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Bifurcation properties of nematic liquid crystals exposed to an electric field:
Switchability, bistability, and multistability
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Bistable liquid crystal displays (LCDs) offer the potential for considerable power savings compared with
conventional (monostable) LCDs. The existence of two (or more) stable field-free states that are optically distinct
means that contrast can be maintained in a display without an externally applied electric field. An applied field
is required only to switch the device from one state to the other, as needed. In this paper we examine the basic
physical principles involved in generating multiple stable states and the switching between these states. We
consider a two-dimensional geometry in which variable surface anchoring conditions are used to control the
steady-state solutions and explore how different anchoring conditions can influence the number and type of
solutions and whether or not switching is possible between the states. We find a wide range of possible behaviors,
including bistability, tristability, and tetrastability, and investigate how the solution landscape changes as the
boundary conditions are tuned.
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I. INTRODUCTION

In e-ink display technology [1], spherical microcapsules are
dispersed in a clear carrier fluid. Each microcapsule contains
positively charged white particles and negatively charged black
ones, which segregate in a dc electric field. If the electric
field direction is reversed, so is the segregation of white and
black particles in the microcapsule. Hence display contrast
can be controlled by applying fields of appropriate polarities
in different portions of the screen (pixels). Once the field is
removed, the particles maintain their segregation within the
microcapsule, so a field is required only to change the state of
the display. Thus e-ink is a bistable technology and uses very
little power, giving excellent battery lifetimes.

Most e-readers in current use rely on e-ink technology,
but most portable phones, netbooks, and music players use
conventional liquid crystal display (LCD) technology, which
has better optical properties, but higher power consumption
because it requires continuous application of an electric field.
At the simplest level, an LCD pixel comprises a thin layer of
nematic liquid crystal (NLC) sandwiched between two glass
plates and placed between crossed polarizers. The NLC is
birefringent: Depending on its internal molecular orientation,
it can rotate the plane of polarized light. The molecular
orientation can be controlled by boundary effects (so-called
surface anchoring; depending on how a surface is prepared,
the NLC molecules have a preferred orientation there) and
by application of an electric field across the layer (its typically
rodlike molecules align in an applied field). With the molecules
aligned, the polarized light that passed through the first
polarizer is not rotated as it passes through the NLC layer
and is blocked by the second, crossed, polarizer. With no
applied field, however, the molecular orientation within the
layer is different (dictated solely by anchoring now, rather
than the electric field); the polarized light is rotated as it passes
through the NLC layer and can pass through the second crossed
polarizer. These two states are therefore optically distinct when
light is passed through (the first will be dark, the second bright)

and form the basis of an LCD. However, since the electric
field must be on to maintain the contrast between neighboring
pixels, such displays are energetically expensive.

One possible way to reduce the power consumption of an
LCD device is to design it so that it is bistable, with two
stable states for the molecular orientation in the absence of an
applied electric field. Provided these stable states are optically
distinct and may be switched from one to the other by transient
application of an electric field, power consumption could rival
that of e-ink technology, yet with superior optical properties.
With no applied field the only way to control the molecular
orientation within the device is by surface anchoring effects;
hence to achieve bistability, control of surface anchoring is key.
If anchoring conditions are chosen appropriately it is found that
two (or more) steady states exist for the molecular orientation
and that one can switch reversibly between the two states by
applying an electric field across the bounding plates for a few
milliseconds (see [2] and Sec. IV in the present paper).

In this paper we investigate theoretically a two-dimensional
(2D) bistable LCD configuration that generalizes an earlier
1D model [2]. The 1D model considered a simple nematic
sandwich between parallel bounding plates and relied on
the premise that the bounding surfaces can be prepared
so as to control the preferred molecular orientation of the
nematic molecules (the anchoring angle) and the associated
anchoring strengths, both being constant on each boundary.
Here we consider a scenario in which anchoring properties
(specifically, the anchoring angles) vary periodically along
the bounding surfaces. This may be thought of as either
a true variation in anchoring angle, due, e.g., to chemical
gradients along the flat bounding surfaces or perhaps more
realistically as an approximation to the anchoring variation
induced by a periodically varying surface topography [as in,
e.g., the Zenithal Bistable Device (ZBD) [3]]. We can view this
problem as a perturbation to the associated 1D problem: The
anchoring angles are of the form α = α(0) + δ cos(2πx∗/L∗),
where α(0) is the constant anchoring angle in the 1D problem,
x∗ is the coordinate parallel to the bounding surfaces, L∗ is the
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wavelength of the anchoring variation, and δ is the amplitude,
which will play the role of a bifurcation parameter.

The paper is laid out as follows. In Sec. II we introduce the
key dependent variables and outline the basic mathematical
model in Secs. II A and II B. Section II C recaps the results
of bistability and switching for the 1D model, presenting the
full range of parameter space within which two-way switching
is found. Section IV describes briefly the numerical approach
taken and presents our key results. Finally in Sec. V we draw
our conclusions.

II. MATHEMATICAL MODEL

The basic setup is a layer of NLC, sandwiched between
parallel bounding surfaces at z∗ = 0 and z∗ = h∗. Star super-
scripts will be used throughout to denote dimensional quan-
tities and will be dropped when we nondimensionalize. The
molecules of the NLC are rodlike, which imparts anisotropy.
The molecules tend to align locally, which is modeled by
associating an elastic energy with any deviations from uniform
alignment (Sec. II A). The local average molecular orientation
is described by a director field n, a unit vector that, in our 2D
model, is confined to the (x∗,z∗) plane (see Fig. 1). It may
therefore be expressed in terms of a single angle θ (x∗,z∗,t∗),

n = (sin θ,0, cos θ ), (1)

where t∗ is time. We further assume that the electric field,
when applied, is uniform throughout the NLC layer: E∗ =
E∗(t∗)(0,0,1). In reality the electric field and the NLC interact,
so even if E∗ is uniform outside the layer, it will vary across the
layer. A more careful treatment would take this into account;
however, based on a preliminary investigation into variable
field effects within a 1D device [4], we do not expect deviations
from uniformity to be significant under normal operating
conditions and we expect that the uniform field assumption
is sufficient for the proof-of-principle investigation here. We
recall that in any case an electric field is utilized only to switch
the nematic configuration from one state to the other and there-
fore the detailed properties of the field are not so important.

