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Enthalpy relaxation and annealing effect in polystyrene
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The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning
calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation
time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal
response against sinusoidal temperature variation. A phenomenological model equation previously proposed to
interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy
under a given thermal history is calculated. The annealing below the glass transition temperature produces two
effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and
the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected
in the variation of temperature of the maximum specific heat observed in the heating process after annealing and
cooling.
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I. INTRODUCTION

The glass transition is a freezing phenomenon from the
liquid state to the glassy state with lowering temperature
and occurs when the characteristic time of the system
becomes longer than the experimental time scale. Near and
below the glass transition temperature Tg, the thermodynamic
variables, e.g., volume, enthalpy, and entropy, relax toward
the equilibrium values and the relaxation process is known
to be nonlinear and slower than the single exponential decay
[1–3]. Nonlinearity is a feature in structural relaxation in the
sense that the structural relaxation time depends not only on
temperature but also on the instantaneous out-of-equilibrium
structure of the system [2]. Since the time course of the
control parameters in the freezing process is memorized in
the glassy state [4], the instantaneous relaxation time depends
on the thermal history from the equilibrium state up to
the instantaneous out-of-equilibrium state. In this study, we
discuss the dynamics of relaxation time under a given thermal
history in enthalpy relaxation.

A characteristic of enthalpy relaxation is typically the
overshoot in the specific heat in the glass transition range
in the heating process after cooling to a temperature well
below Tg, which depends on the cooling and heating rates,
and the isothermal annealing conditions [3,5–8]. Illuminative
diagrams are given by Moynihan et al. to qualitatively explain
the enthalpy relaxation [5]. Enthalpy relaxation has been
analyzed using phenomenological models, e.g., the Tool-
Narayanaswamy-Moynihan (TNM) model [6–8], Kovacs-
Aklonis-Hutchinson-Ramos model [9] and Gómez-Monleón
model [10]. In the most widely employed TNM model, the
evolution of fictive temperature Tf , introduced by Tool [6], is
expressed by a model equation. In this model the relaxation
time is assumed to depend on both the actual temperature
T and the fictive temperature and a nonlinearity parameter
x is introduced to partition the activation energy into T and
Tf . The Gómez-Monleón model describes the evolution of
configurational entropy by extending the relation between the
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relaxation time and the configurational entropy given by Adam
and Gibbs [11] to the out-of-equilibrium states and introduces
the entropy of the limit state S lim

c attained after an infinitely
long annealing time that is different from the extrapolation
of entropy from temperature higher than Tg. These models
have been reported to satisfactorily reproduce the experimental
results after a given thermal history [12–19]. In these models,
however, in addition to the nonlinearity parameter x, the
parameters connecting the relaxation time to Tf or S lim

c and
the exponent β of the Kohlrausch-Williams-Watts (KWW)
function [20] are parameters to be determined by the fitting to
the experimental results. It is therefore difficult to examine the
physical significance of the obtained parameters [2].

We have proposed a phenomenological model equation as
a natural extension of the linear rheology in order to study the
memory effect in the frozen state [4]. The phenomenological
model equation can be straightforwardly applied to the
enthalpy relaxation to give the enthalpy H (t) and entropy
S(t) against a given thermal history T (t ′; t ′ < t) and the
resulting formula is equivalent to the Gómez-Monleón model
when it is transformed by formal integration by parts. In this
study we discuss how the model equation with parameters
experimentally determined explains the out-of-equilibrium
behavior of the enthalpy rather than discuss whether the present
model can reproduce the experimental specific heat more quan-
titatively than the models hitherto proposed [5–10]. We have
studied the enthalpy relaxation of polymethylmethacrylate by
differential scanning calorimetry (DSC) and shown that the
model equation reproduces two peaks in specific heat observed
in the heating process after annealing at a low temperature [21].

The purpose of the present study is to clarify the features
of annealing effects in enthalpy relaxation, in particular the
time and temperature dependence of the relaxation time, based
on the experimental results and the analysis by the model
calculations. In order to reduce the number of parameters
employed in the calculation, we will experimentally determine
the basic relaxation parameters. A typical amorphous polymer,
atactic polystyrene, is used as a material. First we measure the
frequency and temperature dependence of complex specific
heat from the response of heat flow against the sinusoidal
temperature variation. These measurements determine the
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temperature dependence of specific heat in the liquid and the
glassy states and that of the relaxation time. The exponent
β of the KWW function is estimated from the normalized
complex specific heat. Then we measure the specific heat in
the heating process after various thermal histories and compare
the results of the calculation by the proposed model equation
with the experimental results. After discussing the calculation
with only the thermal relaxation parameters experimentally
determined, we take account of the additional contribution
to the glassy configurational entropy due to the temperature
dependence of the free energy landscape (FEL) based on the
FEL theory [22–24] for quantitative examination.

