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Orientational energy of anisometric particles in liquid-crystalline suspensions
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We obtain a general expression for the orientational energy of an individual anisometric particle suspended in
uniform nematic liquid crystals when the main axis of the particle rotates with respect to the nematic director. We
show that there is a qualitative and quantitative analogy between the internal and external problems for cylindrical
volumes of nematic liquid crystals, and on this basis we obtain an estimate of the orientational energy of a particle
of cylindrical (rodlike, needlelike, or ellipsoidal) shape. For an ensemble of such particles we propose a modified
form of their orientational energy in the nematic matrix. This orientational energy has the usual second-order term,
and additional fourth-order term in the scalar product of the nematic director and the vector which characterizes
an average direction of the main axes of the particles. As an example we obtain the expression for the free energy
density of ferronematics, i.e., colloidal suspensions of needlelike magnetic particles in nematic liquid crystals.
Unlike previous models, the free energy density includes the proposed modified form of the particle orientational
energy, and also a contribution describing the surface saddle-splay deformations of the liquid crystal matrix.
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I. INTRODUCTION

Soft condensed matter, which includes such materials as
liquid crystals, colloids, foams, gels, polymer melts, and
solutions is one of the important areas of modern physics. The
presence of internal degrees of freedom and high sensitivity of
these materials to external influences leads to a wide variety
of observable physical effects in them. Important examples of
soft condensed matter are colloidal suspensions of anisometric
particles in liquid crystals. The unique physics of these systems
is due to the mutual influence of the anisotropic properties
of spontaneously ordered liquid-crystalline environment and
prolate or oblate particles of the solid phase embedded in
it. Therefore, the physical properties of these composite
materials are significantly richer than the properties of the
constituent components. The collective response of liquid-
crystalline suspensions to external fields leads to the existence
of many new physical phenomena that are interesting from
both fundamental point of view and applied perspectives.
Apparently, the first historical examples of liquid-crystalline
suspensions are ferronematics [1,2].

Ferronematics (FNs) are magnetic suspensions on the basis
of nematic liquid crystals (NLCs). The solid phase of FNs
consists of single-domain needlelike ferri- or ferromagnetic
particles with length L and diameter d ∼ (L/10). Due to
the shape anisotropy the particles have a magnetic rigidity
at which the magnetic moments of needlelike ferroparticles
are always directed along their main axes [3,4]. The length
L of the particles and the diameter d are large in comparison
with the nematic molecule size a, i.e., the particles represent
the mesoscopic objects suspended in a liquid crystal. The
volume fraction f of a solid phase is rather small (10−7–10−2),
therefore the magnetic impurity in FNs can be considered as
an ideal gas of noninteracting magnetic grains. The existence
of a small ferroparticle additive does not change the nature
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of orientational order of a nematic matrix, therefore, FNs
having high magnetic susceptibility otherwise behave like
usual NLCs.

More than a hundred papers are devoted to theoretical and
experimental studies of FNs; their review is given in [5].
Below we discuss the main theoretical investigations devoted
to the construction of FN continuum theory, as well as the
results of the experiments which influenced the development
of theoretical views about the internal structure and behavior
of such liquid crystal materials.

The idea of creation of magnetic suspensions was proposed
by Brochard and de Gennes in their classical work [1]
which initiated the beginning of development of the FN
continuum theory. Later FNs were synthesized on a basis
of both thermotropic [6–8], and lyotropic [9,10] nematic
liquid crystals. The performed experiments [6–10] showed that
values of the magnetic fields necessary for reorientation of a
liquid crystal matrix of real magnetic suspensions, at least, are
two orders of magnitude lower than fields of reorientation of
usual nematics. This circumstance expands the use of magnetic
liquid crystal materials in applications.

The high magnetic susceptibility of FNs theoretically
predicted by Brochard and de Gennes and confirmed exper-
imentally, is caused by an orientational interaction between
ferroparticles and a nematic matrix. For magnetized FN in
which the magnetic moments of ferroparticles coincide in the
direction at each local point of the sample, the natural variables
responsible for the orientational order of nematic and magnetic
subsystems are the director n(r) and magnetization vector
M(r) averaged at scales much greater than L. Therefore the
orientational interaction has to describe the local correlation
of spatial distributions of n and M. This interaction makes
the corresponding contribution to the total free energy of
FN which we call “orientational energy of ferroparticles” or
simply “orientational energy.”

The detailed theoretical description of orientational inter-
action of anisometric particles with a nematic matrix is given
by Brochard and de Gennes [1]. The analysis of their theory
allows us to conclude that the general expression for the
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volume density of orientational energy of ferroparticles can
be written as

FOR(θ ) = f

∞∑
k=1

A2k cos2k(θ ) =f

∞∑
k=1

A2k(m · n)2k, (1)

where θ is the angle between the unit vector m = (M/M) of a
FN magnetization and the liquid crystal director n. Expansion
coefficients A2k have the dimensionality of energy volume
density (erg/cm3) and depend on FN material parameters
and type of anchoring of nematic molecules at a ferroparticle
surface. Let us note that Ref. [1] does not contain expression
(1) explicitly; however, it directly follows from the theoretical
investigation presented in [1], and this is shown in the main
part (Sec. II) of the present paper.

Generally, rigorous calculation of coefficients A2k is not
possible since it is connected with the necessity of the detailed
theoretical description of a director field in the vicinity of
the needlelike particles. Similar problems in colloidal liquid
crystal systems arise, for example, at the description of
distortions near particles of a spherical shape suspended in a
homogeneous nematic matrix. It is well known [11] that those
problems lead to a complex nonlinear system of differential
equations for the director orientation angles and yet have
no exact analytical solutions. At the same time, the use of
approximate analytical methods and Ansätze based on the
topological analysis of orientational distortions and asymptotic
behavior of solutions far from spherical particles allows
researchers to give quite complete description of possible
distributions of a director field [11–13] which are in good
agreement with the experiment.

It is also possible to apply the methods of approximate
description of orientational distortions in the case of needle-
shaped particles. They allow us to estimate the values of
coefficients A2k . In particular, Brochard and de Gennes used
the approximation of infinitely strong (rigid) anchoring of
nematic molecules at particle surfaces which at the time of
writing of Ref. [1] was considered as the most probable.
Three types of boundary conditions were considered: (I)
longitudinal, when the easy orientation direction of nematic
molecules on the surface of an individual particle is parallel to
its main axis; (II) homeotropic, when this direction is normal
to the particle surface; and (III) circular, when the direction
of easy orientation is tangential to the particle surface and is
normal to the main axis of the particle. Describing orientational
distortions for boundary conditions of type (I) Brochard and
de Gennes used the electrostatic analogy, and in the case of
boundary conditions (II) and (III) they considered needlelike
particles as long cylinders and neglected end effects. It was
shown that at any of the given types of anchoring the density
of orientational energy FOR(θ ) has a deep minimum when
θ = 0. It means that at rigid anchoring in Eq. (1) it is possible
to assume FOR(θ = 0) = f

∑∞
k=1 A2k → −∞ and consider

that m ‖ n. Therefore Brochard and de Gennes proposed the
continuum model of rigid FNs [1] which implied strict paral-
lelness of the unit magnetization vector m to the liquid crystal
director n (so-called Brochard–de Gennes theory). This theory,
however, was not valid for real thermotropic suspensions
with soft nematic anchoring at surfaces of ferroparticles. In
particular, the experiments [6–8] showed convincingly that

in the uniform sample of FN the needlelike ferroparticles
with soft homeotropic (II) anchoring (and, consequently, the
magnetic moments of these ferroparticles, as well) are oriented
perpendicular to the unperturbed nematic director. This result
was in contradiction with the main postulate of the Brochard
and de Gennes theory about the parallelness of m and n.

The arisen contradiction between the theory and experiment
induced the authors of Refs. [14–16] to study the behavior
of magnetic suspensions with soft nematic anchoring at the
ferroparticle surfaces. In Refs. [14,15] the influence of soft
anchoring on the equilibrium orientation of the individual
needlelike particle suspended in uniform nematic sample was
considered for the three anchoring types mentioned above [(I),
(II), and (III)]. In Ref. [16] these results were generalized for
the case of an ensemble of ferroparticles with arbitrary type of
anchoring at surfaces, and the continuum model of soft FNs
(so-called Burylov-Raikher theory) was proposed. The authors
of this theory offered to limit the expansion of orientational
energy density (1) only by the quadratic contribution

FOR,2(θ ) = A2f cos2(θ ) = A2f (m · n)2. (2)

Considering needlelike ferroparticles as cylinders and
neglecting end effects by analogy with Ref. [1], the authors of
Refs. [14–16] calculated the corresponding coefficient A2. It
appeared that depending on the type of anchoring and material
parameters this coefficient can be both less and more than
zero. Therefore in the absence of an external magnetic field
the particles can be oriented either along or perpendicular to
the director. For example, for anchoring (I) the coefficient
A2 is always less than zero, and the particles are oriented
along the director. As to anchorings (II) and (III), the sign
of this coefficient depends on the value of the dimensionless
parameter

w = (WR/K), (3)

where W is the energy density of nematic anchoring at a
surface of a particle, R is the particle radius, and K is the
average value of the NLC elastic constants. If w exceeds
the certain critical value w∗ ∼ 1, the coefficient A2 < 0, and
particles must lie along the director, but if w < w∗ then
A2 > 0, i.e., the particles must be oriented perpendicular to the
director. The estimates given in Refs. [14–16] demonstrated
that for real thermotropic FNs [6–8] the parameter w � 1,
therefore the conclusion of the theory about perpendicular
orientation of long axes of particles with respect to the director
of a nematic matrix makes it possible to explain the results
of experiments. As to the theory itself, currently it is widely
used [17–31] for the description of orientational effects in FNs
induced by magnetic and electric fields.

