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Oscillatory motion of sheared nanorods beyond the nematic phase
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We study the role of the control parameter triggering nematic order (temperature or concentration) on the
dynamical behavior of a system of nanorods under shear. Our study is based on a set of mesoscopic equations
of motion for the components of the tensorial orientational order parameter. We investigate these equations via a
systematic bifurcation analysis based on a numerical continuation technique, focusing on spatially homogeneous
states. Exploring a wide range of parameters we find, unexpectedly, that states with oscillatory motion can exist
even under conditions where the equilibrium system is isotropic. These oscillatory states are characterized by a
wagging motion of the paranematic director, and they occur if the tumbling parameter is sufficiently small. We
also present full nonequilibrium phase diagrams in the plane spanned by the concentration and the shear rate.
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I. INTRODUCTION

The nonequilibrium dynamics of fluids composed of
interacting, rodlike particles under external shear flow is a
long-standing problem receiving continuous attention both
from a fundamental perspective and in applications [1–4].
Renewed theoretical interest results from the discovery of
stable, oscillatory orientational modes as well as rheochaos
under conditions where the particles strongly interact [5,6].
This is typically the case at high densities and/or low temper-
atures, depending on whether the system is rather lyotropic
(density driven) or thermotropic (temperature driven). In
thermal equilibrium, strong coupling between the particles
leads to various mesophases with long-range orientational
ordering and different degrees of positional order [7,8]. Under
shear, one observes not only shifts of these various transitions
[9] but also oscillatory motion (and other dynamical modes)
of the entire nematic director. Such behavior is predicted, e.g.,
by various continuum theories (such as those of Doi and Hess)
[10–13] for the dynamics of the orientational order parameter
of the system, as well as in particle-based computer simulated
techniques such as (event-driven) Brownian dynamics and
multiparticle collision dynamics [14–16]. Experimentally,
oscillatory states have been seen, e.g., in suspensions of fd
viruses in plane Couette flow geometries [17,18]. Again, the
corresponding equilibrium system (at zero shear rate) is a
nematic.

However, despite the large number of studies already
carried out, there are still some rather fundamental questions
left. One of these is whether oscillatory motion can occur
only if the system in the stable or metastable nematic regime,
as it is often assumed. In other words, is it possible that
spontaneous oscillatory motion develops on the isotropic side
of the shear-distorted phase diagram? And if such oscillations
indeed exist, how do they transform into other dynamical states
if the shear rate or other system parameters are changed? Or,
in the language of nonlinear dynamics, what is the nature of
the underlying bifurcations?

*physik@strehober.de
†klapp@physik.tu-berlin.de

In the present paper we aim to shed light on these issues
on the basis of the mesocopic approach suggested by Hess
[10–12] and later used in many subsequent studies [19–22].
However, contrary to these earlier studies we here employ a
systematic bifurcation analysis, which allows us to explore
a much wider range of parameters and, in addition, to fully
characterize the nature of the dynamical transitions.

In the Hess-Doi approach, the relevant dynamic variable
is the tensorial orientational order parameter whose dynamics
is determined by the (Couette) shear, on the one hand, and
relaxational contributions (derived from a Landau free energy),
on the other hand. By using a suitable tensor basis, the
corresponding equation of motion transforms into a set of five,
nonlinear first-order differential equations for the expansion
coefficients. It is well established that these equations predict
rich state diagrams involving a variety of oscillatory states
and even chaos. Here we analyze the dynamical behavior
on basis of a numerical path continuation method, exploring
two bifurcation parameters, that is, the shear rate and a
coupling constant. Previous works by Alonso et al. [23] and
Forest et al. [24] also used bifurcation analysis. However,
they limited the description to orientations within the shear
plane [23] or focused on the behavior for weak shear [24].
Another bifurcation analysis was presented by Rey [25], who
considered (contrary to our work) a system under steady
biaxial stretching flow.

Here we consider a steady uniaxial shear flow but do not
restrict the resulting orientational dynamics. Our bifurcation
analysis leads to results that indicate there is indeed an “island”
in parameter space where the equilibrium system is a stable
isotropic state, whereas shear induces an oscillatory (wagging)
motion. Moreover, we can extract entire nonequilibrium state
diagrams revealing a close relationship to experimental results.

The paper is organized as follows. We first give an overview
of the model system and the governing dynamical equations.
Next we apply the bifurcation analysis to a specific state
parameter within the nematic phase, the main purpose being
to compare with earlier results obtained by simple numerical
integration. We then move towards previously unexplored
parameter regions and set up full nonequilibrium diagrams.
Finally, we give a conclusion and an outlook. The paper
is rounded up by two appendices describing details of our
method(s).
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II. THEORY

A. Second-rank alignment tensor

We are interested in the dynamics of a suspension of
rodlike particles under shear. As a method of investigation we
employ a mesoscopic approach originally suggested by Doi
and Hess [10–13,26] where the basic dynamical variable is the
orientational order parameter ã(r,t) (in the literature also often
Q). The latter describes the average orientation of the rods in a
small yet macroscopic volume of space. The alignment tensor
is linked to the electric susceptibility tensor [27] and can be
measured optically by birefringence. In an unsheared (i.e.,
equilibrium) nematic system it is usually sufficient to describe
the orientational order by a vector, the so-called director,
which indicates the average direction of the particles. The
strength of this average orientation is then described by the
Maier-Saupe parameter S. However, in the presence of shear
the orientational order can become biaxial [19,28]. Therefore,
the order parameter ã(r,t) must be a second-rank tensor, which
we define according to

ã(r,t) =
√

15

2
〈u ⊗ u − 1

3
Tr(u ⊗ u)〉or ≡

√
15

2
〈 u ⊗ u 〉or,

(2.1)

where the unit vector u = u(r,t) stands for the orientation of
the rod at position r at time t , ⊗ denotes the dyadic product,
and Tr(. . .) denotes the trace of a matrix. As it follows from the
first member of Eq. (2.1), the tensor ã(r,t) is symmetric and
traceless (which we henceforth indicate by using the symbol
... ). Moreover, the average 〈. . .〉or appearing in Eq. (2.1) is

defined as

〈. . .〉or =
∫

S2
d2u . . . ρor(u,r,t), (2.2)

involving the orientational distribution function ρor (u,r,t)
[27]. The integral in Eq. (2.2) is performed with respect to the
angles describing the vector u. The orientational distribution
is defined as ρor(u,r,t) = N−1〈∑N

i=1 δ(u − ui(t))〉ens, where
ui is the microscopic orientation of particle i (i = 1, . . . ,N)
and 〈. . .〉ens is an ensemble average in a small volume dV

around the space point r at time t . Combining Eq. (2.2)
with the last member of Eq. (2.1), we see that the order
parameter tensor ã(r,t) corresponds to the second moment
of ρor (u,r,t). In other words, the orientational distribution
function provides the link between the mesoscopic quantity
ã(r,t) and the microscopic degrees of freedom, ui .