Since we require bistability in the absence of an applied
field, anchoring conditions at the bounding surfaces z∗ =
0,h∗ are key. The anchoring pretilt angle (denoted by α

in our model, the preferred value of θ at either interface)
may be controlled by a variety of surface treatments; for
example, mechanical or chemical treatments, nanopatterning,
and surface irradiation have all been shown to produce certain
desired anchoring angles [5–17] with a high degree of control.
The anchoring strength A∗ may also be controlled to some

FIG. 1. (Color online) Sketch showing the setup and summarizing
the key parameters in the dimensionless coordinates.

extent [9,11,13,14] by similar methods. As evidenced by these
cited works, advances in the degree of control attainable are
continually being made and, while not quite yet a reality,
“bespoke surfaces” with desired anchoring properties are a
real possibility for the near future. We shall therefore assume
that surface anchoring angles and strengths are adjustable
parameters, within a range of physically realistic values.
We shall furthermore allow the anchoring angles to vary
sinusoidally about some average value:

αi = α
(0)
i + δi cos(2πx∗/L∗ + φi), i = 0,1,

(2)
φ0 = 0, φ1 ∈ [0,π/2],

where i = 0 and 1 denote the lower and upper bounding
surfaces, respectively, and φ1 �= 0 allows for a phase difference
between the variations on each surface. We expect that such
periodic variation will approximate the situation in which
the bounding surfaces themselves have periodically varying
topography (possibly with a phase difference between upper
and lower surfaces) as seen, for example, in the ZBD or post
aligned bistable device (PABD) [3,18]. We consider two cases
for the amplitude parameters δ0 and δ1: (i) They take the same
value δ1 = δ0 = δ or (ii) δ1 = 0 and δ0 = δ (perturbation only
on the lower boundary). Clearly, Eq. (2) is not the most general
form of periodic anchoring variation that could be considered;
nonetheless, we expect the results obtained as δ and L∗ are
varied to be representative of the more general case and in the
interest of keeping the investigation manageable we restrict
attention to this set of perturbations.

A. Energetics

The free energy of the liquid crystal layer, in the presence
of an applied electric field and with specified anchoring
conditions at each bounding surface, has several contributions.
The bulk free energy density consists of elastic, dielectric, and
flexoelectric contributions W ∗

e , W ∗
d , and W ∗

f , respectively, and
in our 2D model with the uniform field assumption these are
given by

2W ∗
e = K∗

1 (∇∗ · n)2 + K∗
3 [(∇∗ × n) × n]2,

2W ∗
d = −ε∗

0(ε‖ − ε⊥)(n · E∗)2,

W ∗
f = −E∗ · [e∗

1(∇∗ · n)n + e∗
3(∇∗ × n) × n],

where K∗
1 and K∗

3 are elastic constants, ε∗
0 is the permittivity of

free space, ε‖ and ε⊥ are the relative dielectric permittivities
parallel and perpendicular to the long axis of the nematic
molecules, and e∗

1 and e∗
3 are flexoelectric constants [19–21].

With the director field n as given by Eq. (1) and the
common simplifying assumption K∗

1 = K∗
3 = K∗, the total

bulk free energy density W ∗ = W ∗
e + W ∗

d + W ∗
f simplifies.

Introducing the nondimensional forms W = K∗W ∗/h∗2 and
(x,z) = (x∗,z∗)/h∗,

W = 1

2

(
θ2
x + θ2

z

) − D cos2 θ + F
2

(θz sin 2θ − θx cos 2θ ),

(3)

where

D = h∗2E∗2ε∗
0(ε‖ − ε⊥)

2K∗ , F = h∗E∗(e∗
1 + e∗

3)

K∗ (4)
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are dimensionless constants. With representative charac-
teristic values h∗ ∼ 2 μm, E∗ ∼ 1 V μm−1, e∗

1 + e∗
3 ∼ 5 ×

10−11 C m−1, K∗ ∼ 1 × 10−11 N, and ε‖ − ε⊥ ∼ 5 [22–24],
bothD andF are O(1). We emphasize that these values are not
intended to be absolute; a fair degree of variation about these
values is possible and indeed many different combinations of
dimensional parameter values will lead to the same model in
dimensionless form. Note that D and F are not independent;
the ratio

ϒ = F2

D = 2(e∗
1 + e∗

3)2

K∗ε∗
0(ε‖ − ε⊥)

(5)

is a material parameter, independent of the geometry. We
consider the most common case in which the dielectric
anisotropy ε‖ − ε⊥ > 0 (molecules align parallel, rather than
perpendicular, to an applied field) so that D > 0 always. The
parameter F characterizing the dimensionless strength of the
applied electric field will, however, change sign if the electric
field direction is reversed. Since the representative parameter
values listed above give ϒ ≈ 10, we assign this value to ϒ

throughout our computations.
The surface anchoring is modeled by a Rapini-Papoular

form [25]; if g∗
{0,h∗} = (K∗/h∗)g{0,1} are the surface energies

per unit length at the boundaries z∗ = 0,h∗, then

g0,1 = A{0,1}
2

sin2(θ − α{0,1}), A{0,1} = h∗A∗
{0,h∗}

K∗ , (6)

where A∗
{0,h∗} are the anchoring strengths at z∗ = 0,h∗ and

α{0,1} are the preferred angles, given by Eq. (2): In dimension-
less form,

αi = α
(0)
i + δi cos(2πx/L + φi), i = 0,1,

(7)
φ0 = 0, φ1 ∈ [0,π/2],

where the dimensionless perturbation wavelength L = L∗/h∗.
As A → ∞ the anchoring becomes strong and the director
angle is forced to take the value α. Figure 1 summarizes the
setup and notation.

