized mode caused by the wave
of compressive force propagating from one end at which
the localized buckling mode is initiated [22] or the localized
mode as a result of the large deflection postbuckling of a
compressed column on a 2D elastic foundation [23,24], which
has the uniform multiwave mode as its linearized buckling
mode. Different than these mentioned papers, the localized
mode, obtained by the present model, is static in nature and is
not a result of postbuckling developed from an initial uniform
multiwave buckling mode.
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FIG. 4. Two-dimensional in-plane multiwave buckling modes (buckled gray color beam) given by the present equivalent elastic-foundation
model compared with the wavelengths given by the classical elastic-foundation model Eq. (1) (black arrows).

What is shown in Fig. 5 is the dependence of the critical
buckling force Fcr on the microtubule length. Although the
critical buckling force Fcr changes considerably with length
for extremely short microtubules (say, Fcr decreases from 511
to 365 pN as the length of the microtubule increases from 300
to 500 nm), the critical force Fcr becomes length independent
when the microtubule length exceeds a critical value (say,
larger than 500 nm). For example, for a microtubule of 2000 nm
in length, the critical force Fcr for localized buckling is around
360 pN (which is almost the same as the critical force of
365 pN for a microtubule of 500 nm in length), and the
localized buckling wavelength is about 500 nm (almost the
same as the localized buckling wavelengths of much shorter
microtubules). In Fig. 6, it can be seen how the buckling force
Fcr quickly converges to a constant, defined as the localized
critical buckling force FL, when the length of microtubule
exceeds a critical value (say, 500 nm for k = 39 pN/nm
and Ld = 50 nm). Indeed, the critical force FL for localized
buckling and the associated wavelength λL become essentially

FIG. 5. Buckling of a microtubule given by the present ran-
domly distributed 3D cross linkers model with spring constant k =
39 pN/nm and spacing Ld = 50 nm. The buckling wavelength and
critical buckling force are essentially length independent as the length
of the microtubule is much longer than the buckling wavelength.

length independent when the microtubule length exceeds a
critical value.

The spring constant k and spacing Ld of the cross linkers
influence the predicted critical force FL and wavelength
λL of localized buckling as well as the critical length of
microtubules beyond which FL and λL become essentially
length independent. For example, our numerical results show
that, as spacing Ld changes from 25 to 100 nm with k =
39 pN/nm, the critical length of the microtubules, beyond
which FL and λL essentially keep constant, increases with
the increasing spacing Ld . Additionally, as expected, our
simulations show that a higher critical force FL and a shorter
wavelength λL are achieved with a larger spring constant of
cross linkers as detailed in Sec. III C.

C. Two empirical relations for localized buckling

The localized buckling is characterized by the two key
parameters, the localized buckling wavelength λL and the

FIG. 6. The critical force Fcr quickly converges to a constant
(defined as the localized buckling force FL) as the microtubule length
exceeds a critical length (the latter is around 500 nm when Ld =
50 nm). This critical length increases with increasing spacing of cross
linkers Ld . The critical force Fcr quickly converges to a constant
(defined as the localized buckling force FL) as the microtubule length
exceeds a critical length (the latter is around 500 nm when Ld ). This
critical length increases with increasing spacing of cross linkers Ld .
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critical force FLfor localized buckling. In what follows, based
on our numerical simulations, two empirical relations will be
given for the dependency of the two key parameters on the
spring constant k and the spacing Ld of the cross linkers.

In view of the classical formula (1), we seek an empirical
relation for the localized buckling wavelength of the following
form:

λ = 2π

(
EI

A

)1/4(
k0

k

)p/4(
Ld

L0

)q/4

, (4)

where A, p, and q will be determined to fit numerical data (A is
measured in pascals, whereas, p and q are dimensionless).
The reference spacing L0 is 25 nm (which is probably the
shortest cross linker spacing, say with the length of guanosine
5′-triphosphate/guanosine 5′-diphosphate dimers of 8.1 nm,
see Ref. [25]), and the reference spring constant of cross linkers
k0 is 39 pN/nm [19]. In view of the classical formula (2), we
also seek an empirical relation for the critical force for the
localized buckling of the following form:

FL=Bπ2

4

EI

λ2
L

= B

16

√
EIA

(
k

k0

)p/2(
L0

Ld

)q/2

, (5)

where B is a dimensionless constant. To determine p and q,
based on our numerical simulations, we rewrite Eq. (5) as

ln FL = ln

[
B

16

√
EIA

(
L0

Ld

)q/2]
+ p

2
ln

(
k

k0

)
, (6)

and

ln FL = ln

[
B

16

√
EIA

(
k

k0

)p/2]
+ q

2
ln

(
L0

Ld

)
. (7)