It should be noted that the authors of the model [16] of soft
FNs, limiting the expansion (1) only by quadratic contribution,
were guided by the following reasons. First, they assumed
that in the absence of a magnetic field there is only one
equilibrium position of ferroparticles in magnetized FNs when
m ‖ n or m⊥n. Secondly, they took into consideration that the
quadratic form (2) of the orientational energy of ferroparticles
is in a direct analogy with Rapini’s heuristic potential [32].
The latter corresponds to the anchoring energy and is widely
used for the description of orientational interaction between
a nematic and a solid substrate on which the direction of
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easy orientation of the director is given. In the model [16]
of soft FNs a favorable (or unfavorable) axis of the director
orientation is represented by a unit magnetization vector along
which long axes of ferroparticles are directed at each point of
a sample. The rotation of ferroparticles (or the vector m),
initiated, for example, by an external magnetic field, also
involves the rotation of the director. The director n does not
strictly follow the direction of m (as in the theory of rigid FNs
proposed by Brochard and de Gennes), and is oriented at a
certain angle θ which can be found by minimization of total
FN free energy. Thus, for the case of soft anchoring, using
only the quadratic approximation, the authors of Ref. [16]
uncoupled the orientational variables (vector m and director n)
in the continuum model of FNs.

The theory [16] gives a satisfactory description of available
experimental data (see, for example, Refs. [27–29,33,34]), but
this theory is not complete because Eq. (2) does not include
the next orders of orientational energy expansion in Eq. (1). In
the present paper we expand the model [16] and consider the
additional fourth-order contribution in Eq. (2):

FOR,4(θ ) = f [A2 cos2(θ ) + A4 cos4(θ )]

= A2f (m · n)2[1 − ζ (m · n)2], (4)

where ζ = −(A4/A2) is the dimensionless phenomenological
parameter characterizing the ratio of the fourth- and second-
order terms in (m · n). The minus sign in Eq. (4) before
ζ is chosen by analogy to the corresponding contribution
to the surface anchoring energy which corresponds to the
interaction of usual NLCs with a solid substrate [35–40]. It
is known [39–42] that in general case the anchoring energy
density can be presented in the form of infinite series in even
degrees of a sine or a cosine of θ̃ , where θ̃ is the angle of LC
director deviation from the easy orientation direction of the
director on a substrate. So, this expression formally coincides
with Eq. (1). When θ̃ is small the density of anchoring
energy is well described by Rapini form which corresponds
only to the quadratic contribution in cos θ̃ (or sin θ̃ ). As θ̃

grows for the correct description of surface effects on the
NLC boundary in the anchoring energy density it is also
necessary to consider, at least, the fourth order of expansion
(see Refs. [35–40]). In the latter case the so-called bistable
anchoring characterized not by one, but by two positions
of director equilibrium on a cell boundary can take place.
It is seen from Fig. 1, where we show the behavior of the
function FS,4 = Ã2 cos2 θ̃ (1 − ζ̃ cos2 θ̃ ), which corresponds
to the anchoring energy of this type. The parameter ζ̃ can vary
from − 1 to + 1, therefore, when Ã2 > 0 and 0.5 < ζ̃ � 1
the angular function has two local minima θ̃ = 0 and π/2
[see Fig. 1(a)]. In the absence of some additional orientational
distortions initiated, for example, by external fields or the
specific geometry of a sample, those minima correspond
to two local positions of director equilibrium at the cell
boundaries. Therefore the NLC surface energy FS,4, unlike
Rapini’s potential (ζ̃ = 0), is usually known as the modified or
bistable anchoring energy [35–37,43–45]. It should be noted
that if Ã2 < 0 and 0.5 < ζ̃ � 1, the energy FS,4 allows the
tilted orientation of the director at a cell boundary which is
observed in the experiments (if a normal or a tangent to this
surface is chosen as easy orientation axis) [see Fig. 1(b)].

(a) (b)

FIG. 1. Profiles of the function (FS,4/|Ã2|) which corresponds to
the angular part of bistable anchoring energy and angular dependence
of orientational energy of ferroparticles (4), with Ã2 > 0 (a) and
Ã2 < 0 (b) for different values of ζ̃ .

For pure nematic liquid crystals, the use of bistable
anchoring energy, of which surface density coincides with
Eq. (4) in its angular dependence, is well known [35–40].
Choosing the value of ζ̃ from theoretical estimates or the
analysis of experimental data, many authors gave a correct
explanation of different orientational transitions in pure NLCs
that would be impossible taking into account only Rapini’s
contribution in the anchoring energy.

In the physics of ferronematics, the orientational effects
with the bistable anchoring at cell walls are discussed in
Refs. [43–45], and the fourth-order contribution in (m · n) in
the orientational energy of ferroparticles with the homeotropic
(II) type of anchoring was already studied by Baldin and
Zakhlevnykh in Ref. [46]. However, in Ref. [46] the inter-
pretation of this contribution is based only on the analogy
presented above between the ferroparticle orientational energy
and bistable surface energy of NLCs. In the present paper we
show a rigorous derivation of Eq. (1) for the orientational
energy from which the necessity of fourth-order contribution
(and in the general case of higher orders) in (m · n) follows. In
addition, we generalize expression (4) for the case of arbitrary
anchoring of the director at the surfaces of particles and take
into consideration the saddle-splay surface elastic modulus
K24 of the NLC, which has not yet been taken into account for
describing ferronematics behavior.

Analyzing preliminarily the modified potential (4) of fer-
roparticles orientational energy, we emphasize its fundamental
difference from the form of Ref. [16] which is quadratic in
(m · n). The essence of this difference is that in the absence
of a magnetic field the modified potential (4) allows the tilted
orientation of particles with respect to the NLC director or
the existence of two equilibrium positions of ferroparticles:
parallel and perpendicularly to the director. Such tilted or
bistable orientation can take place if ζ exceeds the value
ζBS = 0.5, which is the lower bound of the appearance of
these orientational states. From the qualitative point of view,
the possibility of the existence of two equilibrium positions is
confirmed, for example, by the results of experiments [47,48]
on observation of the orientational behavior of nonmagnetic
rodlike particles in the homogeneous nematic sample. Let us
consider briefly the results of these experiments.

In Ref. [47] the behavior of SiC particles in nematic sol-
vents of various types [MBBA (N-(4-methoxybenzylidene)-
4-butylaniline), 8CB (4-octyl-4′-cyanobiphenyl), and NLC
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mixture E7] was investigated. The particles were rodlike, their
average length L was 19 ± 10 μm, and their aspect ratio L : d

was constant 200:1. Optical experiments [47] showed that
depending on a choice of LC solvent and on the existence (or
absence) of surfactant on the particles, the latter were oriented
either parallel or perpendicular to the nematic director. How-
ever, in two cases [when liquid crystals E7 and MBBA were
used as solvents and the surfactant prescribed the homeotropic
(II) type of anchoring] the bimodal distribution of orientations
was observed: A majority of particles was perpendicular to
the director and a smaller, but significant, minority of them
were along the director. Additionally, all the experiments [47]
showed that local orientational distortions of the director field
near particles did not contain point and line defects.

In experiments [48] the nematic liquid crystal 5CB (4-
n-pentyl-4-cyanobiphenyl) was used. The average length of
glass microrods suspended in a nematic matrix was L ∼ 8μm,
the diameter was d = (1.49 ± 0.07)μm, and the homeotropic
type of anchoring was prescribed at particles surface. Op-
tical observations [48], as well as [47], show the bimodal
distribution of orientations: more than half of the particles
were near θ = 0, i.e., along the director, and the rest of the
particles were oriented at various angles from the interval
π/3 � θ � π/2. However, unlike [47] in those experiments
the particles were surrounded by systems of point and line
defects, and in order to make the particles change their state
from π/3 � θ � π/2 to θ = 0 it was necessary to overcome
the certain energy barrier connected with reorganization of
the systems of orientational defects. Let us also note that
in some cases the particles, and couples of particles which
stuck together by side surfaces, showed in experiments [48]
their tilted orientation with respect to the NLC director. It
is connected with asymmetrical arrangement of the defects
observed at the ends of the studied objects.

For a theoretical interpretation of the obtained experimental
results [47,48] and drawing a qualitative analogy with fer-
ronematics we assume that magnetic moments of particles are
directed along their main axes. The intrinsic magnetic field of
the particles is sufficiently small so it is not able to affect the
distribution of the director even in the immediate vicinity of the
particles [1]. Therefore, the existence of magnetic moments of
particles does not change the structure of the observed local
deformations of the director field [47] near their surfaces as
well as the configuration [48] of orientational defects. The next
step of the theoretical approach is the continuum description
of a suspension of similar particles in a liquid crystal. It
means that the deformed state of the director field which was
observed in experiments, must be averaged at distances much
greater than L. For averaging it is possible to use the so-called
method of deformation coats [49,50], limiting local orienta-
tional distortions near particles. The director field distribution
obtained after the averaging will be homogeneous, without
any local deformations or point and line defects. Then, for
describing the bimodal [47,48] orientational behavior of par-
ticles in the suspension we can use the modified potential (4)
with ζ > ζBS.

Assuming that in the absence of an external magnetic field
the ferroparticles can have two orientational minima or tilted
orientation, we, however, do not set a goal of developing
the theory of FNs of precisely such magnetic suspensions.

Similar systems require extra measures for maintaining locally
homogeneous magnetization of a sample typical for FNs.
Otherwise the applied magnetic field will inevitably initiate
complex spatially nonuniform structures of the director field
that can become a subject of independent theoretical research.

In the present paper we consider ferronematics for which in
the modified orientational energy (4) the parameter −1 � ζ <

ζBS and ferroparticles in the absence of an external magnetic
field have one equilibrium position. At that we take into
account that in real FNs the transverse dimension of particles
is significantly less than in the experiments [48] (see, for
example, Refs. [6–8]). Therefore we expect (see Sec. III) that
systems of point and line defects which surrounded massive
particles in Ref. [48], will be purely fictitious in real FNs, i.e.
they will be inside ferroparticles. This localization of defects
will facilitate their internal reorganization when particles rotate
in a nematic matrix that will cause ζ to decrease. This partially
confirms comparison of experimental results [47] and [48]
given above. In Ref. [47] the diameter of particles was an order
of magnitude less than in Ref. [48], the defects near particles
were not observed, and bimodal distribution of orientations
was much less expressed (in any case it was not observed in
all the nematic solvents and could be seen only after special
treatment of particles by surfactant).