II. EXPERIMENT

A. Material and differential scanning calorimetry

The material used in this study was atactic polystyrene
(aPS) with a molecular weight Mw = 280 000 purchased
from Scientific Polymer Products. The DSC measurement
was carried out using a DSC-60 (Shimadzu Corporation)
under nitrogen gas atmosphere. Ethanol cooled at −25 ◦C was
circulated in the cooling block in order to obtain cooling rates
up to 70 K/min. The temperature calibration was made by the
melting point of indium. The measurements described below
were performed on polystyrene, alumina, and a vacant pan
under the same condition and the values of heat flux were
calibrated. The specific heat Cp is defined by Cp = Q̇/wṪ ,
where Q̇ is the heat flux observed in the measurement, w

is the weight of the sample, and Ṫ is the time derivative of
temperature T . In all the experiments, the memories of the
samples were erased by annealing at 200 ◦C for 1 min.

B. Complex specific heat measurements

A sample of about 4 mg and 0.2 mm in thickness was
cooled to a temperature T0 in the range from 40 ◦C to 160 ◦C
at 9.5 K/min and kept for 3 min. Then the sample underwent
a sinusoidal temperature variation centered at T0 with an
amplitude of 0.5 K and a period P in the range from 20 to
200 s.

Fourier coefficients with period P were calculated from the
heat flux in the steady state to give the absolute value |C∗

p (ω,T )|
and the phase difference caused by the relaxation process
δrelax(ω,T ) of the complex specific heat C∗

p (ω,T ), where ω is
the angular frequency given by 2π/P . Since phase difference
obtained from the measurement showed finite values outside
the glass transition region due to the effects of the heat transfer,
δrelax was determined by assuming that δrelax well above and
below Tg is zero [25]. The real part C ′

p and the imaginary part
C ′′

p of specific heat are given by C∗
p = C ′

p − iC ′′
p = |Cp|eiδrelax

(i =√−1).

C. Rate cooling and annealing

In the measurements of the dependence of enthalpy relax-
ation on the cooling rate and the annealing condition, samples
of 4–13 mg were employed; no systematic variation in the heat
flow with the sample weight was observed. The sample was
cooled from 200 ◦C to 30 ◦C at a rate of Ṫc in the range from 0.1
to 30 K/min and heated to 200 ◦C at 9.5 K/min followed by the
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FIG. 1. Schematic diagram of the thermal history in the annealing
measurement.

second run. The second run comprises the cooling from 200 ◦C
to 30 ◦C at 9.5 K/min and heating to 180 ◦C at 9.5 K/min, the
results of which are used for the baseline correction and the
examination of the sample degradation.

Figure 1 shows the thermal history of the annealing
measurement. In the annealing experiments, the sample was
cooled from 200 ◦C to an annealing temperature Ta in the range
from 60 ◦C to 110 ◦C at 9.5 K/min, annealed for ta in the range
from 1 to 104 min, further cooled to 30 ◦C, and then heated to
200 ◦C at 9.5 K/min followed by the second run as above. All
the thermal treatments were carried out in the calorimeter.

III. PHENOMENOLOGICAL MODEL AND
CALCULATION OF SPECIFIC HEAT

The phenomenological model equation applied to the
entropy S(t) at time t is given as a functional of the thermal
history T (t ′; t ′ < t) [4] by

S(t) = Seq[T (t)] −
∫ t

−∞
�χ [T (t),T (t ′)][T (t) − T (t ′)]

× ∂φ[t̃(t,t ′)]
∂t ′

dt ′, (1)

where Seq(T ) is the entropy in the equilibrium liquid state and
�χ[T (t),T (t ′)] is the susceptibility for entropy given by

�χ[T (t),T (t ′)] = 1

T (t) − T (t ′)

∫ T (t)

T (t ′)

�Cp(T ′′)
T ′′ dT ′′, (2)

where �Cp(T ) is the difference between the liquid and the
glassy specific heat C0

p (T ) and C∞
p (T ), respectively, and φ(t)

is the normalized relaxation function. The intrinsic time lapse,
or the reduced time t̃(t,t) is defined by

t̃(t,t ′) ≡
∫ t

t ′

du

τ (u)
, (3)

which gives the time lapse between t ′ and t measured with the
instantaneous relaxation time τ (u).

The relaxation time is assumed to obey the Adam-Gibbs
theory in the out-of-equilibrium glassy state as well as in the
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FIG. 2. (Color online) Schematic graph of entropy vs tempera-
ture. The solid, dotted, dashed, and dash-dotted lines represent the
instantaneous entropy S(t), the liquid entropy Seq(T ), the hypothetical
glassy entropy Sg(T ) defined by Eq. (6), and the modified glassy
entropy Sg′(T ) defined by Eq. (14), respectively. At a temperature T2,
Sg is equal to Seq.

equilibrium liquid state [26,27] and is determined by

τ = τ∞ exp

[
A

T Sc

]
, (4)

where τ∞ and A are constants. The configurational entropy Sc

is given by

Sc = S − Sg(T ), (5)

where Sg(T ) is the hypothetical glassy entropy defined by

Sg(T ) = Seq(T2) +
∫ T

T2

C∞
p (T ′)

T ′ dT ′, (6)

which is equal to the entropy of the equilibrium liquid Seq(T )
at T2 as schematically shown in Fig. 2. The entropy S in
Eq. (5) is defined later depending on the calculation methods.
Equation (1) with Eq. (5) is basically equivalent to the models
proposed for the analysis of enthalpy relaxation [10,14,26].