In Eqs. (6) and (7), p/2 and q/2 are the slopes of the curves
of ln FL versus ln(k/k0) and ln(L0/Ld ), respectively. The
simulation results with different combinations of k and Ld

are linearly fitted in Figs. 7(a) and 7(b), which gives q and
p as 3.6 and 0.47, respectively. With the values of q, p, and
the wavelengths given by our simulations, the value of A is
determined as 1.4 MPa from Eq. (4). With all of these values
obtained, the constant B is obtained as 5.3 from Fig. 7(a) and
Eq. (6). Finally, two empirical relations for the critical force
and the associated wavelength for the localized buckling are
given as

λL = 2π

(
EI

1.4 MPa

)1/4(
k0

k

)0.12(
Ld

L0

)0.90

, (8)

and

FL = 1.3π2 EI

λ2
L

. (9)

Since p and q are determined using the data of critical force
FL given by Eq. (5), the predicted wavelength λL from Eq. (8)
is further compared with the data obtained directly from
simulations. Again, good agreement is achieved for k = k0,
k0/4, k0/16, k0/32, and k0/64 as shown in Fig. 8. Validity of
the proposed relations (8) and (9) is also verified for different
values of bending rigidities EI . For example, in a series of
experiments by Felgner et al. [26], the bending rigidity of the
microtubule was measured as low as 3.8 × 10−24 Nm2 [26].
With the bending rigidity EI of 3.8 × 10−24 Nm2 and the other

FIG. 7. Determination of p and q in the proposed empirical
equations (5) by linearly fitting simulation results of the localized
buckling.

parameters adopted in Fig. 5, the critical buckling force given
by the empirical formula Eq. (9) is 218 pN, which is reasonably
close to 234 pN obtained by direct numerical simulations with
EI = 3.8 × 10−24 Nm2. The two empirical relations (8) and
(9) are expected to be useful within a reasonable range of the
spring constant (from k0/64 to k0) and the spacing (from 25 to
300 nm) of the cross linkers and under the condition that the

FIG. 8. Localized buckling wavelength λL given by the present
numerical model compared with the wavelength calculated from the
empirical equation (8).

012701-5



M. Z. JIN AND C. Q. RU PHYSICAL REVIEW E 88, 012701 (2013)

FIG. 9. Different buckling cases with different end conditions (ECs) of microtubule in vivo/in vitro: the free-standing microtubule buckling
with (a) clamped-free or (b) clamped-clamped end conditions observed in vitro [27,28]; (c) the localized buckling with clamped-free and (d)
doubly clamped end conditions, which are similar to the observation in vivo [2,10,11], see (f); and (e) the multiwave buckling mode obtained
by the equivalent elastic-foundation model. ©2006 Rockefeller University Press, J. Cell Biol. and 2002 Elsevier, Curr. Biol.

localized buckling wavelength λL is, at least, ten times longer
than the spacing Ld .

The proposed empirical formulas (8) and (9), obtained
by fitting with our numerical data, are significantly different
than the 2D elastic-foundation formulas (1) and (2). For
example, the critical force for the localized buckling predicted
by Eq. (9) is about 1/6 of the buckling force predicted by
the elastic-foundation model (2) based on the same buckling
wavelength, which indicates that the critical buckling force of
the localized buckling is much lower than that predicted by
the elastic-foundation model based on the in-plane uniform
multiwave buckling mode. In addition, although both our
empirical formulas (8) and (9) and 2D elastic-foundation
formulas (1) and (2) predict that the critical buckling force
increases with the spring constant k and decreases with the
spacing Ld , the dependence of the critical buckling force on
the spring constant k decreases from the power index of 0.5
in the 2D model to 0.22 in our 3D model, and the dependence
of the critical buckling force on the spacing Ld increases

from the power index of 0.5 in the 2D model to 1.8 in our
3D model.

IV. COMPARISON WITH KNOWN
EXPERIMENTAL RESULTS

Let us now compare the results of localized buckling
given by the present model with some known experimental
measurements as well as the elastic-foundation model and
the free-standing elastic column model. In what follows, the
microtubules in all cases are of the common length of 5
μm, which guarantees that the wavelengths of the localized
buckling mode and the uniform multiwave buckling mode are
much shorter than the length of the microtubule.

The buckling modes given by the three models, shown
in Fig. 9, are significantly different. The buckling of a
free-standing microtubule under the free or clamped end
condition is illustrated in Figs. 9(a) and 9(b), respectively. With
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Ld = 100 nm and k = 39 pN/nm, the localized buckling, given
by the present model under the free or clamped end condition,
is shown in Figs. 9(c) and 9(d), respectively. Finally, the
buckling mode and the critical buckling force of the uniform
multiwave buckling, given by the equivalent elastic-foundation
model (described in Sec. II B 1), is presented in Fig. 9(e) with
the same Ld and k as adopted in Figs. 9(c) and 9(d). All
predicted buckling behaviors are compared with experimental
observations [2,10,11] shown in Fig. 9(f).