The structure of the paper is as follows. In Sec. II we
derive Eq. (1) for the general form of orientational energy.
In Sec. III we discuss the estimations of coefficients A2k in
models of rigid [1] and soft [16] FNs, show the limits of
validity of these theories, and represent the final form of the
modified orientational energy of particles. To clarify the theory
as completely as possible we used here one more analogy.
This is the analogy between external problems [1,14–16] for
the needlelike particles suspended in a nematic matrix, and
internal problems [51–54] on determination of equilibrium
configurations of the director in cylindrical capillaries. In
Sec. IV we present the modified free energy of FNs. The
conclusions are given in Sec. V.

II. GENERAL FORM OF PARTICLES
ORIENTATIONAL ENERGY

Let us consider in more detail the problem of orientational
interaction of magnetic and liquid crystal subsystems of FNs.
As the concentration of particles in a suspension is rather small,
ferroparticles make additive contributions to this interaction in
the density of FN free energy. Therefore the problem stated
above is reduced to a description of the orientational behavior
of an individual needlelike particle in the nematic matrix with
the director n0 set on the infinity (when r 
 L).

Brochard and de Gennes in Ref. [1] studied the described
problem in a more general case—for a particle of arbitrary
shape. They used one-constant approximation, assuming that
all elastic volume constants of nematic (i.e., splay K11,
twist K22, and bend K33) are equal: K11 = K22 = K33 =
K . In addition, the authors of Ref. [1] consider that there
are rigid boundary conditions for the NLC director on a
particle surface. It was shown that at long distances from a
particle the director field can be presented as n = n0 + δn⊥,
where the small perturbation δn⊥ is oriented in the plane that
is normal to n0, i.e., δn⊥⊥n0. The equilibrium equation for
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transverse disturbance δn⊥ is Laplace’s equation for which the
solution can be presented in the form of multipole expansion.
This solution is well known and is used by many authors
in descriptions of orientational nematic distortions induced
by particles of various shapes [11,50,55,56]. It is also known
[1,16,50,57,58] that the first—Coulomb (∼1/r)—contribution
to the expansion δn⊥ arises only when there is torque of
external forces acting on the particle. We should emphasize
that this contribution plays the main role in the orientational
behavior of magnetic particles in FNs because the rotation of
ferroparticles relative to the NLC director can be initiated by
an external magnetic field.

Now let us return to the results of Brochard and de Gennes.
Further consideration in Ref. [1] was restricted by particles
having an axis of cylindrical symmetry (labeled by a unit
vector u which in the case of the needlelike particle coincides
with the direction of its long axis). Integrating the Coulomb
contribution in δn⊥ over the NLC volume, Brochard and de
Gennes showed that changes of orientational energy of an
individual particle at rotation of its axis u by a small angle δθ

relative to the director n0 is expressed as follows [1]:

δF ′
OR = 4πKl(cos θ ) sin θδθ, (5)

where the prime in this expression means that this is the energy
of an individual particle; the distortion amplitude l(cos θ) =∑∞

k=1 l2k−1 cos2k−1 θ has the dimension of length, and is an
odd function of a cosine of the angle θ between unit vectors
u and n0. Taking into account Eq. (5), the torque acting on a
nematic from an individual particle is defined as

�′ = 4πKl(cos θ )n0 × u. (6)

One can see that the torque �′ is equal to zero, at least in two
cases when the particle axis u is parallel or perpendicular to
the director n0. Therefore the specified positions of a particle
correspond to the equilibrium conditions of the latter in the
homogeneous nematic sample. The question of stability of
each of those states depends on the function l(cos θ ).

Equations (5) and (6) are one of the main results used by
Brochard and de Gennes in the construction of a continuum
model of FNs with rigid anchoring of the director at particles.
Similar results were obtained in Ref. [16], where the theory
was developed for soft ferronematics. In particular, the authors
of Ref. [16] have shown that the general form of Eqs. (5) and (6)
does not change under the soft boundary conditions at a particle
surface, but the values of an expansion coefficient of l(cos θ )
do change. Thus, Eqs. (5) and (6) are common for particles
with rigid and soft anchoring.

Now let us show how Eq. (1) for the ferroparticles
orientational energy in FNs naturally follows from Eq. (5).
For an individual particle the general form of the orientational
energy F ′

OR can be obtained by integrating Eq. (5) with respect
to the angle θ ; the result has the following form:

F ′
OR = F ′

⊥ − 2πK

∞∑
k=1

l2k−1

k
cos2k θ, (7)

where the integration constantF ′
⊥ corresponds to the distortion

energy when the axis u of the particle is oriented perpendicular
to the unperturbed director, i.e., when u⊥n0 and θ = π/2. If
θ = 0 then Eq. (7) is equal to F ′

‖ with u oriented parallel to n0.

This allows us to express the sum of expansion coefficients in
Eq. (7) through F ′

⊥ and F ′
‖:

2πK

∞∑
k=1

l2k−1

k
= F ′

⊥ − F ′
‖. (8)

We will use this relation in further consideration.
Going to the ensemble of needlelike ferroparticles, we

multiply Eq. (7) by the local concentration c of a solid phase,
here c = (f/v), where v is the volume of an individual particle.
Let us relate long axes ui of ferroparticles to unit vectors μi of
their magnetic moments which in magnetized FNs are oriented
in one direction in each small volume of a sample. Thereafter
we average the obtained relation at distances much greater
than the length of particles L. Then θ corresponds to the angle
between the local directions of n and the unit magnetization
vector m. In fact, after averaging at scales r 
 L, the fixed
value n0 far from each individual particle can be replaced
with a local variable n, and the average value 〈μi〉 can be
substituted by the variable m. As a result, for the ferroparticle
orientational energy FOR = 〈fF ′

OR/v〉, which is the function
of θ , we obtain Eq. (1) with the coefficients

A2k = −2πK

v

l2k−1

k
(9)

and the sum [see Eqs. (8) and (9)]

∞∑
k=1

A2k = F ′
‖ − F ′

⊥
v

. (10)

It should be noted that Eqs. (9) and (10) show the dimension
of the coefficients A2k which we introduced above in the
Introduction. This is the dimension of volume energy density.

III. ESTIMATION OF EXPANSION COEFFICIENTS
OF ORIENTATIONAL ENERGY

Now let us consider methods of determining the coefficients
A2k in the models [1] and [16] for rigid and soft FNs, and
also discuss the applicability limits of the theories. As can be
seen from Eq. (10), the key moment in estimation of these
coefficients is the calculation of free energy of distortions
induced by an individual particle in the uniform nematic
sample at the parallel and perpendicular orientations of its
long axis u with respect to the unperturbed director n0. Unlike
the case of arbitrary orientation of u and n0, such problems
can have an exact solution [1,14,15] if we consider needlelike
particles as long cylinders and neglect end effects.

A. Analogy between internal and external problems
for cylindrical volumes

For definiteness, we assume that the homeotropic (II) type
of nematic anchoring at a side surface of a particle is given.
Let us consider the results of Refs. [1,14,15] on calculation
of the energies F ′

‖ and F ′
⊥ for this type of anchoring. We

will not follow the strict calculations shown in the mentioned
papers, but use another approach. It consists in carrying out
a qualitative and quantitative analogy between internal and
external problems for cylindrical volumes. This allows us,
first, to present the director field distortions appearing near a
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(a) (b) (c)

FIG. 2. Qualitative analogy between internal and external prob-
lems for cylindrical volumes of NLC: (a) ER structure in cylindrical
capillary; (b) director field near a particle with rigid homeotropic
anchoring for u ‖ n0, obtained from the ER structure with the use
of transformation (11); (c) distribution of the director on going from
rigid to soft anchoring at a particle surface, obtained with use of
transformation R → Ref = p‖R [see Eq. (14)].

particle more clearly. Second, this also allows us to show the
localization of defects which correspond to the orientational
distortions, and the transformation of the defect system upon
transition from rigid to soft anchoring. Third, this allows us
to specify some of the results of Refs. [1,14,15], in particular,
concerning calculations of the energyF ′

‖ at parallel orientation
of u and n0.

The qualitative analogy between distributions of a director
field for internal and external cylindrical volumes of NLC
is shown in Figs. 2 and 3. The well-known escaped radial
(ER) structure [51–54] in a cylindrical capillary, presented in
Fig. 2(a), upon transformation of inverse-radius vectors

r = R2

r ′ (11)

of the cylindrical coordinate system passes to a configu-
ration which for the variable r ′ corresponds to a particle
suspended in a nematic with u ‖ n0 [see Fig. 2(b)]. In fact,
when transforming with Eq. (11) the capillary wall with the
coordinate r = R corresponds to the particle surface r ′ = R,
and the capillary axis r = 0 corresponds to the infinitely
remote point r ′ = ∞. Therefore the capillary surface goes

(a) (b) (c)

FIG. 3. Qualitative analogy between internal and external prob-
lems for cylindrical volumes of NLC: (a) PP configuration in
cylindrical capillary; (b) director field near a particle with rigid
homeotropic anchoring for u⊥n0, obtained from the PP structure
with use the of transformation (11); (c) distribution of the director on
going from rigid to soft anchoring at a particle surface, obtained with
the use of transformation R → Ref = p⊥R [see Eq. (14)].

into particle surface, the type of anchoring does not change
and remains homeotropic, uniform orientation of the director
on the capillary axis characterizing the ER structure turns into
the uniform distribution of the director field far from a particle,
and orientational deformations of the director from the wall
to the axis of a capillary are smoothly distributed all over the
NLC volume from the particle surface to an infinitely remote
point.