The eigenvalues of the tensor ã are μ1,μ2,μ3 and they
are related to the eigenvectors (“principal axes”) l ,m,n. The
tensor ã can then be written in the form ã = μ1l ⊗ l +
μ2m ⊗ m + μ3n ⊗ n [29]. The principal axis related to the
largest eigenvalue is considered as the director of the system.
Commonly, one assumes that this role is played by μ3, such
that the director is given by n. For uniaxial order, n is the only
relevant axis, and μ3 is linked to the Maier-Saupe parameter
S via μ3 = 2

√
5/6S [30], where S ≡ 〈P2(u · n)〉or and P2

denotes the second Legendre polynomial. For the more general
case of biaxial order, the principal axes can be conveniently
visualized using superquadratic tensor glyphs [31,32].

B. Equations of motion for the homogeneous sheared system

In the absence of shear, the ordering behavior of the system
is essentially controlled by either the concentration, c, or
the temperature, T . Specifically, c is the control variable for
lyotropic liquid crystals, and for most colloidal rods (e.g.,
fd viruses [18]), whereas thermotropic liquid crystals are
controlled by the temperature. Nematic phases typically occur
at high concentrations or low temperatures, respectively. In the
present paper we describe lyotropic and thermotropic systems
on the same footing in terms of an effective, dimensionless
“temperature” θ defined as

θ = 1 − T ∗/T

1 − T ∗/TK
(thermotropic),

(2.3)

θ = 1 − c/c∗

1 − cK/c∗ (lyotropic).

In Eqs. (2.3), TK and cK correspond to the temperature
and concentration where the isotropic and nematic phases
coexist [27,29]. In other words, TK and cK define the location
of the first-order isotropic-nematic transition of the system.
These parameters are sometimes also referred to as “clearing
point” due to the related change of the optical properties
of the system. From Eqs. (2.3) it follows that at T = TK

(c = cK), the effective temperature θ = 1. On the other hand,
θ = 0 at the “pseudocritical” temperature T ∗ or pseudocritical
concentration c∗. For T < T ∗ (c > c∗) the isotropic phase is
globally unstable. Between the lower spinodal temperature and
the clearing point temperature TK (clearing point concentration
cK ), i.e., 0 < θ < 1, without flow the nematic phase is stable
and the isotropic phase is metastable. In the range between
temperature TK (concentration cK) and Tu (cu), i.e., 1 < θ <

9/8, the nematic phase in the absence of shear is metastable
and the isotropic phase is stable. That is, Tu (cu) marks the
upper limit (lower limit) of the metastable nematic phase [33].
The stability of the two phases, and, thus, the equilibrium
behavior of the system, is determined by the (dimensionless)
Landau-de Gennes (LG) free energy [2]

�(a) = θ

2
Tr(a·a) −

√
6Tr(a·a·a) + 1

2
(Tr(a·a))2, (2.4)

where we have focused on spatially homogeneous states (i.e.,
no gradient terms). Also, we have defined the rescaled order
parameter,

a ≡ ã
aK

, (2.5)

where aK is the value of the parameter a defined as

a =
√

Tr(a · a) (2.6)

evaluated at coexistence, that is, at TK or cK. We note that, for
the special case of uniaxial orientational order, the parameter
a is proportional to the Maier-Saupe order parameter, that is,
a = √

5S.
In nonequilibrium the LG free energy, or rather its derivative

with respect to the order parameter, governs the relaxational
dynamics of the system. This derivative follows from Eq. (2.4)
as

�′(a) ≡ ∂�

∂a
= θa − 3

√
6 a · a + 2Tr(a·a)·a. (2.7)
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In the presence of shear flow, the relaxational dynamics
competes with the dynamics induced by flow field v(r). The
resulting terms entering the equation of motion for a(t) can be
derived from a generalized Fokker-Planck equation [11,13,26]
or, alternatively, from irreversible thermodynamics [10]. In
these equations, the influence of shear is captured by the
symmetric and antisymmetric part of the velocity gradient

� ≡ 1
2 [(∇v)T + ∇v], (2.8)

� ≡ 1
2 [(∇v)T − ∇v], (2.9)

where � and � are the so-called deformation and vorticity,
respectively. Here we focus on the case of plane Couette flow
characterized by a linear velocity profile v = γ̇ yex , where γ̇

is the shear rate and ex is a unit vector. Thus, the shear plane
is spanned by the x and y directions and the unit vector ez is
orthogonal to the shear plane.

Combining relaxational and shear-induced terms, the equa-
tion of motion for a homogeneous system [i.e., a(r,t) = a(t)]
in reduced units reads [19]

da
dt

= 2 �·a + 2σ �·a − �′(a) +
√

3

2
λK�. (2.10)

In Eq. (2.10), the shear flow enters through the three terms
involving the quantities � and � defined in Eqs. (2.8) and (2.9),
respectively. Specifically, the first term of the right-hand side
of Eq. (2.10) describes the impact of the flow vorticity �, while
the second term couples the deformation rate � linearly to the
alignment tensor. The third term represents the relaxational
part determined by the LdG free energy [see Eq. (2.7)]. Finally,
the last term on the right-hand side of Eq. (2.10) involves the
so-called tumbling parameter λK, which determines the impact
of the external perturbation due to the flow. This coupling
parameter can be related to the axis ratio q = L/D (with L

length, D width) of the particles via [11]

λK = 2√
5aK

q2 − 1

q2 + 1
. (2.11)

Specifically, one has λK = 0 for spherical particles, whereas
λK > 0 for elongated particles. As an example, we briefly
consider fd-virus particles which have been experimentally
studied under shear in Refs. [17,18]. These particles have a
rather large aspect ratio of q = L/D ≈ 130 [34,35], such that
the ratio (q2 − 1)/(q2 + 1) ≈ 1. To determine the value of
aK, we use the fact that typical values of the Maier-Saupe
parameter at coexistence are about S ≈ 0.6–0.7 [34] and a =√

5S. Inserting these values into Eq. (2.11) we obtain λfd
K ≈

0.6–0.7.
It is common to transform the tensorial equation (2.10) into

a system of scalar equations [36]. This is done by expanding
a and the other tensors appearing in Eq. (2.10) into a tensorial
basis set (see, e.g., Ref. [37]), yielding