IV. RESULTS AND DISCUSSION

A. Relaxation parameters

Figure 3 shows the temperature dependence of the real and
imaginary parts of specific heat for the period from 20 to 200 s.
The real part of specific heat C ′

p(T ) gives the specific heat in the
liquid state C0

p (T ) at high temperatures and that in the glassy
state C∞

p (T ) at low temperatures. Assuming that both C0
p (T )

and C∞
p (T ) are linear in T in the range of the measurement, i.e.,

C0
p (T ) = a�T + b� and C∞

p (T ) = agT + bg, the coefficients
of C0

p and C∞
p are obtained from the high- and low-temperature

data for all periods: a� = 3.7 × 10−3 J g−1 K−2, b� = 6.1 ×
10−1 J g−1 K−1, ag = 4.1 × 10−3 J g−1 K−2, and bg = 9.0 ×
10−2 J g−1 K−1. Although there is a small difference between
our results and the ones in the literatures [28–30] as shown in
Fig. 3 by the solid symbols, this difference is not critical to the
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FIG. 3. Temperature dependence of the real (upper data) and
imaginary (lower data) parts of the specific heat. The symbols
represent the experimental data: ©, P = 20 s; 	, P = 30 s; �,
P = 50 s; ♦, P = 100 s; and +, P = 200 s. The solid lines represent
C0

p (upper) and C∞
p (lower), respectively. The dotted, dashed, and

dash-dotted lines represent C ′′
p calculated for P = 20, 50, and

100 s, respectively. The closed circle and triangles are the data from
Refs. [28,29] by DSC, respectively.

discussion about the effects of annealing on the peak height
and peak temperature and hence we adopt these values of a�,
b�, ag, and bg.

Figure 4 shows the temperature dependence of relaxation
time τ . Five of six data points shown by the circles in Fig. 4
are determined from a peak temperature Tα of C ′′

p in Fig. 3
by τ (Tα) = P/2π and one data point by τ (T ) = 1/ωmax,
where ωmax is the angular frequency at which C ′′

p (ω) shows a
maximum at T = 104.8 ◦C. The relaxation times thus obtained
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FIG. 4. Temperature dependence of relaxation time. Symbols
represent the experimental results: ©, the results in the present study;
�, TMDSC data [30]; ♦, TMDSC data [31]; +, TMDSC data [32];
and 	, 3ω method [30]. The solid and dotted lines represent Eq. (4)
with τ∞ = 1.20 × 10−8 s, A = 333 J g−1, and T2 = 336 K and the
dotted line represents Eq. (4) with τ (3)

∞ = 4.35 × 10−9 s, A(3) = 550
J g−1, and T

(3)
2 = 329 K, respectively.
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are those in the equilibrium state and can be expressed by
the Adam-Gibbs equation with Sc(T ) = Seq(T ) − Sg(T ) =∫ T

T2

�Cp(T ′)
T ′ dT ′. The least-squares fitting to our experimental

results by Eq. (4) gives τ∞ = 1.20 × 10−8 s, A = 333 J g−1,
and T2 = 336 K (the solid line in Fig. 4). The squares,
rhombuses, and pluses in Fig. 4 are the data obtained by
temperature-modulated DSC (TMDSC) [30–32] and triangles
by the 3ω method [30]. The relaxation times by TMDSC
agree with our results within the experimental accuracy. The
literature data by the 3ω method in Fig. 4 are not used in
the least-squares fitting because when they are included in the
fitting, the maximum of the imaginary part of the normalized
specific heat to be discussed below showed a broader half-
width at lower frequencies than at higher frequencies, which
is empirically considered not to be the case.

The normalized relaxation function φ(t) may be approx-
imated by the stretched exponential function or the KWW
function with an exponent β:

φ

(
t

τKWW

)
= exp

[
−

(
t

τKWW

)β]
, (7)

where τKWW is the KWW relaxation time proportional to τ (T )
and φ(t) gives the complex specific heat through the Fourier
transform. The complex specific heat in Fig. 3 normalized by
�Cp(T ) and τ (T ),

CN∗
p (ωτ ) = C∗

p [ωτ (T )] − C∞
p (T )

�Cp(T )
, (8)

is shown in Fig. 5. The normalized complex specific heat
is calculated from the Fourier transform of 1 − φ(t/τKWW)
and compared with CN∗

p (ωτ ) in Fig. 5 in the range of ωτ

from 10−2 to 102. The normalized complex specific heat CN∗
p

is satisfactorily reproduced by Eq. (7) as shown in Fig. 5
by the solid line: The best-fit values are β = 0.62 ± 0.09
and τKWW = (0.79 ± 0.19)τ . The relaxation times and the
relaxation function thus obtained are those for the enthalpy.
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FIG. 5. (Color online) (a) Real and (b) imaginary parts of the
normalized specific heat: ©, P = 20 s; 	, P = 30 s; �, P = 50 s; ♦,
P = 100 s; and +, P = 200 s. The solid curves represent the specific
heats calculated from the Fourier transform of 1 − φ(t/τKWW).