The transformation (11) can be used also for the description
of orientational distortions near a particle with u⊥n0 [59,60].
In this case, an initial nematic configuration is the so-called
planar-polar (PP) structure [52–54] in a cylindrical capillary
[see Fig. 3(a)]. As shown in Ref. [54], the orientational
distortion corresponding to this structure, in the plane (r,ϕ)
is described by the system of two disclination lines. For rigid
anchoring the disclination rest on the capillary surface and
have the identical topological charges q1 = q2 = 1. Let us
trace how the charges of these linear defects can change
after the transformation (11). Let us surround the points of
the plane (r,ϕ) through which the disclination lines pass,
by small contours and set the direction of a circuit of the
contours. It is obvious that after transformation (11) the
directions of the circuit of disclinations change to the opposite.
Therefore, for a particle [Fig. 3(b)], the images of line defects
of the PP configuration are the disclination lines with charges
q ′

1 = q ′
2 = −1. In addition, one more disclination with the

charge q ′
3 = 2 appears on the particle axis. This disclination

is the image of the line defect q3 = −2 spread in the case of
the PP structure at the infinity of the plane (r,ϕ). For better
understanding of this question, it is possible to consider the
description of disclination lines by means of the functions of
complex variables as in Refs. [54,59–62]; then the position
of the defect q3 = −2 corresponds to the infinitely remote
point of the Riemann sphere. Thus, the distortion induced by
the cylindrical particle suspended in the uniform nematic bulk
at the perpendicular orientation of its long axis with respect
to the unperturbed director, can be described by the system
of disclination lines with charges {−1,2, − 1}[see Fig. 3(b)].
The total charge of the defect system is equal to zero. From the
topological point of view it means that the system of defects
does not induce orientational distortions away from the area
of its localization. This circumstance once again confirms the
fact that the particle fits into the uniform distribution of the
director field.

Considering a quantitative analogy between internal and
external problems it is necessary to discuss how transformation
(11) affects a type of angular dependence which describes the
director field, and also how it affects the changes of the free
energy of a system. For two analogies shown in Figs. 2 and 3,
this study presents two independent problems, therefore their
solution is shown in Appendices A and B, respectively. Below
we give the general conclusions according to the results of the
performed research.

(1) For the orientational configurations presented in Fig. 2:
Distortion induced by the particle with u ‖ n0, and the ER
structure in a cylindrical capillary are energetically equivalent
when the surface elastic modulus K24 is formally replaced by
the combination (2K11 − K24) in the relations for the energies
of these configurations. The dependence of the angle � on the
radial coordinate for the external problem can be obtained from
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the known solution for the internal problem (see Refs. [52–54])
with the use of two transformations r → (R2/r ′) and K24 →
(2K11 − K24).

(2) For the orientational configurations presented in Fig. 3:
The distortion induced by the particle at u⊥n0 and the PP
structure in a cylindrical capillary are energetically completely
equivalent in the so-called two-constant approximation K11 =
K33 = K̄ . In the same approximation the dependencies of
the angle 	 of the director orientation for the internal and
external problems are in a one-to-one correspondence when
transformation r → (R2/r ′) is used.

The value K̄ in the two-constant approximation is the
average value of elastic constants of splay K11 and bend K33,
i.e., K̄ = (K11 + K33)/2, where an overbar is introduced in
order to distinguish the two-constant approximation from the
one-constant one. The latter is connected with the fact that
in real NLC the twist modulus K22 is as a rule, always less
than elastic constants K11 and K33, which are comparable in
magnitude. Therefore the two-constant approximation much
more corresponds to a real situation than the one-constant one.
Additionally, for the homeotropic anchoring, all orientational
configurations presented in Figs. 2 and 3 do not depend on the
twist modulus K22, therefore the one-constant approximation
used in solutions of these problems (as, for example, in
Ref. [1]), actually coincides with the two-constant one, but
the latter is more accurate.

Further analysis of the results obtained in Appendices A and
B for external problems can be split into three stages. At the
first stage, we consider these results in approximations which
correspond to the model [1] of rigid FNs, and we also give
estimates of the applicability limits for this theory. The second
stage includes the same consideration for the model [16] of
soft FNs. At the third stage we discuss the influence of the
saddle-splay surface elastic modulus K24 (which was not taken
into account in Refs. [1,16]) on the estimates of expansion
coefficients A2k from Eq. (1) in existing models of rigid and
soft FNs, and we also present a final form of Eq. (4) for the
modified orientational energy of ferroparticles.

B. Rigid anchoring

The results of Brochard and de Gennes [1] on calcu-
lation of energies F ′

‖ and F ′
⊥ at rigid homeotropic an-

choring of the director at a particle surface can be ob-
tained from Eqs. (A15) and (B4) using the approximations
{W = ∞,K11 = K33 = K̄,K24 = 0}; hence,

F ′
‖ = πK̄L, (12)

F ′
⊥ = πK̄L ln

R

2rd

, (13)

where rd is the radius of the disclination core with the order
of size a of NLC molecules. Let us remind one that at rigid
anchoring and u⊥n0 the disclination lines with the charges
q ′

1 = q ′
2 = −1 are on the particle surface [see Fig. 3(b)]. Due

to the fact that the radius of the disclination core is rd ∼ a � R,
from Eqs. (12) and (13) we have F ′

‖ < F ′
⊥, therefore the

particle has to be oriented parallel to the director.
Let us estimate the value of 
F ′ = F ′

‖ − F ′
⊥ ∼ −πK̄L

and the sum of the expansion coefficients of orienta-
tional energy [see Eq. (10)]. Accepting for these estimates

K̄ ∼ 5 × 10−7 dyne and L ∼ 0.5μm [6–8], we obtain
|
F ′| ∼ 2 × 103kBT , i.e., the equilibrium state u ‖ n0 is
characterized by a deep minimum of the orientational energy,
and the value |
F ′| considerably exceeds the energy of
thermal fluctuations. Therefore, the thermal motion cannot
disturb the equilibrium state u ‖ n0 of a particle. Supposing a
particle as a cylinder, we obtain a sufficiently large negative
value

∑∞
k=1 A2k ∼ −(πK̄L/v) ∼ −105 erg/cm3 for the sum

of the expansion coefficients of orientational energy, that
allows us to assume

∑∞
k=1 A2k ≈ −∞. This means that in the

case of the ensemble of needlelike ferroparticles in each small
volume (
V 
 L3) of magnetic suspension the direction of
a unit vector m of FN magnetization is always parallel to the
liquid crystal director n.

However, this conclusion of the theory [1] may not be true
for any values of an external magnetic field H . Indeed, the
external field initiates the rotation of ferroparticles which for
each individual particle is characterized by Zeeman’s energy
F ′

Z = −MSv(μH ) ∼ −MSvH , where MS is the saturation
magnetization of the particle material. In order for the local
directions m and n remain to parallel, the condition |
F ′| 

|F ′

Z| needs to hold true. This imposes constraints on the value
of the external magnetic field H � H∗ = (πK̄L/MSv) that
with MS ≈ 5 × 102G gives H � H∗ ≈ 160 Oe.

The estimations given above for the homeotropic (II) type
of nematic anchoring at ferroparticles also remain correct
for other types of anchoring discussed in Ref. [1] which
correspond to the rigid longitudinal (I) and circular (III)
boundary conditions. Thus, the theory [1] is true for FNs with
rigid anchoring of the director at particles in magnetic fields
of about several tens oersted.

C. Soft anchoring

Now let us turn to the results of the model [16] correspond-
ing to soft FNs with finite values of energy W of nematic
anchoring at the ferroparticle surfaces [see Eq. (A3)]. As
shown in Appendices A and B, a change of anchoring character
from rigid to soft from the physical point of view means a
reduction of the effective particle radius Ref = (pR), where
the compression coefficient p depends on the orientation of
the latter (u ‖ n0 or u⊥n0) and takes values from the interval
0 � p � 1 [see Figs. 2(c) and 3(c)]. Under transformation
R → Ref , the anchoring is rigid at the fictitious particle surface
r ′ = Ref , while on the true surface r ′ = R the boundary
conditions corresponding to the soft anchoring are satisfied.
In Refs. [14,15] (which were written before [16] and devoted
to solution of these problems), for defining the particle
equilibrium position the authors used the approximations
{K11 = K33 = K̄,K24 = 0}. In this case from Eqs. (A21)
and (B5) it follows that the compression coefficient p is the
function of the dimensionless parameter w̄ = (WR/K̄) which
for the homeotropic anchoring (two-constant approximation)
is analogous to the parameter w from Eq. (3); the result takes
the following form:

p =
⎧⎨
⎩

p‖ =
√

w̄
2+w̄

for u ‖ n0

p⊥ =
√√

4+w̄2−2
w̄

for u⊥n0.

(14)
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The energies F ′
‖ and F ′

⊥ with an accuracy up to the
multiplier (πK̄L) are also functions of the parameter w̄:

F ′
‖ = πK̄L

w̄

1 + w̄
, (15)

F ′
⊥ = πK̄L

[
1 + w̄

2
−

√
4 + w̄2

2
− ln

4(
√

4 + w̄2 − 2)

w̄

]
.

(16)

These expressions are obtained from Eqs. (A15) and (B4) at
K11 = K33 = K̄ and K24 = 0. They correspond to the results
of Ref. [15] where it is shown that the equality F ′

‖ = F ′
⊥ takes

place at w̄ = w̄∗ = 1.396. If w̄ < w̄∗, then F ′
‖ > F ′

⊥, and the
particle has to be oriented perpendicular to the director. For
w̄ > w̄∗ we have F ′

‖ < F ′
⊥, so the particle has to be along the

director.
In the model [16] it is suggested to limit the general

expansion of orientational energy from Eq. (1) only by the
quadratic term, then from Eq. (10) it follows that the coefficient
A2 is determined by the expression

A2 = F ′
‖ − F ′

⊥
v

, (17)

where Eqs. (15) and (16) correspond to the energiesF ′
‖ andF ′

⊥.
However, such form of the coefficient A2 is quite cumbersome
and inconvenient for practical use. In addition, in the other
types of anchoring, in particular, longitudinal (I) and circular
(III), the expressions for F ′

‖ and F ′
⊥ differ from Eqs. (15) and

(16). It does not allow us to write down the rigorous expression
for A2 generalized for the anchorings (I)–(III).