The total (dimensionless) free energy for the system is given
by

J =
∫ 1

0

∫ L

0
W (θ,θz)dx dz

+
∫ L

0
g0(x)|z=0 dx +

∫ L

0
g1(x)|z=1 dx

and equilibrium solutions are those functions θ (x,z) that
minimize J . The standard calculus of variations approach, with
θ (x,z) �→ θ (x,z) + εη(x,z) (0 < ε � 1) leads to J �→ J [θ +
εη] = J0 + εJ1 + ε2J2 + O(ε3) and for θ to be a minimizer
of J we require J1 = 0 and J2 > 0 for all admissible variations
η (the condition on J2 ensures we have a minimum, rather than
a maximum, of the free energy). After Taylor expansion and
integration by parts

J1 =
∫ 1

0

∫ L

0
η
[
Wθ − (

Wθz

)
z
− (

Wθx

)
x

]
dx dz

+
∫ L

0
η
(
g0θ − Wθz

)∣∣
z=0 dx +

∫ L

0
η
(
g1θ + Wθz

)∣∣
z=1dx

−
∫ 1

0
ηWθx

∣∣
x=0dz +

∫ 1

0
ηWθx

∣∣
x=L

dz.

The condition that this vanishes for all admissible variations
η leads to the usual Euler-Lagrange equation for θ , subject to
boundary conditions on z = 0,1:

Wθ − (
Wθx

)
x
− (

Wθz

)
z
= 0, (8)

(
g0θ − Wθz

)∣∣
z=0 = 0,

(
g1θ + Wθz

)∣∣
z=1 = 0. (9)

The net contribution to J1 coming from x = 0,1 is easily
seen to vanish for the form of W specified by Eq. (3) if
periodic boundary conditions on θ are enforced (both θ and θx

continuous). We note that the second variation J2 may be easily
calculated if required to check stability. However, in practice
we find all steady states by solving a diffusive equation arising
from a gradient flow model (below), which guarantees that
only stable steady states are found.

B. Time-dependent energetics: Gradient flow

As discussed in Ref. [2] for the 1D case, if the system is not
initially at equilibrium then it will evolve over time towards a
steady state described by the above equations. An accurate
description of these dynamics requires the full equations
of nematodynamics [20,26], which couple flow to director
reorientation. For our explorations of parameter space that
follow, however, the full model is extremely computationally
intensive and instead we follow several other authors (e.g.,
Kedney and Leslie [27] and Davidson and Mottram [24])
in assuming that the system evolves in the direction that
minimizes its total free energy (a gradient flow). Both bulk and
surface components will evolve in this way and this process
leads to

θt + Wθ − (
Wθx

)
x
− (

Wθz

)
z
= 0,(

ν̃θt + g0θ − Wθz

)∣∣
z=0 = 0,

(
ν̃θt + g1θ + Wθz

)∣∣
z=1 = 0,

with the choice of dimensionless time set by

t = t∗
K∗

μ̃∗h∗2
, (10)

where μ̃∗ is the dimensional rotational viscosity of the NLC
molecules, typically around 0.1 N s m−2. The parameter ν̃

is a dimensionless surface viscosity parameter of size O(1)
or smaller [24]; in practice simulations are not very sensitive
to the exact value chosen for ν̃ [28] and we set it to unity
throughout. With bulk and surface energy densities given by
Eqs. (3) and (6), the system becomes

θt = θxx + θzz − D sin 2θ, (11)

ν̃θt = θz − A0

2
sin 2(θ − α0) + F

2
sin 2θ on z = 0, (12)

−ν̃θt = θz + A1

2
sin 2(θ − α1) + F

2
sin 2θ on z = 1, (13)

with D (dimensionless dielectric coefficient), F (dimension-
less field strength), A{0,1} (dimensionless surface energy),
and α{0,1} (anchoring angles) given by Eqs. (4), (6), and (7).
An initial condition θ (x,z,0) closes the model. When θ is
independent of time, Eqs. (11)–(13) are exactly the steady-state
model, specified by Eqs. (8) and (9). We will investigate the
multistability and switching properties of Eqs. (11)–(13) as
the anchoring perturbation parameters δ,L,φ are varied.
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Before doing so, we first summarize the results of [2] for
the analogous 1D model.

C. Summary of results of the 1D model

In the investigation of the 1D model in which anchoring
conditions (and hence solutions) are independent of x, it was
found that at sufficiently weak anchoring strengths, bistability
is possible, with two-way switching between the stable states,
effected by transient application of a moderate electric field
across the bounding plates. The switching protocol adopted
when attempting to switch between the stable steady states is
as follows: A uniform electric field is applied at a fixed strength
(characterized by a fixed value of |F | with both field directions
considered) for t1 dimensionless time units and then decreased
linearly to zero over a further t1/4 dimensionless time units.
For the subset of investigations relevant to the present paper,
the field strength was fixed at |F | = 5, while t1 was fixed at 20
(corresponding to a total dimensional switching time of about
150 ms).

The 1D model was optimized in the parameter space
defined by parameters that may be varied in experiments:
anchoring strengths and anchoring angles at the two surfaces.
The optimization was carried out according to several criteria,
principally: (i) maximize the anchoring strengths allowing
two-way switching (to maximize robustness) and (ii) max-
imize the optical contrast between the two stable states. If
specific weights are assigned to each of the criteria, an optimal
configuration can be found and examples of this optimization
are given in Ref. [2]. The optimization in that paper was carried
out in stages, the first stage being an optimization to maximize
surface energies (i) and contrast (ii), for the case in which the
anchoring angle α

(0)
1 at the upper surface is related to that at

the lower surface α
(0)
0 by

α
(0)
1 = α

(0)
0 − π/2. (14)

Following this stage the anchoring angle α
(0)
1 is allowed to vary

independently and then further desirable criteria are introduced
into the optimization.