ȧ0 = −φ0 − 1
3

√
3σ γ̇ a2

ȧ1 = −φ1 + γ̇ a2

ȧ2 = −φ2 − γ̇ a1 + 1
2

√
3λKγ̇ − 1

3

√
3σ γ̇ a0 (2.12)

ȧ3 = −φ3 + 1
2 γ̇ (σ + 1)a4

ȧ4 = −φ4 + 1
2 γ̇ (σ − 1)a3,

where

φ0 = (θ − 3a0 + 2a2)a0 + 3
(
a2

1 + a2
2

) − 3
2

(
a2

3 + a2
4

)
φ1 = (θ + 6a0 + 2a2)a1 − 3

2

√
3
(
a2

3 − a2
4

)
φ2 = (θ + 6a0 + 2a2)a2 − 3

√
3a3a4 (2.13)

φ3 = (θ − 3a0 + 2a2)a3 − 3
√

3(a1a3 + a2a4)

φ4 = (θ − 3a0 + 2a2)a4 − 3
√

3(a2a3 − a1a4).

In Eqs. (2.13), a2 = ∑4
i=0 a2

i . In Appendix A, we present some
general remarks concerning the structure of Eqs. (2.12) and
(2.13) and the consequences for the dynamic behavior of the
system.

In previous studies [38] it has been shown, for the case
of planar Couette flow, that the parameter σ has only minor
importance. Therefore, we henceforth set σ = 0.

The coupled set of ordinary differential equations (ODEs)
given in Eqs. (2.12) can be studied using methods from
nonlinear dynamics. Here we perform a bifurcation analysis
using numerical continuation techniques, specifically, the
software package MATCONT [39]. Some details of this method
can be found in Appendix B.

III. NUMERICAL RESULTS

The subsequent section is divided into three parts. In the
first part (Sec. III A), we aim to validate the results of our
bifurcation analysis by a comparison with well-established
results from direct numerical integration [19]. To this end, we
consider the temperature θ = 0 and calculate a state diagram
in the plane spanned by λK and γ̇ . The temperature θ = 0
corresponds to the lower spinodal temperature T ∗ (upper
spinodal concentration c∗). In other words, for θ < 0 without
shear the nematic phase is the only stable phase, while the
isotropic phase is (locally and globally) unstable.

For θ = 0 a large body of results for this specific value
already exists [19,20,29,30]. Beyond the pure numerical
comparison, however, we also analyze in detail the nature of
the observed bifurcations which are, so far, largely unknown.
In the second part (Sec. III B) we apply the bifurcation
analysis to systems at larger values of θ corresponding to
the isotropic side of the equilibrium I-N transition [see text
below Eqs. (2.3)]. In particular, we demonstrate the existence
of oscillatory solutions. As a summary and overview of our
results, we finally present in Sec. III C full nonequilibrium
phase diagrams (in the plane θ -γ̇ or c-γ̇ , respectively) for
selected values of the tumbling parameter. Later in this section
we also provide codimension-1 diagrams that help to interpret
the codimension-2 state diagrams.

A. Nematic phase

In this subsection we set θ = 0, where the unsheared equi-
librium system is in the nematic phase. Switching on the shear
flow the system can be brought into a variety of time-dependent
and steady states characterized by a particular behavior of the
order parameter a(t) [19,28]. Here we investigate the dynamics
in the plane spanned by the tumbling parameter λK and the
shear rate γ̇ .
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FIG. 1. (Color online) Dynamical state diagram in the plane
spanned by the tumbling parameter λK and the shear rate γ̇ at the
reduced temperature θ = 0 (and σ = 0). Areas are computed via
direct numerical integration of the ODEs [see Eqs. (2.12) and (2.12)],
whereas the curves are found from a codimension-2 bifurcation
analysis. The areas are colored and labeled according to the dy-
namical state (A = alignment, W = wagging, T = tumbling, KW =
kayaking-wagging, KT = kayaking-tumbling, and C = complex or
chaotic). The bifurcation branches are labeled as LP = limit point
(saddle node), H = Hopf, PD = period doubling, LPC = limit point
of cycles, BPC = branch point of cycles, and NS = Neimarck-
Sacker. In addition, the diagram involves some special codimension-2
bifurcation points. These are the CP = cusp point, CPC = cusp point
of cycles, ZH = zero Hopf, and BT = Bogdanov-Takens point.

In Fig. 1 we show a composite of data obtained by direct
numerical integration (colored areas), on the one hand, and
the bifurcation analysis (curves), on the other hand. Within the
calculations based on direct integration, we have considered a
narrow grid of parameter pairs (λK,γ̇ ). The resulting dynamics
of the alignment tensor was then automatically classified
(ignoring transient structures) and colored accordingly. The
curves in Fig. 1 were obtained using the codimension-2
bifurcation analysis described in the appendix.

The different regions appearing in the phase diagram at
θ = 0 are the wagging state (W), the tumbling state (T),
kayaking-wagging (KW), kayaking-tumbling (KT), and the
(flow-)alignment state (A). Apart from the last (stationary)
state, where the director is “frozen” along a direction within the
shear plane, all other states mentioned so far are characterized
by a time-dependent, oscillatory behavior of the coefficients
ai(t) of a(t). Physically, these oscillations correspond to
oscillations of the nematic director either within the shear
plane (W, T) or out of the shear plane (KW, KT). In addition
to these regular states, the diagram at θ = 0 also involves
complex or chaotic (C) states, as has been shown in previous
investigations [19,28]. In the present study, however, we will
rather focus on the regular states.

We note that the colored areas in Fig. 1, which have been
obtained by direct integration, agree quantitatively with earlier
numerical results (see, e.g., Ref. [19]). More importantly,

however, we can see from Fig. 1 that these colored areas are
closely bounded by the curves stemming from our bifurcation
analysis. This already indicates that the two approaches
yield consistent results for the general dynamical behavior
of the system. In the following we discuss in more detail
the boundaries between the states, that is, the nature of the
underlying bifurcations.

1. From the steady state to in-plane oscillations

We begin by considering the situation encountered at high
shear rates and large tumbling parameters (see the upper right
corner of the diagram Fig. 1). In this case, the system settles
into a “flow-aligned” (A) state where the nematic director
remains temporarily fixed along a direction within the shear
plane. From a physical point of view, this A state may be
further characterized by the magnitude of the nematic ordering
under shear and the flow angle ϕ between director and flow
direction. Mathematically, the A state corresponds to a (stable)
fixed point of the dynamical system [Eq. (2.12)]. In the case of
θ = 0 considered in this section, there is only one stable fixed
point and, thus, only one type of alignment. More generally,
however, the A state can also involve more than one fixed point.
An example will be given in Sec. III B, where we consider a
higher temperature θ and find, within the A state, a coexistence
of paranematic and nematic flow alignment [40].