The authors of Ref. [16] offered the following way out from
this predicament. It was shown that for real FNs the parameter
w̄ in the case of homeotropic anchoring and the generalized pa-
rameter w in the case of anchorings (I)–(III) take values much
less than unity. Therefore the authors of [16] actually used the
series expansions of F ′

‖ and F ′
⊥ in those small parameters. For

Eqs. (15) and (16) such expansions take the form

F ′
‖ ≈ πK̄L(w̄ − w̄2 + w̄3 + · · ·)

= πRWL(1 − w̄ + w̄2 + · · ·),

F ′
⊥ ≈ πK̄L

(
w̄

2
− w̄2

16
+ w̄4

512
+ · · ·

)

= πRWL

2

(
1 − w̄

8
+ w̄3

256
+ · · ·

)
. (18)

When calculating A2 in Ref. [16] they took into account
only the first orders of expansion; then for cylindrical particles
with the homeotropic anchoring from Eqs. (17) and (18) we
have

A2
∼= πK̄Lw̄

2v
= W

d
. (19)

As can be seen from Eqs. (2), (18), and (19), in the first
order in w̄, the particle orientational energy represents only a

surface energy. And moreover, the latter one corresponds to the
situation when the director near a particle is not distorted and
has the direction n0. This conclusion allows one to generalize
Eq. (19) for the case of an arbitrary type of anchoring which is
defined by the fixed direction nS of the director easy orientation
at a particle surface. After this generalization for A2 the
following relation was obtained [16]:

A2
∼= −2

W

d
P2(cos α), (20)

which in the case of an arbitrary type of anchoring is valid
at w � 1; here P2(cos α) = (3 cos2 α − 1)/2 is the second-
order Legendre polynomial and α is the angle between the
easy orientation direction nS of the director and the long axis
u of a particle. From Eq. (20) it is possible to determine the
equilibrium state of a particle in the uniform nematic bulk at
the given type of anchoring at its surface (i.e., at the given angle
α of orientation nS). If α < α∗ = arccos(1/

√
3), then A2 < 0

and the particle long axis is directed along the director. If
α > α∗, then A2 > 0, i.e., the particle is oriented perpendicular
to the director. It should be noted that this result along with
Ref. [16] was obtained independently in Ref. [63]. Let us
notice also that A2 from Eq. (20) is the function of only the
azimuth angle α and does not depend on the polar angle which
sets up the orientation nS in the plane, perpendicular to the
direction of the particle long axis u. In this sense homeotropic
(II) and circular (III) types of anchoring are equivalent in the
approximation w � 1.

Use of the quadratic type of orientational energy (2) with the
coefficient A2 in the form of Eq. (20) in the continuum model
of soft FNs gives a chance to unify the theory for various types
of anchoring at the ferroparticles surface and to remove the
restriction on the maximum value of the external magnetic
field which can be applied to FN. Thus, the theory [16] of
soft FNs is valid at any value of an external magnetic field for
magnetic suspensions with w � 1. As the coefficient A2 from
Eq. (20) is determined only by the surface energy, the term
“ferroparticles surface energy” is used in Ref. [16] instead of
the term “orientational energy of ferroparticles.”

D. Effect of saddle-splay deformations on particle orientation

Let us estimate the models of rigid and soft FNs presented
above from the standpoint of the new results received in
Appendix A on energy F ′

‖ calculation; in particular, we will
consider the influence of the saddle-splay nematic elastic
modulus K24 on the particle orientation and coefficients A2k .
The above analysis we will carry out for the homeotropic type
of anchoring.

As shown in Appendices A and B, the surface elastic
modulus K24 contributes only to the energy F ′

‖ which can be
calculated for any arbitrary values of FN material parameters
[see Eq. (A15)]. In order to compare this result with F ′

⊥ more
accurately for the cases of rigid (13) and soft (16) anchorings,
let us write Eq. (A15) in two-constant approximation:

F ′
‖ =

{
πLK̄

[
k̄24 + w̄−k̄24

1+w̄−k̄24

]
for w̄ > k̄24 or W > (K24/R)

πRLW for w̄ � k̄24 or W � (K24/R),
(21)
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where k̄24 = (K24/K̄). For rigid anchoring with w̄ → ∞,
from the first line of Eq. (21) it follows that F ′

‖ =
πLK̄[1 + (K24/K̄)]. The value of K24 can be in the interval
(0–2)K̄ [64], and the expected radius of particles in FN is such
that ln(R/2rd ) ≈ ln(R/2a) ≈ 2–3. Therefore when the values
of K24 are close to 2K̄ , the obtained estimation F ′

‖ ≈ 3πLK̄

exceeds F ′
⊥ from Eq. (13), i.e., the particles in the absence of a

field are oriented perpendicular to the director. This once again
emphasizes that the theory [1] based on the approximation∑∞

k=1 A2k ≈ −∞ and the postulate of parallelness of m and
n, cannot be used for the description of magnetic suspensions,
at least those with homeotropic anchoring of the director
at particles surfaces and with large values of the nematic
modulus K24.

On the contrary, for the model [16] of soft FNs the increase
of K24 leads to the conclusion that the result of calculation
of A2 from Eq. (19) becomes more accurate. Indeed, for
u ‖ n0 and w̄ � k̄24 �= 0, i.e., W � (K24/R), the director near
a particle is not distorted and the value of F ′

‖ is determined
only by the surface anchoring energy [see Appendix A and
Eq. (21)]. Therefore at w̄ � k̄24 �= 0 the first order of smallness
with respect to w̄ is the exact result for F ′

‖. Thus, the value
(19) of A2 calculated in this approximation, becomes more
accurate. With an increase of k̄24 the applicability limit of
this approximation gets extended towards larger values of
w̄. It confirms the comparative analysis of the normalized
dependencies Ā2 = (A2v/πK̄L) presented in Fig. 4 and
calculated according to the exact and approximate results [see
Eqs. (17) and (19), respectively]. If we estimate an admissible
calculation error of A2 within 10%, then for k̄24 = 1–2 the
approximate result of (19) is possible to use up to values
w̄ = 1. From Fig. 4 it can also be seen that with an increase
of k̄24 the limits of stability of a particle state with u⊥n0

expand. For example, if k̄24 = 1 and 2 then the transition to
the orientation u ‖ n0 takes place at values w̄∗ = 8.627 and
27.441, respectively.

FIG. 4. Normalized coefficient Ā2 as a function of the dimension-
less parameter w̄. Solid curves are the results of exact calculation of
Ā2 with the use of Eqs. (16), (17), and (21) for k̄24 = 0 (curve 1), 1
(curve 2), and 2 (curve 3); the dashed line is the approximate value of
Ā2 from Eq. (19). The plot in the inset shows the behavior of curves
2 and 3 at large values of w̄.

One can show that for soft FNs this type of influence of
the elastic modulus K24 on the value of A2 is typical not
only for homeotropic, but also for other types of anchoring
of the nematic director at particles surface. Therefore the
generalized form (20) of this coefficient can be used in a
final form of Eq. (4) for the modified orientational energy
of ferroparticles which have cylindrical (rodlike, needlelike,
or ellipsoidal) shape with (L/d) � 10; it gives

FOR,4(θ ) = −2
W

d
P2f (m · n)2[1 − ζ (m · n)2],

P2 = P2(cos α), ζ = ζ (cos2 α). (22)

Here we take into account that in the general case
the phenomenological parameter ζ = −(A4/A2), as well as
expansion coefficients of orientational energy, has to depend
on the type of nematic anchoring at particles surface and to
be the even function of cos α. The latter follows from identity
of the director easy orientations corresponding to the angles α

and (π − α).
The need to incorporate the fourth-order term in (m · n)

in orientational energy of ferroparticles can be caused by end
effects, local deformations of the director field near individual
particles, the deviation of the particles shape from cylindrical
(for example, ellipsoidal particles) that in the model [16] was
not taken into account. To account for these effects we use the
phenomenological parameter ζ and make a correction of the
energy (F ′

‖ − F ′
⊥) of an individual particle at the parallel and

perpendicular orientations of its long axis with respect to the
director of NLC [see Eq. (10)]. In addition, a more complete
examination of the surface interactions based on bistable type
of anchoring energy of the director at ferroparticles surfaces,
the term of fourth order in (m · n) appears in the orientational
energy from Eq. (22) automatically.

Finishing the discussion of the modified type of ferroparti-
cles orientational energy, one should be reminded once again
of the applicability limits of Eq. (22) for describing soft FNs.
They depend on the value of the saddle-splay nematic elastic
modulus K24. When 0 � K24/K � 0.1, then this expression
is true in w � 1 approximation, and at 0.1 � (K24/K) � 1
it gives a correct result for w � (K24/K); in the case of
1 � (K24/K) � 2 it can be used at w � 1.