In the final optimal states achieved in the subsequent trials,
the anchoring angle α

(0)
1 is quite close to α

(0)
0 − π/2. Therefore,

when using this 1D model as the basis for the 2D geometry
considered in the present work, we enforce the restriction given
by Eq. (14), giving a smaller parameter space to consider.
We also use the same switching protocol outlined above
when testing for switching between the stable states, applying
a field of dimensionless strength |F | = 5 for a fixed time
interval before decreasing the field linearly to zero. With these
restrictions, the entire region of (A0,A1,α

(0)
0 ) space within

which bistability with two-way switching is achieved in the
1D model may be mapped out with reasonable computational
effort. Figure 2 shows this region. For triplets (A0,A1,α

(0)
0 )

outside this region, no two-way switching is found in the 1D
model. Note in particular the existence of definitive upper
bounds on the anchoring strengths A0 and A1, at which
the two-way switching is obtained. We also note that, where
switching is achieved, in either direction, the sign of the electric
field is always the same: F = −5.

2

4
6

1

2

3
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

 

A
0

A
1

 

0

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

P
1

P
2

P
3

FIG. 2. (Color online) The 3D region of (A0,A1,α
(0)
0 ) parameter

space within which two-way switching is achieved for the 1D model,
showing the particular points P1, P2, and P3 used in our investigations
of Sec. III. All points lying within the solid shaded region give two-
way switching under the given switching protocol. The grayscale
(color online) corresponds to the value of the anchoring angle at
z = 0.

III. THE 2D MODEL INVESTIGATIONS

We investigate the effect of adding 2D boundary perturba-
tions of the form (7) to the 1D model. This is motivated by
several considerations: (i) It is likely that introducing spatial
variation in the boundary will allow the region where two-way
switching occurs to be extended, (ii) the 2D system is mathe-
matically more complex and will likely lead to bifurcations to
new steady states and the possible disappearance of old ones,
and (iii) in any real device boundary variations are inevitable
(even if due only to edge effects) and a 2D study will shed
some light on the robustness of the 1D results.

We perturb the 1D model by replacing the constant
anchoring angles α

(0)
0 and α

(0)
1 at the boundaries by sinusoidally

varying angles given by Eq. (7) (with α
(0)
1 = α

(0)
0 − π/2).

As noted, though such periodic perturbations are not the
most general that could be considered, they do allow for a
manageable parametric study to be carried out and we expect
the results to be representative of the more general case.
We may view such a perturbation either as due to surface
treatment, which alters the surface chemistry and causes
the anchoring angle to vary, or as an approximation to the
changes in anchoring caused by topographical variation in the
bounding surfaces (as in the ZBD or PABD devices [3,18]).
One motivation for allowing such variations is to increase the
size of the region where useful two-way switching is possible
(relative to that for the 1D model) and a key consideration for
robustness of a device to shocks is increasing the allowable
anchoring strengths at which the device will work. Hence we
first consider how this might be achieved.

We choose points (A0,A1,α
(0)
0 ) in our parameter space that

are outside the two-way switching region illustrated in Fig. 2,
but close to its boundary. In particular, we increase the surface
energies beyond the confines of the 1D switching region. For
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such points two-way switching is not achievable within the
1D framework, but in two dimensions it may be possible. We
choose three such points to investigate, all in the region of
parameter space close to the highest allowable surface en-
ergies: points P1 = (5.41,2.45,1.40), P2 = (5.50,2.30,1.46),
and P3 = (4.85,2.10,1.46). Other points (including some that
are far from the 1D optimum) were investigated, but did not
yield significantly different results from those for these three
points.

For each chosen point we perturb the anchoring boundary
conditions in several ways. (i) We perturb the anchoring only at
the lower boundary. This involves setting δ1 = 0 in Eq. (7) and,
with no loss of generality, φ0 = 0, leaving just two perturbation
parameters δ and L. (ii) We perturb the anchoring at both
boundaries, with the same amplitude δ1 = δ0 = δ and with
no phase difference between the boundaries φ0 = 0, leaving
just two perturbation parameters δ and L. (iii) We perturb
the anchoring at both boundaries, with the same amplitude
δ1 = δ0 = δ and with a variable phase difference between the
boundaries φ0 = φ ∈ [0,π/2], but fixing the domain length L.
This again leaves just two perturbation parameters δ and φ.

We describe the outcome of these investigations below. In
all cases we use numerical continuation to generate our basic
stable states. We start from the 1D problem, where the two
stable steady states, which we label n1 and n2, are known
analytically [2]. We apply a small perturbation δ = 0.1, using
each 1D steady state as an initial condition in Eqs. (11)–(13)
(at zero field, D = F = 0). We solve these equations using
a standard alternating direction implicit scheme and look for
steady-state solutions, which are in practice found by evolving
Eqs. (11)–(13) until the results do not change further [typically
it is enough to simulate until t = 30 (dimensionless time units)
to ensure that true steady-state solutions are found]. Then
we use these newly found steady-state solutions as initial
conditions for the more strongly perturbed case, with δ = 0.2
and so on. If at any stage a new steady state appears, backward

continuation in δ is used to locate its first appearance. We then
subject all solutions found to our switching protocol (apply a
transient electric field, as for the 1D case described in Sec. II C
above). It is possible that this produces new steady states. If
this happens, these states are also tracked using continuation
in δ, as described above.

To illustrate further the coexistence of the multiple steady
states and the transitions between them, we also construct
bifurcation diagrams in several cases, by plotting a norm of
the (stable) steady states versus δ:

norm(n) :=
√√√√M,N∑

i,j=1

(
θi,j (modπ )2

MN

)
, (15)

where θi,j is the discretization of the director angle θ at
grid point (i,j ) and M and N are the total number of mesh
grid points in each direction. The different steady states have
different norms, hence the solution branches are distinct when
plotted in this way and bifurcations are evident. Since (as
described above) all steady states are found by time evolving
the dynamic system until no further change is seen, this method
of constructing the bifurcation diagram can produce only the
stable solution branches. No unstable steady solutions are
found by our methods.