The entropic relaxation times determined by the maximum
temperature or frequency of C ′′

p /T are indistinguishable from
the enthalpic relaxation times in the present experimental
accuracy. In the following discussion, therefore, we will
assume that the relaxation times and the relaxation function
are the same for enthalpy and entropy.

B. Dependence of specific heat on cooling rate
and annealing conditions

Figure 6 shows the temperature dependence of specific heat
on heating at 9.5 K/min after cooling at Ṫc in the range from
0.1 to 30 K/min. The magnitude of the maximum in specific
heat Cp max increases while the temperature of the maximum
specific heat Tmax decreases and then increases with decreasing
Ṫc. The glass transition temperature Tg defined by the equal
area method [8], equivalent to the fictive temperature well
below the glass transition range T ′

f at 50 ◦C in this study, is
97.7 ◦C at the cooling rate of 9.5 K/min. One of the quantities
characterizing the glassy state is the entropy deviation from the
equilibrium value at Tlow = 50 ◦C 
 Tg, δS(Tlow) = S(Tlow) −
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FIG. 6. (Color online) Specific heat vs temperature in the heating
process after cooling at a constant rate. (a) Results of the cooling
experiment and calculation 3 with �χF = −6.17 × 10−4 J g−1 K−2,
σF = 23 K, and TF = 371 K. The specific heat in the cooling process
for the cooling rate of 9.5 K/min are shown by circles [light green
(light gray), experimental results]. (b) Calculations 1 [cyan (light
gray), thick] and 2 [blue (dark gray), thin]. The symbols represent the
experimental data: �, Ṫc = 0.1; 	, Ṫc = 0.3; ♦, Ṫc = 1; �, Ṫc = 3;
+, Ṫc = 10; and ©, Ṫc = 30 K/min. The short-dashed, dash-dotted,
dotted, dash–double-dotted, solid, and dashed lines are the data for
Ṫc = 0.1, 0.3, 1, 3, 10, and 30 K/min, respectively. The results of
calculation 2 for Ṫc = 0.3 and 0.1 K/min are not shown in the figure
because their Tmax are beyond the range of this figure. The numbers
in the figure represent the cooling rate before heating.
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FIG. 7. (Color online) (a) Cooling rate dependence of δS(Tlow). The symbols represent the results of cooling experiments and the curves the
calculated ones. The top, middle, and bottom lines represent the results from calculations 1, 2, and 3, respectively. The line colors and thickness
are the same as in Fig. 6. (b) Annealing temperature dependence of δS(Tlow) for ta from 1 to 104 min. The left axis T ′

f is approximately proportional
to δS(Tlow). The symbols represent the experimental results: 	, ta = 1; �, ta = 10; �, ta = 102; �, ta = 103; and ©, ta = 104 min. The dash–
double-dotted, dash-dotted, dotted, solid, and dashed lines are the results from calculation 3 for ta = 1, 10, 102, 103, and 104 min, respectively.

Seq(Tlow), and shown in Fig. 7(a); δS(Tlow) is approximately
proportional to T ′

f and decreases with decreasing Ṫc.
The symbols in Figs. 8(a) and 9(a) show the annealing time

dependence of the specific heat on heating at 9.5 K/min after
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FIG. 8. (Color online) Specific heat on heating after annealing at
Ta = 95.8 ◦C for ta in the range from 1 to 103 min. (a) Results of the
annealing experiments and those of calculation 3. (b) Calculations
1 and 2. The symbols show the experimental results: 	, ta = 1; �,
ta = 10; �, ta = 102; and ♦, ta = 103. The curves represent the results
of calculations 1 [cyan (light gray), thick], 2 [blue (dark gray), thin]
and 3. The line types are the same as in Fig. 7(b). The numbers in the
figure represent the annealing time.

annealing at 95.8 ◦C and 86.1 ◦C for ta from 1 to 104 min.
The results for ta = 104 min are almost identical to the results
for ta = 103 min at Ta = 95.8 ◦C. Figures 8 and 9 show that
Cpmax increases with annealing time ta, while Tmax decreases
at ta < 10 min and then increases with ta. Figures 6, 8, and
9 indicate that Cp max monotonically increases and Tmax first
decreases and then increases as the aging effects increase in
aPS. The variations in Tmax with cooling rate and annealing
time are similar to those reported on the glassy polymers
[10,19,33–35].