Starting with the A state, we now decrease the tumbling
parameter λK. Provided that the shear rate is sufficiently large
(γ̇ � 4.5), the system then encounters a dynamical transition
into the wagging (W) state (see Fig. 1). In the W state the angle
ϕ between the director (which still lies in the shear plane) and
the flow direction oscillates periodically between a minimal
and a maximal value. This angular motion is accompanied by
an oscillation of the magnitude of nematic order.

The dark green line (upper central dark line), labeled by H,
which separates the A and the W regions in Fig. 1, denotes a
Hopf bifurcation line. Indeed, within the entire regime left of
and below the H line (i.e., not only in the W state), the system
exhibits oscillatory dynamics corresponding to stable limit
cycles (see also Refs. [23,41–43]). Moreover, we find that the
Hopf bifurcation separating the A and W states is supercritical.
This implies that, on crossing the H line, the W state is “born”
with zero amplitude but finite frequency at the onset.

Lowering λK even further, the character of the oscillatory
state (i.e., the limit cycle) changes from wagging to tumbling
(T). This latter state involves again a periodic motion where
the director performs full rotations rather than just wagging
(W) in the shear plane. We stress, however, that there is no
fundamental difference between W and T motion in the sense
that the change from W to T is not a true bifurcation (see
also Ref. [23]). Finally, the curve corresponding to the lower
boundary of the W/T domain (red line) is a period doubling
bifurcation curve (PD1). Below the PD1 curve, the W or T
state does not correspond to stable limit cycles any longer. As
seen in the very left of Fig. 1 (i.e., small λK), there are small
deviations between the location of the PD1 curve (obtained by
the bifurcation analysis) and the colored region of T states
obtained by direct numerical integration. These deviations
arise from the fact that there are very long-living transients in
this particular parameter region, making the classification of
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the final state based on the integration scheme rather difficult.
However, this “problem” could be fixed by extending the
numerical integration towards even longer time scales.

2. Emergence of symmetry-breaking states

Starting with a W or T state (see the upper left area of Fig. 1)
and reducing the shear rate γ̇ we cross the PD1 curve, thereby
entering the domain of kayaking-tumbling (KT) states. Within
the KT state, the director performs (full) rotations out of the
shear plane (contrary to the T state mentioned above). Thus,
KT is an example of a state breaking the symmetry introduced
by the shear flow geometry.

The nature of the transition separating the W/T and the
KT regimes depends on the value of the tumbling parameter.
This is indicated by the solid and dashed parts of the PD1
curve in Fig. 1. Specifically, in the range λK � 0.7 (solid
part), there are two types of stable solutions, that is, the KT
solution (a stable limit cycle) and a solution corresponding to
period-doubled orbits. In practice, however, we never observed
these period-doubled orbits, indicating that their basin of
attraction is much smaller than that of the KT solution. At
larger tumbling parameters (λK � 0.7), the PD1 bifurcation
line becomes subcritical. This implies that the period-doubled
solutions existing for λK � 0.7 are unstable. Instead, the
solution evolves towards the next stable attractor, that is, the
KT solution.

So far we have considered only the PD1 line, below which
the T/W limit cycles are nonexistent. However, as we will
discuss in more detail in the subsequent paragraph, the PD1
determines the transition between the T/W and the KT regimes
only when the shear rate is swept from large to small values,
that is, when the transition is approached from above. If,
on the contrary, we increase the shear rate starting from a
KT solution, this solution “dies” at a limit point of cycle
(LPC). These points define the line labeled LPC in Fig. 1.
To complete the discussion of KT states, we note that this
type of solution can also be reached from the flow-aligned
(A) state, provided that the shear rate is not too large. This is
seen in the right lower corner of Fig. 1. The corresponding
boundary curve is labeled as “LP2,” where LP stands for
“limit point” (saddle node). Crossing this line from the right,
KT states are born via a “semiglobal,” that is, a SNIPER
or saddle-node-on-an-invariant cycle (SNIC) bifurcation. A
SNIC bifurcation results in the appearance of a limit cycle of
an infinite period [44]. Indeed, on approaching the LP2 curve
from the left (i.e., increasing λK), the period of the oscillatory
motion is found to increase rather steeply (corresponding to
a slowdown of the tumbling frequency in a real system).
Specifically, the period grows as T ∝ |b − bc|−1/2, where b

is the control parameter and bc is the critical parameter value
at the SNIPER-SNIC bifurcation [45,46].

Another type of symmetry-breaking state is kayaking-
wagging (KW), where the wagging motion of the director in-
volves the space outside of the shear plane. As seen from Fig. 1,
the KW state is stable at intermediate values of both the tum-
bling parameter and the shear rate. One way to reach the KW
regime is to start from the W region (at suitable values of γ̇ ,
i.e., 2.4 � γ̇ � 4.8) and to increase λK. Doing this, one crosses
a line of branch points of cycles (BPC). Beyond this line, the

(in-plane) wagging (W) ceases to exist, and a limit cycle of type
KW is born. We note that the appearance of BPCs implies that
the KW oscillations are born in a pairwise manner. Thus, there
is always a coexistence of two KW solutions in the parameter
region labeled as KW in Fig. 1. On increasing λK even further,
the KW disappears. As revealed from Fig. 1, this happens
either at a second, subcritical period doubling curve (labeled
PD2) or via a Neimarck-Sacker (NS) bifurcation. The latter
leads into a regime of chaotic solutions which are not further
considered here (for a discussion of such states, see Ref. [28]).

3. Bistability

As already mentioned in the preceding paragraph, there
are parameter regions where the dynamical behavior of the
sheared system is characterized by bistability (we do not
further consider here the trivial coexistence of two KW
states within the KW region). To find bistable regions, we
have investigated whether and how the results of the (direct)
numerical integration change when the parameters are varied
in a different way. The resulting bistable regions are visualized
in the two parts of Fig. 2.