IV. RESULTS

We summarize below our results for each type of boundary
perturbation and for each of the three chosen test points in
parameter space. The system exhibits rich behavior, with as
many as four distinct steady states found in certain parameter
regimes. We label these four steady states n1, n2, n3, and n4. In
accordance with our continuation methods, n1 and n2 are al-
ways the continuations of the 1D steady states found in the un-
perturbed problem (consistent with the results of [2]), while n3

and n4 are new states that only exist with perturbed anchoring.
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FIG. 3. (Color online) Explanation of symbols used in the switching results that follow below. The notation within curly brackets denotes
which steady states exist at a given point in parameter space. The statement ni → nj denotes that switching occurs from state ni to nj and
ni ↔ nj denotes that two-way switching occurs between states ni and nj .
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FIG. 4. (Color online) The three steady states (a) n1, (b) n2, and (c) n3, corresponding to the point (L,δ) = (4,0.7) in Fig. 5.

The results on switching are presented symbolically to denote
the outcome at each point in parameter space, with reference
to the global legend presented in Fig. 3. Each symbol in that
legend records which steady states exist (listed within curly
brackets) and what switching is found between those states
(denoted by directional arrows as described in the caption). An
example of three coexisting steady states is shown in Fig. 4.

We note that exploring the complete 3D parameter space
considered would be computationally very demanding. The
discussion that follows is limited to illustrating just some
features of the results that may be expected.

A. Equal-amplitude perturbations to anchoring angles at both
boundaries with zero phase difference

Here we consider the domain with anchoring angles α0 and
α1 at lower and upper boundaries given by

α0 = α
(0)
0 + δ cos(2πx/L),

(16)
α1 = α

(0)
0 − π/2 + δ cos(2πx/L)

as the perturbation amplitude δ and domain length L vary.

1. Point P1: (A0,A1,α
(0)
0 ) = (5.41,2.45,1.40)

Figure 5 shows the results of the switching investigation
when the 1D case represented by point P1 in (A0,A1,α

(0))
space is perturbed at both boundaries, with no phase difference,
as in Eq. (16). We see that for sufficiently small perturbation
amplitude δ the continuations of the two 1D stable steady states
exist and there is still no two-way switching between them.
This is to be anticipated since the point P1 lies outside the
switching region for the 1D problem. As δ increases however,
more complex behavior emerges.

For sufficiently small values of L, once δ passes a first
threshold value, a window of two-way switching n1 ↔ n2 is
observed. This is already a significant finding since it shows
that two-way switching is possible in the 2D geometry even
if it does not occur for the 1D case. This window disappears
when δ passes a second threshold value. Both threshold values
decrease as L increases. When δ is increased further still, a
new steady state n3 is observed. As an illustration, Fig. 4
shows n1, n2, and n3 as vector plots in (x,z) space over a
single wavelength for (L,δ) = (4,0.7).

For small values of L, n3 appears to arise from a pitchfork
bifurcation of n1 and n2, as shown in Fig. 6. This figure shows
a bifurcation diagram, constructed by plotting a norm of the

(stable) steady states versus δ [see Eq. (15)]. Figure 6 shows
bifurcation diagrams for the cases L = 0.5 and 4: The case L =
0.5 clearly indicates the pitchfork bifurcation. For this value of
L the stable steady state n3 never coexists with stable steady
states n1 and n2, but replaces them at large δ. As described
in Sec. III, these bifurcation diagrams show only the stable
solution branches; unstable steady solutions are not found by
our methods.

Figure 5 shows that for larger values of L, L � 2, the
two-way switching between n1 and n2 is suppressed. The
stable steady state n3 appears sooner, at smaller values of
δ, and now coexists with n1 and n2. For L = 3, although
there is no two-way switching n1 ↔ n2, we do find two-way
switching between n2 and n3 [for δ = 0.6,0.7 and presumably
also in some surrounding neighborhood of (L,δ) space] and for
δ = 0.5 it is particularly interesting to observe cyclic switching
involving all three steady states: We see the switching sequence
n1 → n3 → n2 → n1. We expect that this cyclic switching oc-
curs in some small surrounding neighborhood of (L,δ) space.

For L = 6 (the largest value of L considered) the steady
state n3 appears even for the smallest value of δ used,
δ = 0.1. More generally, though more steady states exist
with (one would imagine) greater potential for switchability
for larger L, no two-way switching is found for L > 3.

0.25 0.5 1 2 3 4 6
0

0.2

0.4

0.6

0.8

1

L

FIG. 5. (Color online) Switching results when perturbing the
1D case represented by point P1, (A0,A1,α

(0)
0 ) = (5.41,2.45,1.40),

according to Eq. (16). Symbols are defined in the global legend of
Fig. 3.
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FIG. 6. (Color online) Bifurcation diagrams representing stable
steady states obtained when perturbing the 1D case represented by
point P1, (A0,A1,α

(0)
0 ) = (5.41,2.45,1.40), for the cases (a) L = 0.5

and (b) L = 4.

Another consequence of longer domains (larger L) is an
increased degree of solution complexity, as is apparent from
the bifurcation diagram shown in Fig. 6(b).

The steady state n3, once formed, appears rather robust un-
der the conditions investigated here: Other than the switching
noted above for L = 3 as well as n3 → n2 switching at small
δ for L = 6, no switching was found from this state to any
other. Far more switching is found from the steady states n1

and n2 to other states.