Figure 7(b) shows the dependence of δS(Tlow) on annealing
temperature and time. For Ta > 100 ◦C, i.e., Ta > Tg, δS(Tlow)
for all ta are similar values while δS(Tlow) decreases with
annealing time ta for Ta � 90 ◦C. Figure 10 shows the
annealing time and temperature dependence of Cp max and Tmax.
The specific heat maximum Cpmax remains almost unchanged
at Ta � 100 ◦C and increases with ta at Ta < 100 ◦C. The
rate of increase in Cp max is the largest at Ta ≈ 85 ◦C. The
temperature of the maximum specific heat Tmax remains almost
unchanged at Ta � 100 ◦C, it first decreases and increases with
ta at 70 � Ta < 100 ◦C, and it decreases with ta at Ta < 70 ◦C.
At 95 � Ta � 100 ◦C, Cp max and Tmax approach asymptotic
values at long ta, which suggests that the entropy reaches an
equilibrium value within ta = 104 min at Ta � 95 ◦C [36]. The
annealing time at which Tmax shows a minimum ta min(Ta) at a
given Ta increases with decreasing Ta as shown by the arrows
for Ta = 95.8 ◦C, 86.1 ◦C, and 76.2 ◦C in Fig. 10(b), though
the scatter of data prevents us from precise determination of
ta min(Ta). We expect from Fig. 10(b) that Tmax decreases at
short annealing time ta, then increases, and approaches an
asymptotic value for ta → ∞.

The experimental results for the enthalpy relaxation in aPS
are summarized as follows.

(i) The deviation of entropy from the equilibrium value at
Tlow = 50 ◦C, δS(Tlow), decreases with decreasing cooling rate
Ṫc and with increasing annealing time ta.
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FIG. 9. (Color online) Specific heat on heating after annealing
at Ta = 86.1 ◦C for ta in the range from 1 to 104 min. (a) Results
of the annealing experiments and those of calculation 3. (b) Results
of calculations 1 and 2. The symbols show the experimental results:
	, ta = 1; �, ta = 10; �, ta = 102; ♦, ta = 103; and ©, 104 min.
The curves represent the results of calculations 1 [cyan (light gray),
thick], 2 [blue (dark gray), thin] and 3. The line types are the same as
in Fig. 7(b). The results from calculation 1 are almost identical to each
other within 1 � ta � 104 min. The maximum of Cp from calculation
2 for ta = 104 min is not included in this figure. The numbers in the
figure represent the annealing time.

(ii) The maximum of specific heat in the heating process
Cp max decreases with Ṫc and increases with ta at Ta < 100 ◦C.
It approaches an asymptotic value with ta at 95 � Ta � 100 ◦C.

(iii) The temperature of maximum specific heat Tmax first
decreases with increasing ta, then increases after passing
a minimum at ta min(Ta) (Ta < 100 ◦C), and approaches an
asymptotic value (95 � Ta � 100 ◦C). The variation of Tmax

with decreasing Ṫc qualitatively corresponds to that with
increasing ta.

C. Calculation by phenomenological model equation

The specific heat under a given thermal history is calculated
with the relaxation parameters experimentally obtained for aPS
in the following three methods according to the definition of
configurational entropy Sc.

Calculation 1. The configurational entropy is assumed to be
given by Sc(T ) = Seq(T ) − Sg(T ). Hence the relaxation time
is an equilibrium one and determined by the instantaneous
temperature as in Fig. 4, i.e., τ (T ) = τ eq(T ).

Calculation 2. The configurational entropy at time t is
assumed to be given by Sc(t) = S(t) − Sg[T (t)] in terms of
the instantaneous entropy S(t). The relaxation time varies with
cooling below Tg and with annealing time through S(t).

The details of calculation 3 will be explained shortly.
Calculation 1 examines which features of enthalpy relaxation
are quantitatively accounted for by the calculation in terms
of the equilibrium relaxation time τ eq(T ) and to what extent
the deviation in τ eq from τ (t) quantitatively affects the
calculation under a given thermal history. Note that in the
out-of-equilibrium state the relaxation time is already much
longer than the time scale of observation. After discussing the
limitation of the description of the out-of-equilibrium state
by the equilibrium relaxation time in calculation 1, we take
account of the out-of-equilibrium state, or the nonlinearity
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dependence of (c) Cp max and (d) Tmax. The symbols and the line types are the same as in Fig. 7(b).
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in the simplest form Sc(t) = S(t) − Sg[T (t)] in calculation 2.
In these two calculations the parameters only experimentally
obtained are employed. In calculation 3, the better agreement
with the experimental results is examined by taking account
of the additional contribution of the specific heat to the
glassy entropy Sg(T ). The relaxation time depends on S(t) in
calculations 2 and 3. In these cases, since the right-hand side
of Eq. (1) contains S(t) through Eqs. (3)–(5), the numerical
calculations of S(t) from the previous time step are repeated
until the values of S(t) coincide on both sides of Eq. (1) within
the accuracy of the calculation.