The first region is bounded by the LPC line (from above),
the dashed (subcritical) part of the PD1 line (from below),
and the BPC line (from the right). Depending on whether one
enters that area from high or low shear rates, either in-plane
T/W oscillations or out-of-plane KT oscillations are found.
The second region is again bounded by the LPC line from
above, whereas the left and right boundaries are the line of
BPCs and the curve labeled PD2, respectively. Given the
existence of these bistable regions, it would be very interesting
to see the consequences of this “coexistence” of dynamical
states, if we allowed the system to be inhomogeneous. Indeed,
first investigations in this direction [47] already revealed
the appearance of spatial domains characterized by different
orientational states. These domains interact and change with
time, an example being the growth of one domain at the
expense of another. A detailed study of an inhomogeneous
system is underway but is outside the scope of the present
paper. We note in this context that there are already some
studies investigating inhomogeneous systems. In particular,
Das et al. [48] studied, based on the same model we
are using, inhomogeneous systems for similar shear rates
and coupling parameters. However, the main focus was on
detecting spatiotemporal chaos.

B. Beyond the nematic phase

So far we have discussed the shear-induced nonlinear
dynamics at the temperature θ = 0 corresponding to the
nematic phase of the equilibrium system. Given the variety of
dynamic states observed at this low temperature, it is tempting
to investigate the “fate” of these dynamical states when θ is
increased towards values where the equilibrium state becomes
isotropic. Clearly, under isotropic equilibrium conditions, any
orientational ordering is induced by the shear flow. Indeed,
previous theoretical investigations have already shown that
shear (applied to an originally isotropic system) can generate
a flow-aligned state, paranematic state; moreover, it can shift
the transition into the nematic state [9].
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FIG. 2. (Color online) Enlarged views of the parameter section
of Fig. 1 in which bistability occurs. The data in (a) were obtained
by sweeping the shear rate from higher to lower values, whereas in
(b), the shear rate was swept from lower to higher values. In each
step, the final values of the integration is used as an initial condition
for the next integration step. To avoid staying on unstable solutions,
the initial condition was perturbed by a small noise.

However, usually this shear-induced, paranematic ordering
is assumed to be stationary. This is also seen experimentally,
e.g., for fd viruses at concentrations below the paranematic-
nematic transition [18]. We note, however, that the particles
involved in these experiments correspond to particular values
of the tumbling parameter, λK. For example, as described
below Eq. (2.11), fd viruses are characterized by tumbling
parameters of about λK ≈ 0.7–0.8. There remains the question
whether oscillatory dynamic states could exist beyond the
nematic phase if the particle’s properties and, thus, the
tumbling parameter λK is changed.

To explore this issue within our mesoscopic approach, we
have extended the calculations at θ = 0 described in Sec. III A
towards a range of larger values of θ , corresponding to higher

FIG. 3. (Color online) State diagram at the reduced temperature
θ = 1.20, where the equilibrium state (γ̇ = 0) is isotropic. The curves
are obtained from a codimension-2 bifurcation analysis. The colors
here reflect the value of the eigenvalue μ = μ3, which may be
considered as the degree of the uniaxial ordering (see the color bar on
the right side of the figure). One observes an “island” of wagging (W)
states. Region A1 corresponds to stable, shear-induced nematic order
(flow alignment). In region A2, there is a coexistence of a paranematic
and a nematic state. A closer view of this region (revealing even more
states) is given in Fig. 5. The thin red line (the dark gray vertical line
at the bottom) indicates the path of the codimension-1 bifurcation,
for fixed λK = 0.7, that is discussed in Fig. 4.

real temperatures (smaller real concentrations) in thermotropic
(lyotropic) systems. An exemplary state diagram in the λK-γ̇
plane is shown in Fig. 3. The reduced temperature is fixed
to θ = 1.20, which is well above the value θ = 9/8 = 1.125
(at Tu or cu, respectively) corresponding to the upper limit of
the (metastable) nematic phase. The curves and marked points
have been obtained by use of MATCONT [39]. In addition to
these bifurcation lines, we have indicated in Fig. 3 the degree
of nematic order induced by the shear flow. Specifically, the
colors are chosen according to the value of the eigenvalue μ3

that characterizes the ordering in the direction of the director.
In other words, the eigenvalue μ3 characterizes the degree of
uniaxial ordering. Note, however, that at nearly all parameter
combinations shown in Fig. 3 the orientational order is actually
biaxial.

In Fig. 3 we see that, at small shear rates and tumbling
parameters, the system is only weakly ordered, as expected at
the high temperature (low concentration) considered. Increase
of either λK or γ̇ then leads to an increase of the order and,
hence, larger μ3, reflecting shear-induced alignment.

However, the most important information in Fig. 3 is that
there is a range of shear rates and tumbling parameters where
the shear induces oscillatory motion. This parameter range
is represented by the “island” in the left part of the figure,
corresponding to tumbling parameters in the range λK � 0.75.
Within this island, the director performs a wagging (W) motion
within the shear plane, implying that the degree of alignment
oscillates in time. This is indicated by the grainy color inside
the W region. The grainy colors stem from different values of
the largest eigenvalue μ3 during the oscillation. For every pair
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FIG. 4. (Color online) Codimension-1 bifurcation diagram with
the shear rate γ̇ as control parameter and the largest eigenvalue
μ = μ3 of the alignment tensor as the order parameter. The analysis
is performed along the thin red line shown in Fig. 3 and Fig. 5
(θ = 1.20,λK = 0.7,σ = 0). The solid lines depict stable fixpoints.
Dashed lines indicate unstable fixpoints. Between the homoclinic
bifurcation [Hom, brown (leftmost vertical line in the center)] and
the supercritical Hopf bifurcation (H), there are stable limit cycles
corresponding to the wagging state (W). These limit cycles are
illustrated by vertical lines between the maximal and minimal values
of the limit cycles for the projection on the largest eigenvalue μ = μ3.

of parameters we determine μ3 only in one point of time. The
upper boundary of the oscillatory island is a Hopf bifurcation
curve, whereas the lower boundary is a homoclinic orbit.

To illustrate the behavior of the largest eigenvalue μ3 of
the alignment tensor as the order parameter versus the shear
rate in this parameter region we provide a codimension-1
bifurcation analysis in Fig. 4 for fixed λK = 0.7 [see the
thin red line (vertical line at the bottom) in Fig. 3]. At the
limit points (LP) and at the Hopf point (H) the stability of
the fixpoint changes. The dashed lines indicate an unstable
fixpoint. The red lines depict the minima and maxima of the
limit cycle (in the projection to the largest eigenvalue μ3) that
is evolving from the Hopf bifurcation point (H). The period
T of the limit cycles tends to infinity, when the parameter is
close to the homoclinic bifurcation (Hom) (brown curve that
connects BT and GH). The period grows logarithmically as the
bifurcation is approached, i.e., T ∝ log(|b − bc|), where b is
the control parameter and bc is the critical parameter value at
the homoclinic bifurcation [45,46,49]. Also note the hysteresis
taking place in the small parameter region between the lower
saddle-node bifurcation (LP) and the homoclinic bifurcation
(Hom).

