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Three-dimensional simulations of nanopowder compaction processes by granular
dynamics method
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In order to describe and to study the processes of cold compaction within the discrete element method a
three-dimensional model of nanosized powder is developed. The elastic forces of repulsion, the tangential forces
of “friction” (Cattaneo-Mindlin), and the dispersion forces of attraction (van der Waals–Hamaker), as well as the
formation and destruction of hard bonds between the individual particles are taken into account. The monosized
powders with the size of particles in the range 10–40 nm are simulated. The simulation results are compared to
the experimental data of the alumina nanopowders compaction. It is shown that the model allows us to reproduce
experimental data reliably and, in particular, describes the size effect in the compaction processes. A number of
different external loading conditions is used in order to perform the theoretical and experimental researches. The
uniaxial compaction (the closed-die compaction), the biaxial (radial) compaction, and the isotropic compaction
(the cold isostatic pressing) are studied. The real and computed results are in a good agreement with each other.
They reveal a weak sensitivity of the oxide nanopowders to the loading condition (compaction geometry). The
application of the continuum theory of the plastically hardening porous body, which is usually used for the
description of powders, is discussed.
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I. INTRODUCTION

The compaction of the granulated materials, especially the
nanosized powders, is of great importance for the development
of the materials with the advanced properties [1–4]. The
compression of the nanopowders is a necessary stage in
the production of nanostructured materials by the powder
metallurgy methods [3–8]. The phenomenology of the con-
tinuous media is used for the description of the powder
bodies mechanical properties. As an example, the theory of
the plastically hardening porous body [5–10] appeared to be
a convenient and powerful tool for the theoretical analysis.
This theory has a strict justification regarding the sintering
or hot compaction of the powders [11,12]. Moreover this
theory has been verified experimentally for the processes of
the cold compaction of the powders consisting of micron-
(or larger) size particles [5,12,13]. In case of the nanosized
powders, especially the oxide ones, where the particles cannot
deform plastically [14,15], the theory application is very
controversial. First of all, such conceptions as the yield stress
or the hardening take on a relative nature for the nanopowders.
Second of all, the peculiarities of the nanopowder mechanical
behavior (like size effect) appear to be outside the continuum
theory.

It is well known from the experiments that it is harder
to compact the nanopowders compared, for example, to the
micron ones [14,16–19]. The size effect in the nanopowder
compaction is still poorly studied both experimentally and
theoretically. It is believed that low compressibility of the
nanopowders is related to a high adhesion between individual
particles, which leads to a formation of strong aggregates [20].
The absence of plastic deformation in nanoparticles [14],
the covalent bonding between the molecules of adjacent
particles [17], van der Waals attractive forces [16,17], and the
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electrostatic interactions [16] are stated to be the possible rea-
sons for the size effect. The investigations on the gravitational
packing of the powders [21,22] show that, in the case of free
filling, the density of dry powders decreases under the action
of dispersion (van der Waals) forces, which dominate over
the gravitational forces when the particles get finer. During
cold compaction the particles are exposed to the forces that
exceed greatly both gravitational and van der Waals ones.
Nevertheless, it has been found recently [20,23–26] that van
der Waals forces remain significant and are among the factors
that are responsible for the size effect in the nanopowder’s
compaction.

In this work, we present the simulation results for the
compaction of a nanopowder material by the discrete ele-
ment method [20,21,23,27–37], also known as the granular
dynamics method [38–40]. Due to a great extent of sphericity
and the nondeformability (strength) of individual particles
of oxide nanopowders being studied, the granular dynamics
method is particularly attractive and a very promising tool of
the theoretical analysis. The nondeformability of the particles
with sizes of 10–100 nm is caused by the absence of the
defects: the dislocations are pushed out of the particle by
the high tension of the “images” [15]. The experiments
verify that such particles are deformed elastically and recover
their shape after the removal of the load [14]. The present
paper is sequential to the investigations [23–26], devoted
to two-dimensional (2D) simulations. Here, as distinct from
Refs. [23–26], the numerical experiments are performed in a
3D geometry: the particles are spherical with equal diameter;
there are both translational and rotational degrees of freedom.
The interactions of the particles, in addition to commonly
used contact interactions such as Hertz law [41] and Cattaneo-
Mindlin law [42–44], involve the dispersion forces of attraction
and the possibility of the formation or destruction of solid
bridges between particles. The bridges can be formed by the
sintering at high temperatures [20] or by a strong particles
pressing during the compaction process [45,46]. The presence
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of dispersion forces allows introducing the particle size into
the governing equations [21] and thereby it is the source of the
size effect in the theoretical model.