The localized buckling modes, given by the present model
in Figs. 9(c) and 9(d) with two different end conditions, bear
a resemblance to the observed microtubule buckling mode in
vivo shown in Fig. 9(f) [2,10,11]. Although the actual end
conditions of the microtubules in vivo [2,10,11] are uncertain,
all observed buckling modes are localized in nature, which are
consistent with our simulations shown in Figs. 9(c) and 9(d)
but cannot be explained by the 2D elastic-foundation model.
On the other hand, the single-wave buckling mode given by
the free-standing microtubule model is only comparable with
in vitro experiments [27,28] but fails to predict the buckling
behaviors of the microtubules surrounded by the cross linkers
in living cells.

Also, the present model can effectively predict the critical
force for localized buckling and the associated buckling wave-
length. For example, with Ld = 100 nm and k = 39 pN/nm
[19,20], the localized buckling wavelength and critical force,
given by the present numerical model under a free end con-
dition in Fig. 9(c), are about 1.2 μm and 93 pN, respectively,
similar results of 1.10 μm and 97.3 pN can be obtained
from the empirical Eqs. (8) and (9). With the clamped end
condition in Fig. 9(d), on the other hand, the localized buckling
wavelength and critical force, given by the present model,
are about 1 μm and 353 pN, respectively. The two predicted
wavelengths reasonably agree with the observed wavelength
around 1 to 2 μm shown in Fig. 9(f). With a slightly different
spring constant and spacing of the cross linkers, the predicted
buckling wavelengths still fall into the range of experimental
measurements, say 1–3 μm [2,10,11]. For example, the longer
buckling wavelength of 3 μm can be obtained by the present
model with the spacing of 300 nm [29]. In addition, the critical
forces for the localized buckling, predicted by the present
model as 93.0 or 353 pN, are also in reasonable agreement with
the well-recognized concept that the critical buckling force of
microtubules in vivo would be around 100 pN [2,8,30].

Clearly, if the free-standing column model or the elastic-
foundation model is adopted with the above data of spring
constants and spacing of cross linkers, the predicted critical
buckling force and wavelength are different from experimental
measurements by almost 1 order of magnitude. For example,
the critical buckling forces, predicted by the free-standing col-
umn model, are only 0.889 and 3.556 pN for a free or clamped
end. On the other hand, if the elastic-foundation model is
adopted with the foundation modulus given by Eq. (3) with the
same data of cross linkers as those used in Figs. 9(c) and 9(d),
the predicted buckling wavelength, about 400 nm, is much
shorter than the measured buckling wavelength. Actually, in
order to predict the measured buckling wavelength of 2 to
3 μm with the bending rigidity of the microtubules adopted
in Refs. [2,4], i.e., 20 × 10−24 Nm2 and Ld = 100 nm, the
elastic-foundation model requests a spring constant of cross

linkers k as low as 0.078 pN/nm, which is much lower than
the spring constant of most types of protein polymers attached
to microtubules (e.g., the actin filaments, 1 μm in length, have
the spring constant of 44 pN/nm [17], and tau protein, which
links microtubules to form bundles, has the spring constant
of 39 pN/nm [19]) and is almost 1 order of magnitude lower
than the lower limit of the measured lower limit of kinesin
(i.e., 0.65−1.7 pN/nm) [31], a key motor protein attached to
microtubules for cellular transportation. Therefore, although
the elastic-foundation model could also give the measured
buckling wavelength, the assumed elastic-foundation modulus
[3,6,8] cannot be obtained through Eq. (3) from the known
data of cross linkers reported in literature [19,20,29]. Thus,
it seems reasonable to conclude that, as compared with the
elastic-foundation model, the present discrete cross linkers
model can better explain the observed wavelength and critical
force of the localized buckling of microtubules in living cells.

Physically, for a number of reasons, we also believe that
the present 3D discrete numerical model can better capture
realistic conditions for microtubules in living cells as compared
with the 2D elastic-foundation model. First, the cross linkers
in living cells are discrete and 3D in nature, which cannot
be appropriately described by the 2D continuum elastic-
foundation model. Second, the geometrical nonlinearity, which
is included in the present numerical model, cannot be easily
carried out by the classic linear buckling analysis. Third, the
cross linkers cannot be idealized as a linear elastic foundation
because they cannot bear compressive force due to very low
bending rigidity, a feature captured in the present 3D discrete
numerical model.

V. CONCLUSIONS

A numerical micromechanics model is proposed to in-
vestigate the axially compressed buckling of a microtubule
surrounded by randomly distributed discrete cross linkers.
The localized buckling behavior observed in vivo [2,10,11],
which cannot be predicted by the existing models, is well
explained by the present numerical model. Based on our
numerical simulations, two empirical relations are proposed
to calculate the critical force and associated wavelength of the
localized buckling. For typical cross linkers of the spacing
of 50–300 nm and the spring constant of 39 pN/nm as
reported in literature [19,20,29], the present model predicts
that microtubules could buckle under an axial compressive
force of about 14–340 pN with a localized buckling mode of
wavelengths of 0.6–2.9 microns, in reasonable agreement with
a few recent experiments [2,8,30].
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