IV. FREE ENERGY OF A FERRONEMATIC

Before passing directly to the description of free energy
of ferronematics, we briefly discuss their magnetic properties
dependent on an orientation of needlelike particles in a nematic
matrix. As shown above, in the FN homogeneous bulk with the
director n0 = const. the long axes of ferroparticles are directed
either along or perpendicular to the director. Therefore in the
first case for the directions μi of orientation of their magnetic
moments there is an easy-axis anisotropy μi ‖ n0, and in the
second case there is an easy-plane anisotropy μi⊥n0. If no
extra measures for orienting the FN magnetic particles in one
direction are taken in preparation of a suspension, then the
considered system will be in the so-called compensated state
when the macroscopic density of the FN magnetic moment
M = MSf

∑
i μi is equal to zero. However, to control the

mesophase orientational order, ferronematics with nonzero
(spontaneous) magnetization are required. How to obtain
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magnetized ferronematics at μi ‖ n0 and μi⊥n0 is described
in Ref. [16] in detail. In particular, it is shown, that at μi⊥n0

(i.e., when, for example, the homeotropic type of anchoring at
particle surfaces is given) the bias field Hb⊥n0 is to be applied
to the ferronematic. This field magnetizes the FN along the
direction Hb according to the relation

M = MSf
I1(ρ)

I0(ρ)
, (23)

where I0 and I1 are the modified Bessel functions, and
ρ = (MSvHb/kBT ) is the Langevin parameter characterizing
the ratio of the magnetic energy of an individual particle and
the energy of its thermal motion. As shown in Ref. [16], the
magnetization of Eq. (23) reaches a saturation state M →
MSf at ρ � 10. For real FN, ρ = 10 corresponds to rather
weak magnetic fields Hb � 1 Oe. In this case the bias field
sets the initial magnetization of the system, without breaking
a uniform state of the nematic matrix. For example, in the
experiments [6–8] to create a uniform magnetized sample
with the magnetic moment density M = MSf m, the terrestrial
magnetic field was used as the bias field.

For the magnetized FN in the external uniform magnetic
field H , the modified form of the volume density of free energy
can be written as follows:

F = 1

2
{K11(∇ · n)2 + K22[n · (∇ × n)]2 + K33[n × (∇ × n)]2

−K24∇ · [n × (∇ × n) + n · (∇ · n)]}
+ f kBT

v
ln f − 2

W

d
P2f (m · n)2[1 − ζ (m · n)2]

−MSf (m · H) − χa

2
(n · H)2, (24)

where χa is the NLC diamagnetic anisotropy. The averaging in
Eq. (24) is performed at scales much greater than the particle
length L. It is implied also that at μi⊥n0 the external field H
has the extra component Hb.

Let us describe briefly each contribution in Eq. (24). The
first term in curly brackets represents the Frank elastic energy
of the nematic matrix. In comparison with the models [1,16]
the saddle-splay surface contribution K24 is supplemented
in the elastic energy density because by analogy with pure
NLC this contribution must be considered at a description
of ferronematics as well. The second term in Eq. (24) is
the contribution of mixing entropy. The third one represents
the orientational energy (22) which depends on the type of
nematic anchoring at the surfaces of ferroparticles. The fourth
term is the Zeeman energy describing the dipole mechanism
of interaction of ferroparticles with an external magnetic
field. The last one represents the diamagnetic energy which
corresponds to the quadrupole interaction of nematic matrix
with an external field.

For all the presented FN theories, Eq. (24) is the most
general one. At K24 = 0 and ζ = 0 it results in the volume
density of free energy for the model [16] of soft FNs.
The corresponding expression for the continuum theory [1]
describing rigid FNs can also be obtained from (24) with
K24 = 0, ζ = 0, and formal replacement of the orientational
energy expansion coefficient A2 = −(2WP2/d) by (−∞).
Then, the condition of parallelness of m and n immediately
follows from Eq. (24). It is appropriate to mention here that

the theory [1] is true only in magnetic fields of about several
tens oersted. The diamagnetic matrix of a nematic is practically
unreceptive to such values of a field, therefore, in the model [1]
the diamagnetic interaction of NLC with an external magnetic
field was not taken into account, i.e., the last term in Eq. (24)
was not considered.

In the modified theory of soft FNs presented above, as
well as in the model [16], the equilibrium state of magnetic
suspension is characterized by three spatial distributions:
volume fraction f (r) of ferroparticles, director n(r), and unit
magnetization vector m(r). Therefore, the equilibrium state of
FNs corresponds to the set of equations which can be obtained
by minimization of the free energy functional F = ∫

F dV

with respect to the independent variables f , n, and m.
To summarize this section, we briefly discuss one more

question. It consists in determining the limits of applicability
of the above presented continuum approach to the description
of FNs and concerns limitations on the concentration f of
magnetic particles in the suspension. As shown in Refs. [1,16],
under the action of an external magnetic field there are two
types of behavior of a ferroparticle ensemble and a nematic
matrix: individual and collective. Individual behavior means
that each individual particle rotates independently of the
rest, without disturbing the total orientational order of the
nematic matrix. In this case the rotation of ferroparticles in
the FN bulk with the characteristic scale D requires costs
of orientational energy FOR ∼ (f W/d)D3. In the collective
behavior the rotation of ferroparticles induces the NLC
director rotation, i.e., reorientation of the nematic matrix as
a whole. This behavior is characterized by the Frank energy
FFR ∼ (K/D2)D3 = KD. The continuum approach to the
description of FNs discussed above is valid for suspensions,
in which the collective response of the particles and nematic
matrix to the applied magnetic field is realized. It means that
the condition FFR < FOR must be fulfilled. Due to this the
concentration of particles in the suspension is bounded from
below: The volume fraction f of solid phase has to be more
than the so-called critical concentration f∗ ∼ (Kd/WD2)
of collective behavior. Assuming that K ≈ 5 × 10−7 dyn,
d ≈ 7 × 10−6 cm, W ∼ 5 × 10−2 erg/cm2, and D ∼ 100–
500 μm [6–8,16,34], the estimation for the critical concen-
tration becomes f∗ ∼ 10−8–10−6.

On the other hand, we consider dilute suspensions and by
analogy with Refs. [1,16], we neglect the effect of magnetic
dipole-dipole interaction between ferroparticles in Eq. (24). As
shown in Ref. [1], this approach is allowable for submicronic
particles at f � f∗∗ ∼ 10−2. So, the suggested modified
continuum model of soft FNs is valid for suspensions with
ferroparticles volume fraction f∗ < f � f∗∗.

V. CONCLUSIONS

In this paper we have carried out the theoretical analysis
of existing models of rigid [1] and soft [16] FNs. We have
shown the restriction of these approaches for the description
of the orientational interaction between the ensemble of
ferroparticles and nematic matrix, and proposed a modified
version of the continuum theory of FNs. Compared to Refs. [1]
and [16] we have studied in more detail the questions
of a mesoscopic description of the magnetic suspensions
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(at the level of an individual particle) and have received a
number of important results.

It is shown, in particular, that the orientational energy of
an individual particle can be represented as an expansion in
even powers of the cosine of the angle of deviation of the
main particle axis u from the director n0 of the uniform
nematic matrix [see Eq. (7)]. It is found that the sum (8)
of the coefficients of this expansion is equal to the difference
of the free energies for the states with perpendicular (u⊥n0)
and parallel (u ‖ n0) particle orientations with respect to
the director n0. These results are valid both for rigid and
soft character of anchoring with arbitrary direction of easy
orientation of the director at the particle surface.

Developing the theoretical description of FNs at the
mesoscopic level, and using as the example the homeotropic
type of anchoring, we have also shown qualitative (Figs. 2
and 3) and quantitative (Appendices A and B) analogy in
the description of the orientational distortions between the
internal and external problems for cylindrical volumes of
NLCs. We have determined the conditions under which the
exact solutions for internal problems transform into exact
solutions for external problems (and vice versa). We have
established that the transition from the rigid to the soft
character of anchoring for internal problems is equivalent to
the effective increase in the radius of the cylinder, and for the
external problems—to the effective decrease of the particle
radius. Using these results, we have investigated the influence
of surface saddle-splay elastic modulus K24 of the NLC, which
was not considered in Refs. [1,14–16], on the equilibrium
orientation of the individual needlelike (cylindrical) particle
in a uniform nematic matrix. It is shown that the increase
in K24 leads to the expansion of the limits of stability of
orientational state with u⊥n0 (the particle lies across the
director), compared with the state u ‖ n0 (the particle lies
along the director) (see Fig. 4).

These results are quite general. In particular, the expansion
(7) for the orientational energy and the sum (8) of the
coefficients of this expansion are applicable not only to
the needlelike particles in ferronematics, but also to any
anisometric objects (particles or their conglomerates with an
axis of cylindrical symmetry) embedded in liquid crystals:
ferroelectric, dielectric, and semiconductor nanoparticles, gold
nanorods, and carbon nanotubes, etc. (see Refs. [5,65–68]).
In addition, if these objects have a rodlike (needlelike or
cylindrical) shape, then for them the results of the qualitative
and quantitative analogy between the internal and external
problems for the cylindrical volumes of the NLC and the
conclusions presented in Sec. III and Appendices A and B,
also remain valid.

It is shown that when passing to the continuum (macro-
scopic) description of magnetic suspensions the orientational
energy of the ferroparticles ensemble is an infinite series in
even powers of the scalar product (m · n) [see Eq. (1)]. In
fact, this expansion establishes the succession of theoretical
approaches to the description of magnetic suspensions from
model [1] of rigid FNs to the model [16] of soft FNs,
and then to the proposed modified model. Indeed, in the
Brochard–de Gennes theory [1] it is supposed that m = n and
the orientational energy of ferroparticles is a constant that can
be excluded from the expression for the free energy density of

FN. In the Burylov-Raikher model [16] the expansion (1) is
limited only by a quadratic term as in Eq. (2), and in the
proposed model the fourth order in (m · n) is additionally
considered, which is the next step in the development of a
continuum theory of FNs [see Eqs. (4) and (22)].

Mainly due to the change of orientational energy of
ferroparticles in this paper we have proposed the modified
expression (24) for the free energy density of FNs. Note that
unlike Ref. [46], which considered the FNs with homeotropic
anchoring on the surface of magnetic particles, expression (24)
is generalized to the case of an arbitrary type of anchoring. In
addition, by analogy with the pure NLC, in modified FN free
energy density the term describing the surface (saddle-splay)
nematic matrix deformations was introduced that is associated
with the elastic modulus K24. Accounting for K24 contribution
to describe the FNs is extremely important, since it allows one
to expand the limits of applicability of the proposed continuum
approach. Recall that the model [16] of soft FNs is valid for
magnetic suspensions, in which the anchoring energy density
W of a nematic at the surface of an individual particle, the
radius R of the latter, and the average value K of the NLC
elastic constants satisfy the condition w = (WR/K) � 1. As
shown above, for K24 ∼ K (see, for example, Refs. [52,53,69])
our modified theory corresponds to a wider class of FNs
with w � 1.