II. INTERPARTICLE INTERACTIONS

A. Normal contact interactions

When the elastic spherical particles with the diameter d are
compressed up to a displacement h (h = d − r , where r is the
center distance of the particles), a contact area with the radius
a and the elastic repulsive force fe appears between them. In
the limit of the infinitesimal deformations, when h/d � 1, the
elastic repulsion obeys the Hertz law [41]. However, in the
cold compaction processes the nanopowders are subjected to
strong external action; a typical pressure amounts to several
gigapascals. At that conditions the powder particles receive
relatively large deformations, where the ratio h/d can reach
5–10% [25,26]. In the region of such large deformations the
Hertz law underestimates sufficiently the elastic force [47–
49]. We use the modified Hertz law (so-called “rod model”),
given elsewhere [26,50,51], to describe the elastic forces more
precisely. According to this rod model
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where E is the Young modulus of the particles, σp is Poisson’s
ratio. Equation (1) gives the elastic interaction between the
particles up to that moment when a solid bridge appears.

Sticking of the contacts during the high-temperature pro-
cessing of the powder is implied as a reason of solid bridges
formation in Ref. [20]. We suppose that the solid bridges
can be formed also due to the strong mechanical connection
of the particles that occurs during the compaction process.
This results in the overlapping of the surface atoms electron
shells and in the formation of the covalent bonds between the
molecules of the particles being pressed. In order to take into
account this effect, we have introduced the parameter �rch,
which defines the necessary displacement of the particles. It
is supposed that when the interparticle distance r is decreased
down to the value of rmin < d − �rch the solid (chemical)
bond between the particles is generated. After the formation
of the solid bridge the elastic interaction upon compression
(upon the decrease of r) obeys the law (1), but during the
tension (upon the increase of r) we have
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The dependence (2) describes the linear correlation between
the force fe and the distance r up to the value r = rmin + �rch.
The further increase of r produces the partial breaking of the
solid bridge. In order to describe the partial bridge destruction
the parameter rmin is increased so that a difference r − rmin

remains equal to the value of �rch. The total destruction of

the bridge occurs when the interparticle distance equals the
particle diameter, i.e., r = d.

B. Dispersion forces of attraction

The dispersion intermolecular interactions result in the
interparticle forces of attraction [52], which is of great
importance when simulating nanosized powders. However,
the original Hamaker’s result [52] is inapplicable within
the granular dynamics method due to the singularity
of the attractive energy of touching particles. That is why we
use the modified Hamaker’s formula [23,24,53] to calculate
the dispersion force of attraction:

fa(r) = π2

3

(
nd3

0

)2
εd6

(r + αd0)3[(r + αd0)2 − d2]2
, (3)

where d0 and ε are the size and energy parameters of the
intermolecular interactions, the parameter α = 0.24. The latter
parameter was determined in Refs. [23,24,53] as the fulfillment
of the transition to the interaction of molecules at d → d0. The
parameter α < 1 corresponds to the fact that the equilibrium
distance between the surfaces of the macroscopic particles
(αd0) must be shorter then the equilibrium distance between
two atoms (d0). This fact is confirmed by the direct molecular
dynamics simulations [54].

Equation (3) describes the particles’ attraction as long as
the distance between the particles r � d. When the particles
touch each other (r = d) and are pressed further (r < d)
the attraction force fa is supposed to be a constant and is
equal to its maximal value fa, max = fa(d). Figure 1 shows
the total force fn = fe − fa of the normal interactions of the
particles. Here and below the α phase of aluminium oxide
is intended as particle material, and the simulation parameters
are E = 382 GPa, σp = 0.25, nd3

0 = √
2, d0 = 0.392 nm [24].

In contrast to Ref. [24] the parameter ε is assigned the value
of 1224kB . At that the dispersion force fa, max corresponds
to the adhesive force (πγ d) of the Derjaguin-Muller-Toporov

FIG. 1. The total normal force of two particles interaction as a
function of the separation h = d − r . Calculation parameters are the
parameter α = 0.24, the particles’ diameter d = 16 nm, the distance
of formation or destruction of the solid bridge �rch = 0.008d .