To our knowledge, this is the first time that oscillatory
states outside of the nematic region of the (equilibrium) phase
diagram are found. One reason might be that most earlier
theoretical studies based on the present, mesoscopic approach
[38,48] focus on larger values of the tumbling parameter.
Indeed, in the range λK � 0.75 the present calculations
reproduce the (well-established) fact of a shear-induced, first-
order, paranematic-nematic transition [9,38]. Consider, as an

FIG. 5. (Color online) Enlarged view of the parameter section of
Fig. 3 at the border of the wagging island and the A2/A1 regions
(θ = 1.20). Within the region labeled A3, stationary alignment (with
low value of the order parameter) coexists with an oscillatory (W)
solution.

example, the case λK = 0.8. Increasing the shear rate from
small values, the system remains essentially disordered [as
indicated by the blue (dark) color color on the bottom) up to
γ̇ ≈ 0.2. At this point, one crosses the LP bifurcation line and
enters a bistable region characterized by two stable fixed points
that correspond to a paranematic ordering coexisting with a
(stationary) shear-aligned state. In a plot of the order parameter
versus shear rate (not shown here), this bistable region (labeled
A2 in Fig. 3) would correspond to the hysteresis region. Finally,
on increasing γ̇ even further, the pseudonematic ordering
becomes unstable and one enters the region A1. Here, the
order parameter is relatively large, reflecting pronounced shear
alignment.

The bifurcation scenario occurring at the parameters where
the wagging island, on the one hand, and the A2/A1 region,
on the other hand, approach one another is rather complicated.
This is illustrated in Fig. 5, which shows an enlarged view of
the relevant section of Fig. 3.

In particular, one can see that there is a small, additional
region labeled A3. In this region one finds both a stable fixed
point representing weak flow alignment and a stable limit
cycle representing dynamical wagging. In other words, A3
is again a bistable region. The upper boundary of this region is
either a limit point (LP) saddle-node bifurcation curve (smaller
values of λK) or a Hopf bifurcation curve (larger values of λK).
Finally, the lower boundary is a homoclinic curve. Below the
homoclinic curve the wagging solutions no longer exist.

C. Nonequilibrium phase diagrams

In the preceding paragraph we have studied the system in
the parameter plane spanned by the shear rate, γ̇ , and the
coupling parameter, λK, the latter being related to the shape
of the particles [see Eq. (2.11)]. Thus, it is clear that λK is
not an adjustable quantity in a specific experimental system.
Here the relevant parameters are instead the temperature or
concentration, respectively, and the shear rate or its conjugate,
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FIG. 6. (Color online) Nonequilibrium phase diagram in the plane
spanned by the concentration (bottom horizontal axis) or temperature
(top horizontal axis) and the shear rate (vertical axis) at fixed tumbling
parameter λK = 1.25. The colors represent the eigenvalue μ = μ3 of
the alignment tensor a. We also show the bifurcation lines obtained
by a codimension-2 analysis. In the triangular area labeled A2, we
find bistability between a paranematic and a nematic state with flow
alignment.

the shear stress, while the tumbling parameter λK is constant
(up to polydispersity effects).

Motivated by this experimental situation we present in
Figs. 6–8 state diagrams in the θ -γ̇ or c-γ̇ plane. These
diagrams may be considered as nonequilibrium phase dia-
grams (as a generalization of the equilibrium phase diagrams
corresponding to the case γ̇ = 0). We have obtained these
diagrams for three values of the tumbling parameter λK, that
is, at λK = 1.25, 0.74, and 0.6. These values seem particularly
interesting judging from our previous analysis in Secs. III A
and III B.

In the subsequent Figs. 6–8, the lower x axis shows the
concentration, c, while the upper x axis shows additionally

FIG. 7. (Color online) Same as in Fig. 6 but for λK = 0.74. In the
area right of the Hopf bifurcation curve (H) we observe oscillatory
states. Specifically, these are wagging-tumbling (W/T) in the area
between the Hopf (H) and the period doubling (PD) bifurcation curve,
and kayaking-tumbling (KT) in the area right of the PD curve. In
between the LPC and the PD curve, we find bistability between these
states.

FIG. 8. (Color online) Nonequilibrium phase diagram for λK =
0.6. Compared to Fig. 7 (λK = 0.74), the wagging region (W) is
more extended towards the concentration (temperature) region, where
the equilibrium state is isotropic [i.e., left of the red (leftmost)
vertical line]. The thin white horizontal line indicates the path for
the codimension-1 diagram presented in Fig. 9.

the reduced temperature. The y axis denotes the shear rate. By
choosing c as a main variable, we take into account the fact that
many recent experimental studies [17,18] focus on lyotropic
systems. To map the quantities c and θ onto each other we have
employed the second member of Eq. (2.3) that can be solved
with respect to c. Clearly, application of the resulting equation
requires an input for the clearing point concentration, cK, and
the pseudocritical concentration, c∗. Here we have arbitrarily
chosen cK = 0.4 and c∗ = 0.5.

In Fig. 6, we have indicated cK (corresponding to θ = 1)
and c∗ (θ = 0) by colored vertical lines. In addition, we
have put a vertical line at the concentration cu = 0.3875
(θ = 9/8 = 1.125) below (above) which the nematic state is
absolutely unstable. Finally, the color of the different regions
in Fig. 6 indicates the degree of nematic order [see Eq. (2.6)],
neglecting biaxiality. Thus, the lower x axis corresponds to the
equilibrium phase diagram of a lyotropic system.

We start by considering the case λK = 1.25 illustrated in
Fig. 6. At small concentrations below the stability limit of the
nematic phase [i.e., left of the red (leftmost) vertical line] and
small, yet nonzero, values of γ̇ we observe a paranematic state
with very weak nematic order. Increasing the shear rate at a
fixed c in this range of concentrations, the system enters, first,
a region (labeled A2) of bistability between the paranematic
and a shear-aligned state and, finally, the true shear-aligned
state (A1). These phenomena are characteristic of the well-
known, shear-induced paranematic-nematic transition already
mentioned in Sec. III B. Indeed, following earlier studies
we can interpret the two violet lines labeled by LP1 as
“spinodals” of the isotropic-nematic transition under shear
and their merging point (cc, γc) as “critical point” of this
transition. The analogy to an equilibrium critical point (of,
e.g., the vapor-liquid transition of a fluid) is that at shear rates
above the critical point, the transition becomes continuous,
that is, the order parameter increases smoothly when c is
increased at fixed γ̇ > γ̇c. Consistent with earlier studies
[9,50], we find that the spinodal lines are curved towards
the left. This is plausible, since shear tends to enhance the
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degree of nematic ordering and, thus, supports the transition
into a (shear-)aligned state. We note that similar effects in the
nonequilibrium phase diagram have been observed in studies
of the impact of biaxial stretching flow [25].