Application of this theory to the description of the ori-
entational behavior of ferronematics in an external magnetic
field and theoretical consideration of magneto-optical effects,
which can be observed in experiments on the birefringence of
suspensions, will be presented in a future paper.
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APPENDIX A

Let us consider a quantitative analogy between equilibrium
equations and boundary conditions corresponding to the ER
structure in a cylindrical capillary on the one hand, and to the
particle with u ‖ n0 suspended in a nematic on the other hand
(see Fig. 2).

Let us start from the general expression for the total free
energy,

FNLC =
∫

V

FFRdV +
∫

S

FS dS, (A1)

where FFR is the Frank potential for NLC elastic deformations;
it has the form

FFR = 1
2 {K11(∇ · n)2 + K22[n · (∇ × n)]2

+K33[n × (∇ × n)]2

−K24∇ · [n × (∇ × n) + n · (∇ · n)]}. (A2)

As mentioned above, the moduli K11, K22, and K33 are
the elastic volume constants corresponding to the splay,
twist, and bend deformations, respectively. The saddle-splay
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constant K24 is called the surface elastic modulus, because
the divergence K24 contribution can be written as a surface
integral (see, for instance, [52–54]).

A surface density of nematic anchoring energy
FS in Eq. (A1) we take in the Rapini form (see
Refs. [14–16,32,52–54])

FS,2 = W

2
(n × nS)2, (A3)

where the density W of anchoring energy corresponds to
the quadratic in (n × nS) term in the expansion of FS , and
nS is the direction of easy orientation of the director at the
sample surface S. In the considered problems corresponding
to the homeotropic type of anchoring with W > 0, the easy
orientation direction nS may be chosen along the direction of
an outward normal to the cylindrical surface.

Let us note that in Refs. [14,15] in the calculation of F ′
‖

two-constant approximation K11 = K33 was used, while in
Ref. [1] the general approach to the problem of behavior
of an individual particle in NLC was based on the one-
constant approximation K11 = K22 = K33. In addition, in
Refs. [1,14,15] the contribution with the surface elastic
modulus K24 was not taken into account for calculations ofF ′

‖.
Here, by using the analogy between the internal and external
problems for cylindrical capillaries, it is possible to obtain a
general form of the solution for arbitrary values of material
parameters entered into Eqs. (A1)–(A3).

The director distribution for the internal and external
problems in the cylindrical coordinate system can be found
as follows:

n = sin �(β) · eβ + cos �(β) · ez, β = r,r ′. (A4)

Here β = r and β = r ′ correspond to the internal and
external problems, respectively; at the initial stage of carrying
out the analogy, these values are assumed as independent
variables.

Substituting Eq. (A4) into Eqs. (A1)–(A3) we obtain the
following expressions for the energies of ER structure:

FER = πL

[ ∫ R

0

{
[K11 cos2 �(r) + K33 sin2 �(r)]

×
(

d�(r)

dr

)2

+ K11 sin2 �(r)

r2

}
r dr

+ (WR − K11 + K24) cos2 �(R) + K11 − K24

]
(A5)

and for the configuration corresponding to orientational
distortion induced by the particle at u ‖ n0,

F ′
‖ = πL

[ ∫ ∞

R

{
[K11 cos2 �(r ′) + K33 sin2 �(r ′)]

×
(

d�(r ′)
dr ′

)2

+ K11 sin2 �(r ′)
r ′2

}
r ′ dr ′

+ (WR + K11 − K24) cos2 �(R) − K11 + K24

]
,

(A6)

where L is the capillary and the particle length.

The integrands in Eqs. (A5) and (A6) formally coincide,
therefore the equilibrium equations for the internal and
external problems, obtained by minimization of functionals
Eqs. (A5) and (A6), have identical form

[cos2 �(β) + η sin2 �(β)]

[
d2�(β)

dβ2
+ 1

β

d�(β)

dβ

]

+ sin �(β) cos �(β)

[
(η − 1)

(
d�(β)

dβ

)2

− 1

β2

]
= 0,

(A7)

where η = (K33/K11). The boundary conditions for the
internal problem have the form

�(r = 0) = 0,

d�(r)

dr

∣∣∣∣
r=R

= σ sin �(R) cos �(R)

R[cos2 �(R) + η sin2 �(R)]
, (A8)

σ = WR − K11 + K24

K11
,

and for the external problem as follows:

�(r ′ = ∞) = 0,

d�(r ′)
dr ′

∣∣∣∣
r ′=R

= − σ ′ sin �(R) cos �(R)

R[cos2 �(R) + η sin2 �(R)]
, (A9)

σ ′ = WR + K11 − K24

K11
.

Now let us consider how the formulation of the problem for
the ER structure can change if transformation (11), i.e., r =
(R2/r ′), is used, and compare it with the problem formulation
for the particle with u ‖ n0. This results in the following. The
equilibrium equation (A7) is invariant with respect to that
transformation, the first boundary condition (A8) turns into
the first boundary condition (A9), and the second boundary
condition (A8) can be written as

d�(r ′)
dr ′

∣∣∣∣
r ′=R

= − σ sin �(R) cos �(R)

R[cos2 �(R) + η sin2 �(R)]
. (A10)

To make Eq. (A10) coincide with the boundary condition
(A9) at the particle surface, it is necessary to use the
substitution σ → σ ′. Then the solution for the external prob-
lem can be obtained from the well-known internal problem
solution from Refs. [52–54], using two simple substitutions
r → (R2/r ′) and σ → σ ′. The latter substitution is equivalent
to K24 → (2K11 − K24). Let us note that the conditions
0 � (2K11 − K24) � 2K11 fulfill for the value (2K11 − K24)
because the possible values of K24 belong to the interval
0 � K24 � min{2K11,2K33} (see Ref. [64]).

To write the final result, let us recall the well-known solution
[52–54], corresponding to the ER structure. It depends on the
value of σ . For σ > 1, the equilibrium distribution �(r) is
given by the implicit function

r = R

√
σ + 1

σ − 1

� − 1

� + 1
exp

(√
η − 1 arctan

√
η − 1(�− σ )

�σ + η + 1

)
,

� =
√

1 + η tan2 �, 0 � � � π/2. (A11)

The result is written in terms of Ref. [54]. It is valid both
for η � 1 and for 0 < η < 1; in the latter case one has to use
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the identity replacement in the exponent:√
η − 1 arctan[

√
η − 1λ(η, . . .)]

≡
√

1 − η arctanh[
√

1 − ηλ(η, . . .)], (A12)

where λ(η, . . .) is the sign-definite function for any value
of η > 0. For σ > 1, the boundary value of � at the
capillary surface is determined by the equation �(r = R) =

arctan(
√

(σ 2 − 1)/η). For σ � 1 the boundary value of � is
equal to zero, and the state of complete escaping takes place
in cylindrical capillary, when �(r) = 0 all over the bulk of the
sample, and the director is parallel to the capillary axis. The
uniform state, which corresponds to the complete escaping of
ER configuration, is called the “axial (AX) structure” [54].
Total free energies of these configurations are determined by
the relations

FER =
{

πLK11

[
2 − K24

K11
+ η√

η−1
arctan

√
η−1(σ−1)
σ+η−1

]
for σ > 1

πRLW for σ � 1.
(A13)

Using the substitutions σ → σ ′ [i.e.. K24 → (2K11 − K24)] and r → (R2/r ′) in Eqs. (A11) and (A13), we obtain the final
solution for the external problem, which corresponds to the particle suspended in a nematic with the parallel orientation of its
axis with respect to the unperturbed director. In the case σ ′ > 1 [or W > (K24/R)], the implicit function �(r ′) takes the form

r ′ = R

√
σ ′ − 1

σ ′ + 1

� + 1

� − 1
exp

(√
η − 1 arctan

√
η − 1(σ ′ − �)

�σ ′ + η + 1

)
, (A14)

and the boundary angle � at the particle surface is determined from the expression �R = �(r ′ = R) = arctan(
√

(σ ′2 − 1)/η).
If σ ′ � 1 [or W � (K24/R)] the director distribution becomes uniform [�(r ′) = 0] all over the bulk, i.e., the particle does not
induce orientational distortions in the nematic matrix. The total free energy of the system obtained from Eq. (A13) by the
substitutions presented above can be written as

F ′
‖ =

{
πLK11

[
K24
K11

+ η√
η−1

arctan
√

η−1(σ ′−1)
σ ′+η−1

]
for σ ′ > 1 or W > (K24/R)

πRLW for σ ′ � 1 or W � (K24/R).
(A15)

Note that for 0 < η < 1 in Eqs. (A14) and (A15) the identity
replacement similar to Eq. (A12) is to be used.

To verify the presented analogy between the internal and
external problems we substitute the solution of Eq. (A14) into
the equilibrium equation (A7) and boundary conditions (A9).
In this case it is expedient to perform the following change
of variables: We consider � as the independent variable and
the coordinate r ′ as the following function of this angle: r ′ =
R�(�). The latter expression, differentiated twice with respect
to r ′ as an implicit function, gives

d�(r ′)
dr ′ =

(
R

d�(�)

d�

)−1

,

(A16)
d2�(r ′)

dr ′2 = −R−2 d2�(�)

d�2

(
d�(�)

d�

)−3

.

The equilibrium equation (A7) and the boundary conditions
(A9) in terms of the function � = �(�) and the variable �

take the form

�(cos2 � + η sin2 �)

[
�

d2�

d�2
−

(
d�

d�

)2
]

+ sin � cos �

[(
d�

d�

)3

− (η − 1)�2 d�

d�

]
= 0, (A17)

�(� = 0) = ∞,
(A18)

d�(�)

d�

∣∣∣∣
�=�R

= −cos2 �R + η sin2 �R

σ ′ sin �R cos �R

.