012209-2



THREE-DIMENSIONAL SIMULATIONS OF NANOPOWDER . . . PHYSICAL REVIEW E 88, 012209 (2013)

(DMT) model [55] with the surface energy γ = 1 J/m2, which
represents typical covalent and ionic ceramic materials [20].

When a direct contact is absent the dispersion attraction
between the particles, Eq. (3), is described by the AB curve
in Fig. 1. At point B (the point of the particle’s contact) the
attraction force reaches its maximal value fa, max and the elastic
force of repulsion fe = 0. In this way, the maximal attraction
of the particles is realized. The further continuous loading
corresponds to BCC ′ curve. Here the particles’ attraction
force is a constant, but the elastic force increases according
to the law of Eq. (1). The interparticle distance, where the
elastic force compensates exactly the dispersion force of
attraction, i.e., fn = fe − fa = 0, is the equilibrium distance
req . When r < req the elastic repulsion force dominates over
the attraction force (fn > 0). The contact unloading from the
values h < �rch, i.e., before the formation of the solid bridge at
the C point, occurs as a reversible process, along the ABC

curve again. The unloading from the value h = �rch, i.e.,
from the C point, where the formation of the solid bridge has
occurred, is described by the CD line. This rectilinear segment
describes the elastic interaction of the particles as long as the
parameter h stays within it. When the D point is reached the
destruction of the solid bridge takes place. Here the interaction
force switches to the B point and is described by the ABC

curve again. When loading up to a C ′ point (which is to the
right of the C point), the rectilinear segment shifts to the C ′D′
position. If the contact state is shifted to the left of the D′ point
then C ′ and D′ points are shifted to the left simultaneously,
so that the rectilinear segment of C ′D′ is moved to the CD

line. The C ′ point moving corresponds to the partial breaking
of the bridge, i.e., the decreasing of the contact area, which
has started at the D′ point. It can be noted that parameters,
which determine the formation and the destruction of the solid
bridge, do not have to be equal, in general. We use the single
parameter �rch to describe these processes for the purpose of
the model simplification only.

Figure 2 demonstrates the mean normal stress on the contact
area, which activates the partial (at h > 0) or total (at h = 0)

FIG. 2. The mean contact normal stress, which activates the
partial bridge destruction (at h > 0) or the total fracture of the solid
bridge (at h = 0). The solid line is for �rch = 0.005, the dashed line
is for 0.01, and the dotted line is for 0.015.

destruction of the solid bridge,

σu = 1

πa2
ch

[
fn(r)|rmin=r−�rch

− fn(r)|rmin=r

]
,

ach = 1

2

√
d(d − r + �rch).

One can see that for the values �rch � 0.01 the maximal values
of breaking load σu do not exceed the theoretical strength
of the particles material, E/30 � 13 GPa. The proximity of
the parameter σu to the theoretical strength is justified by the
nanometer size of the particles [20,56–58].

C. Tangential shearing force

The tangential displacement of the particles with regard to
the contact plane results in the contact area tangential shift,
which is characterized by the �δ vector, and the emergence of
the tangential force ft (δ) (where δ = |�δ|), which is given by
Cattaneo-Mindlin law [42–44]. We use the linearized form of
Cattaneo-Mindlin law, which is prevalent by now [29,30],

ft (δ) =
�δ
δ

min

{
4Eaδ

(2 − σp)(1 + σp)
; μfe(r); πa2σb

}
, (4)

where μ is the friction constant, σb is the critical transverse
stress (or the fracture stress), which determines the shearing
strength of the material. The authors of Ref. [20] supposed
σb to be 2 GPa. However, the fracture stress of nanosized
bodies can be appreciably larger, right up to the values of
σb � 0.03E [57,58].

When the solid bridge between the particles being in contact
is formed, the limitation, connected with Coulomb friction, is
withdrawn and law (4) looks like

ft (δ) =
�δ
δ

min

{
4Eachδ

(2 − σp)(1 + σp)
; πa2

chσb

}
. (5)

If at the moment, when the breaking point (fM, max = πa2
chσb)

is reached, the interparticle distance r < (d − �rch) then the
partial destruction of the solid bridge occurs and the parameter
rmin is assigned to the current value of r . Otherwise, if the
interparticle distance r > (d − �rch) then the total destruction
occurs, but the contact between the particles remains and is
described by Eq. (4).