We also find in Fig. 6 that, at λK = 1.25, oscillatory states
only appear at high concentrations (low θ ) within the nematic
regime. Consistent with our analysis of the case θ = 0/c = c∗
in Sec. III A, the states are of the kayaking-tumbling (KT) type
in the range of shear rates considered (compare to Fig. 1).

In Sec. III B we have found that at smaller values of
λK, oscillatory states can become stable even at reduced
temperatures or concentrations where the equilibrium system
is isotropic. Motivated by this observation, we present in
Figs. 7 and 8 c-γ̇ diagrams at λK = 0.74 and λK = 0.6.

Similarly to the case of λK = 1.25, one may identify
the spinodal of the paranematic-nematic transition, with the
“critical” shear rate γ̇c being somewhat larger than before. This
means that higher shear rates are necessary to see a complete
disappearance of the first-order transition. However, the most
important new feature appearing at lower values of λK is that
the Hopf (H) curve, which marks the onset of oscillatory states,
moves (at least partially) into the parameter region left of the
red, vertical line, that is, into the regime where the equilibrium
nematic state is absolutely unstable. These oscillatory states
are of type wagging (W) or tumbling (T) (as argued before,
there is no substantial difference between these motions from
the perspective of the bifurcation analysis). Increasing the
concentration further, systems at λK = 0.74 or λK = 0.6 first
enter a region where, depending on initial conditions, the
dynamics is either of type W/T or of type KT. This region
is located between the LPC curve (limit point of cycle) and the
PD (period doubling) curve. Finally, at concentrations beyond
the PD curve, only T states are stable.

Coming back to the regime of low concentrations, we
see in Fig. 7 that at λK = 0.74, the oscillatory region left
of the (nematic) stability limit is rather small; in fact, the
major part of the corresponding Hopf line lies inside the
spinodal. Interpreted in terms of a real system, this would
mean that oscillations do occur, but only at concentrations
larger than the critical one (defined by the top of the spinodal),
i.e., inside the true nematic phase of the sheared system.
This is indeed consistent with recent experimental results
for fd viruses under shear flow. In these experiments, the
full paranematic-nematic binodal at shear rates γ̇ > 0 was
mapped out. The “coexisting” nematic phase is characterized
by tumbling motion, whereas the paranematic state is flow
aligned. The tumbling-to-aligning transition line then ends at
the maximum of the binodal [15,16,51].

The behavior just discussed changes at even smaller values
of the tumbling parameter such as the case λK = 0.6. Indeed, it
is seen in Fig. 8 that, on increasing γ̇ from zero in the relevant
parameter region [i.e., left of the red (leftmost) vertical line],
the Hopf curve starts only at the critical point (γ̇c,cc) and then
initially bends to the left. In other words, W or T states can exist
already at the less ordered side of the paranematic-nematic
transition, consistent with the γ̇ -λK diagram discussed in
Sec. III B (see Fig. 3). The corresponding behavior of the
order parameter μ3, i.e., the largest eigenvalue of the alignment
tensor, as function of c (θ ) is shown in Fig. 9. Only at larger
values of the shear rate do we finally observe a bending
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FIG. 9. (Color online) Codimension-1 diagram using the bifur-
cation parameter c (θ ). The path of the bifurcation analysis is along
the white horizontal line in Fig. 8 (γ̇ = 0.9,λK = 0.6,σ = 0). Solid
(dashed) lines indicate stable (unstable) fixpoints. The limit cycles
are illustrated by vertical lines between the maximal and minimal
values for the projection on the largest eigenvalue μ = μ3 as the
order parameter. Note the bistable region of wagging states [red (dark
gray) limit cycles] and kayaking-tumbling states [blue (light gray)
limit cycles] between the period doubling bifurcation (PD) and the
limit point of cycle (LPC) bifurcation.

of the Hopf curve towards higher concentrations. This latter
behavior may be interpreted such that strong shear typically
favors shear-aligned states (A1) rather than oscillatory motion
(compare with Fig. 1).

IV. CONCLUSIONS

In the present study we have employed a numerical path
continuation analysis combined with mesoscopic equations
of motion to investigate the complex dynamical behavior
of a homogeneous system of rodlike particles under planar
(Couette) shear flow. Compared to a conventional integration
of the mesoscopic equations [19,20,29,30], a main advantage
of the continuation method is that it provides not only
full information about the (long-time) dynamics at different
system parameters but also about the nature of the bifurcation
lines separating different regions of the nonequilibrium phase
diagram. This information is not only of theoretical but also
of practical interest. For example, close to the bifurcation
line separating different states, the continuation method can
predict the behavior of the amplitude and frequency of an order
parameters when one crosses the bifurcation line by varying
a suitable system parameter (e.g., shear rate, concentration,
. . .). Furthermore, the method proved to be very helpful
in determining multistable regions that might otherwise be
missed due to their small extension in parameter space.
On top of these insights, however, we have found that the
sheared system can exhibit an oscillatory state (wagging) at
temperatures or concentrations outside the nematic region of
the equilibrium phase diagram. One possible reason might
be that, according to our results, the oscillatory states only
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occur for rather small values of the coupling parameter λK ,
corresponding to rodlike particles with a relatively small aspect
ratio. Real systems such as suspensions of fd viruses typically
involve more elongated particles, for which our theory predicts
oscillatory states only within the nematic region, consistent
with experiments [15]. Indeed, our nonequilibrium phase
diagram (obtained by performing calculations for a large range
of concentrations) has strong similarities with that presented
in Ref. [51].