2. Point P2: (A0,A1,α
(0)
0 ) = (5.50,2.30,1.46)

Figure 7 shows results when the 1D case represented by
point P2 in (A0,A1,α

(0)) is perturbed at both boundaries, with
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FIG. 7. (Color online) Switching results when perturbing the
1D case represented by point P2, (A0,A1,α

(0)
0 ) = (5.50,2.30,1.46),

according to Eq. (16). Symbols are defined in the global legend of
Fig. 3.

no phase difference, as in Eq. (16). For very short domains,
no two-way switching is found, at any perturbation amplitude.
Only the two steady states n1 and n2 exist until δ = 0.9, when
the third steady state n3 appears. This state replaces both n1 and
n2; see also the bifurcation plot in Fig. 8(a). As the length L is
increased slightly (as with the point P1) a window of two-way
switching opens for a range of δ values. Again, at higher δ the
third steady state n3 appears and the δ value at which n3 appears
decreases as L increases. At L = 2 yet another steady state n4

appears at large δ: At this L value as δ increases we have just
two steady states for 0 � δ � 0.5, with two-way switching for
δ = 0.3,0.4; for δ = 0.6,0.7 three steady states n1, n2, and n3

coexist; for δ = 0.8 just n3 exists; and for δ = 0.9 the new
steady state n4 comes into existence, coexisting with n3. No
further two-way switching is found however. For larger values
L > 3, though the solution space becomes much richer and
more complex, no two-way switching is found between any
pair of stable states, even though for some parameter ranges
all four steady states can coexist [see the bifurcation diagram
for L = 4 in Fig. 8(b) where the four states coexist for a
wide range of δ values]. The steady state n4 appears to be
particularly stable here since it does not switch to any other
state.

The trend of two-way switching for smaller domains and of
increased solution complexity for longer domains is as seen for
the point P1 described above. Increased complexity could be
loosely explained based on the increased ability of the director
orientation to find additional configurations; however, we do
not have a good explanation for the lack of two- way switching
for these large domains.

Examples of the four steady states that can coexist are
shown in Fig. 9.

3. Point P3: (A0,A1,α
(0)
0 ) = (4.85,2.10,1.46)

Figure 10 shows results when the 1D case represented by
point P3 in (A0,A1,α

(0)) space is perturbed at both boundaries,
with no phase difference, as in Eq. (16). This case differs
from the previous two: The region of two-way switching has
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FIG. 8. (Color online) Bifurcation diagrams representing stable
steady states obtained when perturbing the 1D case represented by
point P2, (A0,A1,α

(0)
0 ) = (5.50,2.30,1.46), for the cases (a) L = 0.5

and (b) L = 4.

shrunk considerably, to some small neighborhood of the point
(L,δ) = (1,0.5). As with the two other points though, the
solution space complexity increases markedly as L increases:
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FIG. 10. (Color online) Switching results when perturbing the
1D case represented by point P3, (A0,A1,α

(0)
0 ) = (4.85,2.10,1.46),

according to Eq. (16). Symbols are defined in the global legend of
Fig. 3.

For L � 1 we find that three solutions can coexist (n1, n2,
and n3), while for L � 4 we again find four solutions that can
coexist for a wide range of δ values. This increase in solution
complexity may again be illustrated by bifurcation diagrams
as the bifurcation parameter δ is increased: Fig. 11 shows the
bifurcation diagrams for L = 0.5 and 4. As usual, the shorter
domain length leads to a simple pitchfork bifurcation.

B. Equal-amplitude perturbations to anchoring angles at both
boundaries with phase difference

In this section we consider the case with anchoring angles
α0 and α1 at lower and upper boundaries given by

α0 = α
(0)
0 + δ cos(2πx/L + φ),

(17)
α1 = α

(0)
0 − π/2 + δ cos(2πx/L)

as the perturbation amplitude δ and phase shift φ vary. For
each point in parameter space considered, motivated by the
underlying application (which requires two-way switching for
utility), we fix the domain length L at the most promising value
indicated by the results of Sec. IV A.

1. Point P1: (A0,A1,α
(0)
0 ) = (5.41,2.45,1.40)

For this point, the (equal) best domain length in terms
of achieving the largest window of two-way switching,
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FIG. 9. (Color online) The four steady states (a) n1, (b) n2, (c) n3, and (d) n4, corresponding to the point (L,δ) = (6,0.6) in Fig. 7.
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FIG. 11. (Color online) Bifurcation diagrams representing stable
steady states obtained when perturbing the 1D case represented by
point P3, (A0,A1,α

(0)
0 ) = (4.85,2.10,1.46), for the cases (a) L = 0.5

and (b) L = 4.

as indicated by the results of Sec. IV A, Fig. 5, is L =
0.5. We therefore consider the influence of introducing a
phase difference φ into the anchoring variations on both
boundaries, as indicated in Eq. (17) above, with L fixed at
this value.

Figure 12 shows the results as the phase difference in
boundary conditions [Eq. (17)] is increased from φ = 0 to φ =
π . Note that for this and the subsequent points considered, the
results for π � φ � 2π may be obtained by reflecting Fig. 12
about φ = π . Curiously, the results are almost independent of
the phase difference, a sizable window of two-way switching
persisting for all values of φ tested. No pattern of increasing
solution complexity emerges here: The third steady state n3 is

0 pi/4 pi/2 3pi/4 pi
0

0.2

0.4

0.6

0.8

1

FIG. 12. (Color online) Switching results when perturbing the
1D case represented by point P1, (A0,A1,α

(0)
0 ) = (5.41,2.45,1.40),

according to Eq. (17). The domain length is fixed at L = 0.5. Symbols
are defined in the global legend of Fig. 3.

always observed only for large δ and no fourth steady state is
found.

2. Point P2: (A0,A1,α
(0)
0 ) = (5.50,2.30,1.46)

For this point, the best domain length in terms of achieving
the largest window of two-way switching, as indicated by the
results of Sec. IV A, Fig. 7, is again L = 0.5. Figure 13 shows
the results as the phase difference in Eq. (17) is increased
from φ = 0 to φ = π . In this case the window of two-way
switching shrinks as φ is increased and eventually disappears.
Otherwise, the behavior is similar to that observed for point P1

above: There is no evidence of increasing solution complexity
as φ is varied, n3 is found only at large δ, and no fourth steady
state is ever found.