Expressing the function �(�) from Eq. (A14) and substituting
it into Eqs. (A17) and (A18) one can show that these relations
can be transformed into identities.

The validity of expression (A15) for the energy can be
seen if we substitute the function �(r ′) = 0 into Eq. (A6)
for F ′

‖ at W � (K24/R) and Eq. (A14) at W > (K24/R). In
the latter case, for calculating the integral in Eq. (A6) we
can again use the replacement of variables r ′ = R�(�) and
Eq. (A16). The results of calculation ofF ′

‖ completely coincide
with Eqs. (A15). Let us note also that in the approximation
{K11 = K33, K24 = 0} the obtained results coincide with the
results of Refs. [14,15] [see Eq. (15)], and in the approximation
{K11 = K33, K24 = 0, W = ∞}, with the result of Ref. [1]
[see Eq. (12)]. Thus, the presented quantitative analogy
between the internal and external problems is proper.

Let us add that the mentioned quantitative analogy could
be obtained in a simpler way, applying the transformation
r = (R2/r ′) directly to Eq. (A5) for the ER structure energy.
In this case the volume integral from Eq. (A5) transforms
into the volume integral in Eq. (A6) for the distortion energy
induced by the particle at u ‖ n0, and the surface contributions
(A5) and (A6) become equal under the replacement K24 →
(2K11 − K24), i.e., σ → σ ′. However, here we preferred to
perform a more detailed consideration in order to study the
influence of this transformation on the equilibrium equation,
boundary conditions, and, finally, distribution of the director
near the particle.

In the conclusion of this Appendix we consider the question
of physical interpretation of transition from rigid to soft
anchoring in the studied problem about the particle suspended
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in a nematic with u ‖ n0. The obtained solution (A14) for the
implicit dependence �(r ′) can be written as

r ′ = (p‖R)�W=∞ = Ref,‖�W=∞, (A19)

where �W=∞ is the function of � corresponding to the rigid
anchoring:

�W=∞ =
(

r ′

R

)∣∣∣∣
W=∞

=
√

� + 1

� − 1
exp

(√
η − 1 arctan

√
η − 1

�

)
, (A20)

the dimensionless coefficient p‖ is determined by the expres-
sion

p‖ =
√

σ ′ − 1

σ ′ + 1
exp

(
−

√
η − 1 arctan

√
η − 1

σ ′

)
, (A21)

and the subscriptp‖ means that this coefficient corresponds
to the parallel orientation of u and n0. As follows from
Eq. (A21), at the given value of the particle radius R and
material parameters of the liquid crystal, i.e., K11, K33, and
K24, the coefficient p‖ is the function of anchoring energy
density W . With the increase of W starting from (K24/R)
[which corresponds to σ ′ = 1] to infinity [i.e., σ ′ → ∞], the
value of p‖ monotonously increases from zero to one and has
the following asymptotics:

p‖ =
{[(

σ ′−1
2

)1/2 + 3η−4
2η

(
σ ′−1

2

)3/2]
exp(−√

η − 1 arctan
√

η − 1) for σ ′ → +1

1 − η

σ ′ + η2

2σ ′2 for σ ′ → ∞.
(A22)

Thus, the parameter 0 � p‖ � 1 plays a role of com-
pression coefficient indicating to what extent the particle
effective radius Ref,‖ = p‖R decreases upon the transition
from rigid to soft anchoring [see Eq. (A19) and Fig. 2(c)].
Equations (A19)–(A22) allow us to give a physical interpre-
tation of the transition from nonuniform distribution (A14) to
a uniform one with �(r ′) = 0, which occurs at W = (K24/R)
or σ ′ = 1. In this case the coefficient p‖—and consequently,
the particle effective radius Ref,‖—is reduced to zero, which
means the formal absence of the particle in the nematic matrix
with uniform distribution of the director field.

APPENDIX B

In this Appendix we consider the quantitative analogy
between the PP structure in a cylindrical capillary and the
orientational distortion induced by the particle suspended in
the nematic at perpendicular orientation of its long axis with
respect to the unperturbed director (see Fig. 3).

The director field in these problems is two dimensional,
and in the cylindrical coordinate system it is determined by
the angle 	 = 	(β,ϕ) of director deviation from the direction
of polar axis:

n = cos(	 − ϕ) · eβ + sin(	 − ϕ) · eϕ, (B1)

where, as well as in Appendix A, the variables β = r and
β = r ′ corresponding to the internal and external problems
are independent at the initial stage of consideration. The angle
	S = 	S(β = R,ϕ) of the easy director orientation nS on the
cylindrical surface can be chosen as

	S =
{

ϕ, 0 < ϕ < π

ϕ − π, π < ϕ < 2π.
(B2)

The expressions for total free energy of internal and external
problems are found by substituting (B1) and (B2) into

(A1)–(A3); it yields

Fi = LK̄

2

∫ βi,2

βi,1

β dβ

∫ 2π

0

{(
∂	

∂β

)2

+ 1

β2

(
∂	

∂ϕ

)2

+ k

[(
∂	

∂β

)2

− 1

β2

(
∂	

∂ϕ

)2
]

cos(2	 − 2ϕ)

+ 2
k

β

∂	

∂β

∂	

∂ϕ
sin(2	 − 2ϕ)

}
dϕ (B3)

+ LWR

2

∫ 2π

0
sin2(	 − 	S) dϕ,

K̄ = K11 + K33

2
, k = K33 − K11

2
, i = 1,2.

Here the energy F1 ≡ FPP corresponds to the internal
problem for the PP structure, and F2 ≡ F ′

⊥ corresponds
to the external problem for the particle with u⊥n0; the
intervals of integration over β for internal (i = 1, β = r) and
external (i = 2, β = r ′) problems are [β11,β12] = [0,R] and
[β21,β22] = [R,∞], respectively.

As seen from Eq. (B3), the total free energy depends only
on two NLC elastic constants K11 and K33. Unfortunately,
in the general case of arbitrary values of K11 and K33

the energies of internal FPP and external F ′
⊥ problems are

not invariant relative to the transformation (11), i.e., r =
(R2/r ′). At such transformation the sign of the contribution
2k(∂	/∂β)(∂	/β∂ϕ) sin(2	 − 2ϕ) in Eq. (B3) is reversed,
and this change of sign cannot be compensated by substitutions
as were made in Appendix A. For example, use of the
substitution k → −k does not lead to the desired result
since in Eq. (B3) there are other contributions proportional
to the parameter k. Therefore, in the general case when
K11 �= K33 it is not possible to use the exact solution obtained
in Ref. [54] for the PP configuration. At the same time in the
two-constant approximation when K11 = K33 = K̄ and k = 0,
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the expressions for the energies FPP and F ′
⊥ are completely

invariant with respect to transformation of the inverse-radius
vectors, i.e., their values have to coincide. This conclusion is
confirmed by the results of Refs. [15,52–54] where the energies
FPP and F ′

⊥ were calculated independently:

[52–54]:FPP = πK̄L

[
− ln

(
c4 − 1

c4

)
+ w̄

2

c2 − 1

c2

]

⇔ [15]:F ′
⊥ = πK̄L

[
− ln(1 − p4

⊥) + w̄

2
(1 − p2

⊥)],

(B4)

where

c =
√√

4 + w̄2 + 2

w̄
,

p⊥ = 1

c
=

√√
4 + w̄2 − 2

w̄
, (B5)

w̄ = WR

K̄
.

As shown in Ref. [54], for the PP structure the parameter
1 � c � ∞ acts as an expansion coefficient which defines
the effective radius Ref,PP = (cR) of the cylindrical capillary
upon the transition from rigid to soft anchoring. So, for the
particle with u⊥n0 the compression coefficient 0 � p⊥ � 1
determines the effective radius Ref,⊥ = (p⊥R) of this particle
upon the same transformation [see Fig. 3(c)]. It is confirmed by
expressions for the angles 	PP = 	(r,ϕ) and 	⊥ = 	(r ′,ϕ)
of the director orientation in the case of external and inter-
nal problems which are connected by transformation (11),

i.e.,

[52–54]: 	PP = arctan
r2 sin 2ϕ

r2 cos 2ϕ − (cR)2
+ π

2
r=R2/r′←→

(B6)

[15]: 	⊥ = arctan
(p⊥R)2 sin 2ϕ

(p⊥R)2 cos 2ϕ − r ′2 + π

2
,

and also the asymptotic behavior of compression coefficient
p⊥:

p⊥ =
{

w̄1/2

2 − w̄5/2

64 for w̄ → 0

1 − 1
w̄

+ 1
2w̄2 for w̄ → ∞.

(B7)

From Fig. 3 and Eqs. (B6) and (B7) one can see that for rigid
anchoring when w̄ = ∞ and p⊥ = 1, the disclination lines
with the charges q ′

1 = q ′
2 = −1 remain at the particle surface.

For finite values of w̄ when 0 < p⊥ < 1, they are localized
inside the particle and become purely fictitious. When w̄ tends
to zero, i.e., p⊥ → 0, the disclinations q ′

1 = q ′
2 = −1 and the

linear defect with the charge q ′
3 = 2, located at the particle

axis, annihilate, so that the director field becomes uniform.
This behavior of disclinations in the case of the external

problem is completely analogous to the behavior of linear
defects corresponding to the internal problem. In the case of
PP configuration in the cylindrical capillary [see Fig. 3(a)]
with w̄ decreasing from infinity to zero the disclination lines
with the charges q1 = q2 = 1 first disappear from the capillary
surface and become fictitious, and then annihilate with the
defect q3 = −2 at the infinite point of the Riemann sphere.

So, in the two-constant approximation K11 = K33 = K̄

the director orientation angles for the internal and external
problems are uniquely related by the transformation of the
inverse-radius vectors r = (R2/r ′), and the distortion corre-
sponding to the particle with u⊥n0 is energetically completely
equivalent to the PP structure in the cylindrical capillary.
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