Based on the present results, one can now proceed towards
the investigation of inhomogeneous systems, including the
question how different spatial regions interact within the
multistable regions of the parameter space. A particularly
interesting aspect in this context concerns the front speeds
[52,53] and the basins of attraction of the involved states.
Another motivation of including inhomogeneities is to explore
the appearance of “banded” states, such as vorticity banding
(which has already been observed in experiments [54]) and
gradient banding [51]. Work in these directions is in progress.
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APPENDIX A

In this Appendix we present some considerations regarding
the structure and the symmetries of Eqs. (2.12)–(2.13). To start
with, we rewrite the right-hand sides of these equations. The
Landau-de Gennes free energy in Eq. (2.4) can be written in
projections of the tensorial basis [37] as

� = 1
2 (θ + a2)a2 − a0

[
a2

0 − 3
(
a2

1 + a2
2

) + 3
2

(
a2

3 + a2
4

)]
− 3

2

√
3

[
a1

(
a2

3 − a2
4

) + 2a2a3a4
]
. (A1)

In Eqs. (A1), a2 = ∑4
i=0 a2

i .
We now consider several cases.
(i) For vanishing shear rate γ̇ = 0 the dynamic equations

reduce to

d

dt
ai = −�i = − ∂

∂ai

�. (A2)

The �i are identical to those appearing in Eqs. (2.13).
In Eq. (A2) we see that the alignment follows a gradient
dynamics. Therefore, no oscillatory solutions are possible for
γ̇ = 0, i.e., oscillatory solutions are all flow induced [55]. To
see this, we determine the Jacobian J of the right-hand side
of Eq. (A2) as

J ij = ∂

∂aj

(−�i) = − ∂

∂aj

(
∂

∂ai

�

)

= − ∂

∂ai

(
∂

∂aj

�

)
= J ji . (A3)

The Jacobian J ij is symmetric due to the symmetry of the
second-order derivatives. A symmetric matrix has only real
eigenvalues. Thus, when performing a linear stability analysis
based on J , we cannot find any oscillations.

(ii) For the case γ̇ �= 0 but σ = 0, it is instructive to
introduce a function H defined as

H = γ̇

2

(
a2

1 + a2
2 + 1

2

(
a2

3 + a2
4

) −
√

3λKa1

)
. (A4)

Note that H is independent of a0 and proportional to the shear
rate γ̇ . With this function, Eqs. (2.12)–(2.13) can be rewritten
as

d

dt
a0 = − ∂

∂a0
�

d

dt
a1 = − ∂

∂a1
� + ∂

∂a2
H

d

dt
a2 = − ∂

∂a2
� − ∂

∂a1
H (A5)

d

dt
a3 = − ∂

∂a3
� + ∂

∂a4
H

d

dt
a4 = − ∂

∂a4
� − ∂

∂a3
H.

The structure of the Eqs. (A5) reflects the presence of two
oscillatory subunits, (a1,a2) and (a3,a4). The partial derivative
of H with respect to a2 appears in the dynamical equation for
a1 and vice versa the partial derivative of H with respect to a1 in
the dynamical equation for a2. Similarly, the partial derivative
of H with respect to a4 appears in the dynamical equation for
a3 and, vice versa, the partial derivative of H with respect to a3

in the dynamical equation for a4. In particular, oscillations in
a1,a2 with a3 = a4 = 0 indicate tumbling or wagging within
the shear plane. If there are additionally oscillations in a3 and
a4 we have out-of-shear-plane kayaking states.

(iii) In order to make a similar reformulation of the
dynamics for the more general case γ̇ �= 0 and σ �= 0, two
additional dissipative couplings between a0 and a2 as well as
between a3 and a4 must be added. In this spirit, we amend
the potential � in Eqs. (A5) by an additional term, V (i.e.,
� −→ � + V ). For the amendment we have

V = σ γ̇
(

1
2a3a4 − 1

3

√
3a0a2

)
. (A6)

We note that the additional term V for σ �= 0 only contributes
to the relaxational part of the dynamic equation.

Therefore, in general, the Eqs. (2.12)–(2.13) can be ex-
pressed as derivatives of �, V , and H .

APPENDIX B

In this Appendix we give a short description of how we de-
termined our bifurcation diagrams for homogeneous systems
based on the freely available software package MATCONT [39].
As shown in Sec. II B, the present dynamical system can be
formulated as dx/dt = f (x,β), where the vector x contains
the components a0,a1, . . . ,a4 and β contains the bifurcation
parameters. Here we are dealing with a codimension-2
diagram, where one has two bifurcation parameters (all other
parameters are fixed). We investigate mainly two cases. In the
first case the bifurcation parameters are λK and γ̇ , whereas the
dimensionless temperature θ [see Eq. (2.3)] is kept fixed.

If we now choose a set of parameters β = β0 and start
to integrate the system with initial conditions x = x0, there
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are three possibilities for the outcome of this procedure
(disregarding transients). First, the solution goes to a stable
fixed point (equilibrium point/EP); second, it goes to a stable
periodic oscillatory solution (limit cycle/LC); or, third, it goes
to a possibly irregular and chaotic attractor. From a practical
point of view, it is most convenient to choose x0 and β0 such
that one ends up in an EP or LC solution. Starting from
that solution one changes one parameter, i.e., one performs
a codimension-1 bifurcation analysis.

The continuer algorithm then tries to stay on the EP or LC
solution, while also monitoring the Jacobian of the system and
its eigenvalues. Typically, one can encounter saddle-node or
limit point bifurcation (LP), a Hopf bifurcation H, a limit point
of cycles (LPC), a torus or Neimarck-Sacker bifurcation (NS),
and a flip or period doubling bifurcation (PD) (see Ref. [56]).
These codimension-1 bifurcations points are then used as
starting points for a codimension-2 bifurcation analysis. In
this way, one can calculate branches of LP, H, LPC, NS, or
PD depending on two bifurcation parameters. Following these
branches one can also encounter special codimension-2 points

like a cusp point (CP), Bogdanov-Takens point (BT), zero
Hopf (ZH), or generalized Hopf (GH). We note that this list is
by no means complete.

A characteristic feature of codimension-2 points is that
they correspond to an intersection of different branches of
bifurcations. For example, a BT corresponds to the intersection
of a Hopf branch, a LP branch, and a homoclinic branch. Based
on that knowledge, one can now attempt to continue along the
missing branches. Reiteration of these steps finally yields the
full codimension-2 bifurcation diagram.

We are noting that, within our bifurcation analysis, both KT
and KW solutions are indeed rather hard to find. The reason
is that these symmetry-breaking states are not born in local
bifurcations (such as the Hopf bifurcation separating A and
W states) but rather in global bifurcations. To identify such
a bifurcation it is not sufficient to just monitor the Jacobian
and its eigenvalues. However, once one has obtained a limit
cycle solution of type KW or KT, the numerical continuation
via MATCONT allows us to follow these solutions in parameter
space until the boundary is reached.
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