0 pi/4 pi/2 3pi/4 pi
0

0.2

0.4

0.6

0.8

1

FIG. 13. (Color online) Switching results when perturbing the
1D case represented by point P2, (A0,A1,α

(0)
0 ) = (5.50,2.30,1.46),

according to Eq. (17). The domain length is fixed at L = 0.5. Symbols
are defined in the global legend of Fig. 3.
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FIG. 14. (Color online) Switching results when perturbing the
1D case represented by point P3, (A0,A1,α

(0)
0 ) = (4.85,2.10,1.46),

according to Eq. (17). The domain length is fixed at L = 1. Symbols
are defined in the global legend of Fig. 3.

3. Point P3: (A0,A1,α
(0)
0 ) = (4.85,2.10,1.46)

For this point, two-way switching was observed in the
results of Sec. IV A only for the domain length L = 1 (see
Fig. 10), hence we set L = 1 here.

Figure 14 shows the results as the phase difference in
Eq. (17) is increased from φ = 0 to φ = π . As with point
P1, little variation with φ is observed. The small window
of two-way switching persists until φ = π/2, after which it
vanishes. The steady state n3 appears at the same δ value for
all phase shifts φ (δ = 0.7), in coexistence with n1 and n2 for
0 � φ � π/2 and in coexistence with n2 only for φ > π/2 (so
the bifurcation structure changes slightly as φ is increased).

To conclude, though we carried out only limited tests, it
does not appear that introducing phase difference into the
boundary conditions leads to increased two-way switching.

C. Perturbation to anchoring angle at one boundary only

In this section we investigate the effects of anchoring
variations at one bounding surface only (we choose the
lower surface). The anchoring angles imposed when solving
Eqs. (11)–(13) are

α0 = α
(0)
0 + δ cos(2πx/L), α1 = α

(0)
0 − π/2. (18)

1. Point P1: (A0,A1,α
(0)
0 ) = (5.41,2.45,1.40)

Figure 15 shows that, in line with our earlier results,
increasing the domain length L is associated with increasing
solution complexity, though the switching obtained is less
complex than in Sec. IV A, where both boundaries are
perturbed. No two-way switching is ever found, nor any
switching cycles, therefore, in this instance at least, perturbing
just the one boundary does not appear to be advantageous.

2. Point P2: (A0,A1,α
(0)
0 ) = (5.50,2.30,1.46)

Figure 16 shows the results of a perturbation represented
by Eq. (18) to the anchoring conditions on the lower boundary
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FIG. 15. (Color online) Switching results when perturbing the
1D case represented by point P1, (A0,A1,α

(0)
0 ) = (5.41,2.45,1.40),

according to Eq. (18). The lower boundary only is perturbed and δ

and L vary. Symbols are defined in the global legend of Fig. 3.

only, the unperturbed case being represented by point P2 in
the 1D problem. The same general observations as for point
P1 above hold: Again, increasing the domain length L is
clearly associated with increasing solution complexity, but the
behavior is overall less complex than in Sec. IV A, where both
boundaries are perturbed. No two-way switching or switching
cycles are found for any (L,δ) values tested, therefore, for P2

this type of boundary perturbation also does not lead to desired
two-way switching.

3. Point P3: (A0,A1,α
(0)
0 ) = (4.85,2.10,1.46)

Figure 17 shows the results for point P3 in the 1D problem.
This case behaves similarly to points P1 and P2 above, with
increasing L leading to increased complexity, but with no
useful two-way or cyclic switching found.
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FIG. 16. (Color online) Switching results when perturbing the
1D case represented by point P2, (A0,A1,α

(0)
0 ) = (5.50,2.30,1.46),

according to Eq. (18). The lower boundary only is perturbed and δ

and L vary. Symbols are defined in the global legend of Fig. 3.
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FIG. 17. (Color online) Switching results when perturbing the
1D case represented by point P3, (A0,A1,α

(0)
0 ) = (4.85,2.10,1.46),

according to Eq. (18). The lower boundary only is perturbed and δ

and L vary. Symbols are defined in the global legend of Fig. 3.

V. DISCUSSION AND CONCLUSIONS

We have taken a basic but promising 1D model for a
bistable LCD device [2] and investigated how it behaves
under a specific class of spatial perturbations to the anchoring
boundary conditions (sinusoidal perturbations to the anchoring
angles at the flat bounding surfaces). While more general
periodic boundary perturbations could be considered, we
restrict attention to those of the form (7) because they afford
a manageable parameter space to study and we believe the
results will be representative of the more general case. Such
perturbations to the anchoring angles could be due to periodic
chemical gradients imposed at the surfaces or may be thought
of as approximating a device with periodic topographical
variations. The study of such variations is important for two
reasons: First, it may provide useful indications of how to
tune boundaries to create a workable bistable device of this
kind, which improves on the simpler 1D model proposed in
Ref. [2]; and second, it affords insight into the robustness of
the underlying 1D device to engineering imperfections.

Our results are presented for a few chosen sample points
in the space of surface energies A0 and A1 at the upper
and lower bounding surfaces, respectively, and unperturbed
anchoring angle α

(0)
0 at the lower bounding surface, as outlined

in Secs. II C and III. The motivation for choosing these test
points was that they lie nearby the most promising region
of parameter space for the 1D model, but when unperturbed
do not permit two-way switching [2]. Perturbing a 1D device
based on these points therefore gives some insight into whether
2D effects can lead to improvements over the 1D results. The
unperturbed anchoring angle at the upper bounding surface α

(0)
1

is fixed by Eq. (14). Both anchoring angles are systematically
perturbed according to three different protocols, described in
Secs. IV A (in-phase variable-amplitude variable-wavelength
perturbations to both angles), IV B (variable-phase variable-
amplitude fixed-wavelength perturbations to both angles), and
IV C (variable-amplitude variable-wavelength perturbations to
one angle only). Where both boundaries are perturbed, the

perturbation amplitude δ is the same at each boundary; where
only the lower boundary is perturbed, the phase difference φ

is zero by default. Since only two of the three variables δ, L

(domain length), and φ are perturbed in any set of experiments,
our results on the steady states found and switching between
them can be represented graphically by 2D parametric plots.