The thick cyan (light gray) curves in Figs. 6(b), 8(b), and
9(b) show the specific heat on heating from calculation 1
under the same thermal history as that of the rate cooling
and the annealing experiments. The maxima of the specific
heat at about 108 ◦C are reproduced by this calculation and
Cp max increases with decreasing Ṫc and increasing ta, in
agreement with the experimental results (ii). However, Tmax

only decreases with decreasing Ṫc and increasing ta and
calculation 1 does not reproduce the experimental results
(iii). In calculation 1, where the relaxation time is assumed
to be determined only by temperature through Eq. (4) with
Sc(T ) = Seq(T ) − Sg(T ), the annealing time dependence of
the specific heat is noticeable at 90.9 � Ta � 95.8 ◦C. The
origin of the result that Cp(t) on heating is independent of ta
at Ta � 85 ◦C within ta � 104 min is that the relaxation time
is too long for the entropy to relax during the annealing time
ta up to 104 min: The relaxation time τ (T ) is 7.9 × 108 s at
85 ◦C, 1.8 × 105 s at 90.9 ◦C, and 1.7 × 103 s at 95.8 ◦C, as
shown in Fig. 4.

The results of calculation 2, where the configurational
entropy is assumed to be determined by the instantaneous
entropy by Sc(t) = S(t) − Sg[T (t)], are shown by the blue
(dark gray) fine curves in Figs. 6(b), 8(b), and 9(b). Though
Cp max increases with ta in qualitative agreement with the
experimental results (ii), the calculated specific heat has a
much larger peak at a higher temperature than that of the
experimental one. Further, Tmax moves toward only higher
temperatures with decreasing Ṫc and increasing ta. These
results are considered to be due to the short relaxation time at
Ta in the calculation.

The annealing time dependence of the peak temperature
in specific heat is discussed on the bases of the results of
calculations 1 and 2. As shown in Fig. 1, the cooling process
starts at t = 0 in equilibrium, the sample is annealed from tAN

to tCL2, and the reheating process starts at tHT. The integral in
Eq. (1) during the heating process t > tHT is decomposed into
two components δSba(t) and δSaa(t), the contribution to δS(t)
before and after annealing, respectively:

δS(t) = S(t) − Seq[T (t)] = δSba(t) + δSaa(t) (9)

= −
∫ t

0
�χ[T (t),T (t ′)][T (t) − T (t ′)]

∂φ[t̃(t,t ′)]
∂t ′

dt ′,

(10)

δSba(t) = −
∫ tAN

0
�χ [T (t),T (t ′)][T (t) − T (t ′)]

∂φ[t̃(t,t ′)]
∂t ′

dt ′

+�χ [T (t),Ta][T (t) − Ta]φ[t̃(t,tAN)], (11)
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The line types are the same as in Fig. 7(b).

δSaa(t) = −�χ [T (t),Ta][T (t) − Ta]φ[t̃(t,tCL2)]

−
∫ t

tCL2

�χ [T (t),T (t ′)][T (t) − T (t ′)]
∂φ[t̃(t,t ′)]

∂t ′
dt ′.

(12)

In Eq. (10) the integral during annealing from tAN to tCL2

gives �χ[T (t),Ta]{φ[t̃(t,tCL2)] − φ[t̃(t,tAN)]} since T (t ′) =
Ta = const. This contribution is divided into the second term
of the right-hand side of Eq. (11) and the first term of Eq. (12)
and included in δSba and δSaa, respectively.

Figures 11(a) and 11(b) show δSba(t) and δSaa(t) in the
heating process from calculation 1 at Ta = 95.8 ◦C and ta from
1 to 103 min. Figure 11(a) indicates that δSba(t) decreases
with ta due to the relaxation during annealing. In calculation 1,
δSaa(t) decreases with T in the glassy state and approaches the
equilibrium value at high temperature with an undershoot as
shown in Fig. 11(b) by a thick dashed line. The component
δSaa(t) is common to all the annealing times ta since the
configurational entropy Sc and hence the relaxation time are
determined only by temperature and are independent of the
thermal history in calculation 1. The deviation in entropy from
the equilibrium value during heating δS[T (t)] = δSba[T (t)] +
δSaa[T (t)] for each ta is also shown in Fig. 11(b). Since the
inflection point of δS[T (t)] approximately corresponds to Tmax

in Figs. 8 and 9, Fig. 11(b) indicates that the decrease in the
component before annealing δSba[T (t)] leads to the decrease
in Tmax with increasing annealing time.