For all cases studied the perturbations lead to surprisingly
rich behavior when compared with the 1D case. As we would
expect, for sufficiently small δ, the results are close to those
found in one dimension: only two stable steady states, with no
two-way switching under transient application of an electric
field. However, for a given L we find a threshold value δ∗ at
which a bifurcation occurs and new steady states are found.
This threshold value δ∗ decreases as L increases. Depending
on the value of L, the new steady state(s) may either replace
the continuations of the original steady states n1 and n2 [a
simple pitchfork bifurcation; see Figs. 6(a), 8(a), and 11(a)]
or else coexist with them [a saddle-node bifurcation; see
Figs. 6(b), 8(b), and 11(b)]. Though a full bifurcation study was
not performed, our results indicate that short domains (small
L) lead to a pitchfork bifurcation in which bistability yields
to monostability, while long domains give a more complex
bifurcation structure with folds, in which multiple distinct
steady states can coexist (in the cases we considered, up to
four states were found simultaneously). The bifurcation to tri-
and tetrastability can occur at very small δ∗ for the largest
L considered. Somewhat surprisingly, introducing a phase
difference between perturbations at the two boundaries does
not have a significant effect on the results obtained, at least for
the domains considered.

On the one hand, our results indicate that long-wavelength
perturbations of even very small amplitude may introduce
significant complexity, in particular multiple stable steady
states, but with a lack of reversible switching between them.
While interesting from a scientific point of view, this finding
also has a practical consequence since it suggests that such
perturbations are not useful if a reliable bistable device with
two-way switching is desired. This finding also suggests that
an unperturbed device, of the kind discussed in Ref. [2],
may be unstable if the domain length is large, with possible
multistability and undesired complexity.

On the other hand, we do find a sizable set of boundary
perturbations for which two-way switching is found between
states n1 and n2, for parameters for which two-way switching
is not possible in the unperturbed case. Even more interestingly
we find that two-way switching between the newly found
n3 state and the n2 state, as well as cyclic switching n1 →
n3 → n2 → n1, may occur. Therefore, we find significant
potential utility of the boundary perturbations, particularly
of shorter wavelengths, provided one can make boundary
modifications of wavelength comparable to or smaller than the
device thickness and of reasonable amplitude. Presumably the
finite-size amplitude of such perturbations would be sufficient
to destroy the undesired sensitivity to long-wavelength small-
amplitude perturbations noted above. Though both directions
of the electric field are considered when testing for switching
(F = ±5), the switching is always found for F = −5 (this
was also the case for the 1D problem [2]).

We note that our results are also of interest when compared
to theoretical simulations of the so-called ZBD [3]. In that
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device a 2D model is found to permit bistability and two-way
switching via boundary perturbations (geometric, for the
ZBD); but one of the two steady states always has a discli-
nation. Our model suggests that a truly 2D bistable switchable
device may in fact be possible without any disclinations.

Throughout this study, in our switching investigations it
was assumed that the electric field, when applied, is uniform
throughout the NLC. In reality of course there is interaction
between the field and the NLC, leading to nonuniformities
in the field. A preliminary investigation into the size of such
deviations from uniformity for the 1D model suggests that,
under typical operating conditions, they are small [4]. We
have not explored extensively the influence of the strength or
duration of the applied electric field, but based on our previous
analysis of the one-dimensional configuration in Ref. [2], we
would not expect to see significant influence of these quantities
on the presented results. (The field is simply the means by
which switching is effected: As long as it is sufficiently strong
and applied for sufficiently long, which we believe is the case
in the present paper, then if switching is theoretically possible
it should be observed.)

We do not, in this paper, carry out a detailed study of optical
contrast between the stable states found since we are far from
producing any kind of optimal device of this kind. We note,
however, that optical contrast ratios were calculated for the 1D
solutions of [2] from which our 2D solutions derive and were
found to be generally good. In addition, the bifurcation plots
in the present paper, showing the norm of the director field
versus perturbation amplitude, provide some crude estimate
of the contrast between the steady states.

In this work we have considered a three-dimensional pa-
rameter space defined by (A0,A1,α

(0)
0 ). It is clearly difficult to

analyze this large space in detail by the present methods and we
certainly cannot claim that the results found at the considered
isolated points cover the whole range of possible behavior. For
example, we found that up to four steady states can coexist
in some cases; however, even more complex scenarios with
a larger number of stable solutions are possible. Despite the

limitations of the presented analysis, our results do suggest
that improvements from the unperturbed 1D configurations
are possible; however, the extent of these improvements
may depend on the choice of physical parameters (anchoring
strengths and angles). In addition, our results strongly suggest
that short-wavelength perturbations are more promising if
formulation of a bistable switchable device is desired. A
more detailed study, beyond the scope of the present paper,
is required to determine the true utility of such a device. More
points in parameter space should be considered to confirm the
generality of our findings for the few points studied here; for
the most promising short-wavelength boundary perturbations,
a detailed study of the energy landscape should be made (the
energy barriers between stable states should be neither too
high to surmount nor too low for robustness to shocks) and the
optical contrast ratios calculated.

Finally, we note that, of course, all of our results here are
restricted to two space dimensions and take no account of
three-dimensional effects. The 2D problem for the director
field in an NLC is rather special since n may be described in
terms of a single polar angle θ . If 3D variations are permitted
to either device boundary then a second (azimuthal) angle ϕ is
required to characterize the director and a system of coupled
partial differential equations for θ and ϕ (arising from the
gradient flow model due to the more complicated free energy
describing 3D elastic deformation) must be solved. Even for
simple classes of 3D perturbations to the bounding surfaces
and for the simplest case of conical anchoring on ϕ at both
surfaces, we might expect the results to be correspondingly
richer still than those presented here.
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