In calculation 2, since S(t) is larger than Seq[T (t)] at T (t) <

Tg, the instantaneous relaxation time τ (t) is shorter than the
equilibrium relaxation time τ [Seq(T )]. Because of the decrease
in S(t) during annealing, the relaxation time after annealing
(t > tCL2) increases toward τ eq(Ta) with increasing annealing
time ta at a given annealing temperature. Figures 11(c) and
11(d) show δSba(t) and δSaa(t) from calculation 2 at Ta =
95.8 ◦C and ta from 1 to 103 min. The variation of δSba(t) with
annealing time in calculation 2 is qualitatively similar to that

012605-7



SAKATSUJI, KONISHI, AND MIYAMOTO PHYSICAL REVIEW E 88, 012605 (2013)

in calculation 1 [Fig. 11(a)]. Owing to a shorter relaxation time
τ (tAN) than in the case of calculation 1, the component δSba

is accordingly smaller due to the faster relaxation in entropy.
Since the relaxation time τ [T (t)] after annealing (t > tCL2)
becomes longer with increasing ta, the response of S(t) against
the temperature variation is delayed and the temperature at
which δSaa(t) and the resultant δS(t) approach the equilibrium
increases with ta as shown in Fig. 11(d). The aging effect that
the relaxation time increases with ta therefore leads to the
increase in Tmax with ta. In this way, the annealing has two
opposite effects on the variation of Tmax: The decrease in the
component δSba(t) before annealing gives rise to the decrease
in Tmax and the increase in relaxation time during and after
annealing gives rise to the increase in Tmax. The experimental
results of aPS (iii) indicate that the simple relaxation in entropy
is the main outcome of annealing in the initial stage followed
by the increase in relaxation time due to the physical aging and
ta min(Ta) in Fig. 10(b) is a crossover annealing time between
these effects.

Now the correspondence between the TNM model and
our calculations is examined. Instead of the TNM model
of the Arrhenius type, the Adam-Gibbs theory has been
applied to the history dependence of the relaxation time
[12]. Hutchinson et al. proposed the following configurational
entropy dependent on both temperature and fictive temperature
[15,17]:

Sc(T ,T ′
f ) = xsSc(T ) + (1 − xs)Sc(T ′

f ), (13)

where xs is an entropic nonlinearity parameter (0 � xs � 1).
In calculation 1, the configurational entropy is defined by
Sc(T ) = Seq(T ) − Sg(T ), which corresponds to Eq. (13) with
xs = 1. In calculation 2, the configurational entropy is defined
by Sc(t) = S(t) − Sg[T (t)], which is equivalent to Sc(Tf) =
Seq(Tf) − Sg(Tf), which corresponds to Eq. (13) with xs = 0.
Since the nonlinearity parameter xs takes a value between 0 and
1, the TNM model with the Adam-Gibbs-type relaxation time
assumes the configurational entropy between Seq(T ) − Sg(T )
and S(t) − Sg[T (t)].

So far the calculations have been carried out based on
the relaxation parameters experimentally obtained and no
fitting parameter has been introduced. The introduction of
nonlinearity parameters [6–9] and the limiting entropy attained
after infinitely long annealing [10,19] are candidates to
accommodate the relaxation time to one between the values of
τ in calculations 1 and 2. Although calculation 2 qualitatively
explains the experimental results, we introduce the following
concept for further quantitative discussion. Recently, the
relation between configurational entropy and specific heat
has been studied based on the free energy landscape theory
[22–24]. These studies suggest that the configurational entropy
is not given by Eq. (5) and besides C∞

p (T ) the glassy entropy
Sg(T ) includes an additional contribution of specific heat
�C(T ) originating from the temperature dependence of the
FEL and changes stepwise presumably in the glass transition
region.

Calculation 3. Based on the FEL theory, the influ-
ence of an additional contribution �C(T ), either pos-
itive or negative, is examined as calculation 3. The
glassy entropy Sg′(T ), which takes account of �C(T ), is

given by

Sg′(T ) = Seq(T ′
2) +

∫ T

T ′
2

C∞
p (T ′) + �C(T ′)

T ′ dT ′, (14)

�C(T ) =
√

2

π
�χFT exp

[
− (T − TF)2

2σ 2
F

]
, (15)

where one of the simplest functional forms to give a stepwise
increase in Sg′(T ), as shown in Fig. 2 by the dash-dotted
curve, is assumed for �C(T ) and �χF, σF, and TF are
the constant parameters independent of temperature and the
experimental condition. The configurational entropy is given
by Sc(t) = S(t) − Sg′[T (t)] and the relaxation time by Eq. (4).
The parameters �χF, σF, and TF are determined by a trial
and error method so that δS (50 ◦C) at ta = 104 min of the
calculation agrees with the experimental results as shown in
Fig. 7(b) by the solid line; �χF = −6.17 × 10−4 J g−1 K−2,
σF = 23 K, and TF = 371 K. The least-squares fitting to
the experimental relaxation time by Eq. (4) with this set of
parameters gives τ

(3)
∞ = 4.35 × 10−9 s, A(3) = 550 J g−1, and

T
(3)

2 = 329 K and is shown in Fig. 4 by the dotted line.
The results from calculation 3 are shown in Figs. 6–10.

The agreement with the experimental results is improved and
the results (i)–(iii) are qualitatively reproduced. Figure 7(a)
shows the cooling rate dependence of δS(Tlow) in calculation
3 together with that in calculations 1 and 2. Though the
calculated values of Tmax are lower than the experimental ones
by about 2 K partly due to the uncertainty in reading the
peak temperature of C ′′

p in Fig. 3, calculation 3 quantitatively
reproduces the variation in Cp max and Tmax with annealing
temperature and annealing time for ta � 102 min [Figs. 8(a),
9(a), and 10(a)] and for cooling rate Ṫc � 1 K/min [Fig. 6(a)].
For ta > 102 min, however, Cp max in calculation 3 gives larger
values and Tmax gives lower values than the experimental
results. The annealing time dependence of the relaxation time
and specific heat will be discussed based on the calculation
with parameters �χF, �σF, and TF despite the insufficient
quantitative agreement at long annealing times.

During annealing, the configurational entropy decreases
from Sc(tAN) toward Sc(Ta) and accordingly the relaxation time
increases from τ (tAN) toward τ eq(Ta). Figure 12 shows the
change in δS(t) = Sc(t) − Sc(Ta) and τ (t) during annealing.
Struik pointed out that the relaxation time or the shift factor
increases with annealing time to the power of ta [1]. In fact,
the power dependence of τ (ta) = τ (t − tAN) on ta is observed
in the long ta region at Ta �86.1 ◦C in Fig. 12. The vertical
arrows in Fig. 12 show the crossover times ta min(Ta); the solid
arrows show the experimental results in Fig. 10(b) and the
dashed arrows show the calculations. Though the calculations
give longer ta min than the experimental results, it turns out
[Fig. 12(a)] that the aging effect on relaxation time becomes
effective when the entropy decays from δS(tAN) by 20–40%.
The time at which τ (t) during annealing begins to show the
power dependence on ta is similar to ta min from calculation 3
in Fig. 10(b). This indicates that Tmax decreases at shorter ta
where the increase in τ (t) is small and increases at longer ta
where τ (t) shows a power-law increase.

Since the relaxation time at the end of annealing τ (tCL2) is
longer for longer annealing time at a given Ta, δS(t) is smaller
and τ (t) is longer at time t after annealing. Figure 13 shows
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the temperature dependence of δSba(t), δSaa(t), δS(t), and τ (t)
on heating for Ta = 86.1 ◦C. Figure 13(a) shows that at short
ta the decrement in δSba(t) is dominant over the decrement
in the minimum of δSaa(t) in the change in δS(t) with ta
because of the small change in τ (t) with ta, which causes the
decrease in Tmax with ta, while at long ta the latter is dominant
over the former because of the large change in τ (t), which
causes the increases in Tmax. Thus the interplay between the
decrease in δSba and the increase τ (t) given rise by annealing
results in the change in Tmax with ta.

The better agreement with the experimental results than the
present study was obtained by the parameter fitting method
with models similar to Eq. (1) [10,18,37]. Regarding the origin
of the discrepancy between our experimental and calculated
results at long annealing time noted above, the following
factors are considered: the oversimplified functional form
of Eq. (15) assumed for the additional contribution to the
specific heat based on the FEL theory, the application of
the KWW function to the relaxation function, unnoticed
factors determining the relaxation time, and so on. Of these,
the long time behavior of the relaxation function may be
influential to the enthalpy relaxation under the heavy aging
conditions. The power-law decay in the long time region in the
relaxation function is observed in the dielectric measurements
[38], though not confirmed in the experimental accuracy
of the present study. As the slow decay in the long time
region would broaden the width of the peak in specific heat
on heating and reduce the peak height, better agreement
between the experimental and calculated results would be
expected. Further, since better agreement at long annealing
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FIG. 13. Temperature dependence of (a) δSba(t) (upper) and
δSaa(t) (lower), (b) δS(t), and (c) τ (t) on heating at Ta = 86.1 ◦C
for ta in the range from 1 to 104 min. (b) Experimental δS(t): �,
ta = 10; �, ta = 102; ♦, ta = 103; and ©, ta = 104 min. The curves
represent the results from calculation 3. The calculated δS(t) and τ (t)
for ta = 1 min are not shown in the figures. The line types are the
same as in Fig. 7(b). The dashed line in (c) represents the temperature
dependence of the relaxation time in equilibrium τ eq. The left pointing
arrows in (b) and (c) show the cooling process before heating in
the annealing experiments. The numbers in the figure represent the
annealing time.

time has been reported with the introduction of the partitioning
parameter x and the configurational entropy of the limit state
S lim

c (T ), the examination of the physical significance of these
quantities, in particular the relationship between S lim

c (T ) and
Seq(T ) − Sg′(T ), is an issue for future research.

V. CONCLUSION

The dependence of enthalpy relaxation on thermal history
has been studied by DSC and the phenomenological equation
with the thermal relaxation parameters determined experimen-
tally. The contribution of the additional specific heat to the
glassy entropy is taken into account based on the FEL theory.
The annealing gives rise to the relaxation in entropy arising
before annealing and the increase in relaxation time. The
crossover of these effects corresponds to the initial decrease
and subsequent increase in the peak temperature of specific
heat in the heating process after cooling to a temperature well
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below Tg. A detail examination of the functional forms of the
additional specific heat and the relaxation function in the long
time region will be necessary for a thermal history with longer
annealing time below Tg and a slower cooling rate.
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