D. Surface pivoting moment

The tangential interaction of the particles being in contact,
when pivoting upon the contact axis, is given by Reissner-
Sagoci law [59],

Mp(θp) = 8Ea3

3(1 + σp)
θp, (6)

where Mp is the surface moment, θp is the turn angle of
the contact area, i.e., the half angle of the turn of one
particle regarding the other. The rigorous solution of the
pivoting problem was given by Jäger [60]. Reissner-Sagoci
law corresponds to the linearized Jäger law, i.e., the limit of
θp → 0. In the region of large values of θp the maximal value
of the surface moment Mp is confined by Coulomb’s friction
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law:

Mp,max(a) =μf M(a), M(a) =−2π

∫ a

0
σzz(ρ)ρ2dρ, (7)

where σzz(ρ) is the radial distribution of normal stress in the
contact area. In the case of the rod model (1) being used we
have [50,51]

σzz(ρ) = − 4E
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As a result, the tangential interaction is described by the
expression

Mp(θp) = min

{
8Ea3

3(1 + σp)
θp; μf M(a);

π

2
a3σb

}
. (10)

The limitation of Mp, which is caused by the shearing strength
σb of the material, corresponds to the similar limitation in
Ref. [20].

When the solid bridge is formed, like in case of shearing
load ft , the expression (10) for the surface moment Mp(θp) is
replaced by the following one:

Mp(θp) = min

{
8Ea3

ch

3(1 + σp)
θp;

π

2
a3

chσb

}
. (11)

If at the moment, when the breaking point (Mp = πa3
chσb/2)

is reached, the interparticle distance r < (d − �rch) then the
partial destruction of the solid bridge occurs and the parameter
rmin is assigned to the current value of r . Otherwise, if the
interparticle distance r > (d − �rch) then the total destruction
occurs, but the contact between the particles remains and is
described by the law of Eq. (10).

E. Contact elasticity of flexure

It is known that microparticles (or larger particles) are
possessed of some friction regarding the rolling, which is
characterized by the rolling friction coefficient μr (for ex-
ample, see Refs. [29,33,35]). The sources of rolling resistance
are the processes of the plastic deformation in the contact
region. Since we simulate the nanosized powders, which
particles are not liable to the plastic deformation, we neglect
the rolling friction in the absence of a strong bond between the
particles. However, when the solid bridge is formed between
the particles, the contact becomes elastic to the rolling of the
particles (or elasticity of flexure). It is described by [see [61],
p. 272, Eq. (4.5)]

Mr (θr ) = min

{
4

3

Ea3
ch

1 − σ 2
p

θr ;
1

3
achfe

}
, (12)

where Mr is the rolling moment, and θr is the turn angle of the
contact area in the direction, which is orthogonal to the contact
axis. The first term in braces is the Lurie law for the interaction
between an inclined stamp and half space. The maximal
moment value, achfe/3, corresponds to the emergence of a
tensile load at the stamp periphery. In contrast to cases of
shearing or pivoting loads, the decrease of the contact area
does not occur when the maximal rolling moment is reached.
It is supposed that the rolling is realized here and the contact
area with the fixed size moves over the surface of the particles.

III. GENERATING THE INITIAL STRUCTURES

In the first stage a model cell with the sizes (xcell; ycell;
zcell) is filled by the initial structure with a given number
(Np) of the particles. This structure corresponds to the initial
filling of the powder in a natural experiment. So, based on
the physical considerations, the structure has to be connected,
i.e., it should not contain “suspended” (i.e., not in contact with
the environment) particles or clusters. In addition, assuming
that the initial powder filling in the natural experiment is
sufficiently homogeneous and isotropic, the initial structure
in computer simulations should have similar properties. At
last, as the computational capability is not possible to simulate
the compaction of macroscopic amounts of the powder, we
simulate the so-called representative element and set the
periodic boundary conditions on the faces of the model cell.
Therefore, to avoid the undesirable edge effects the structure
being generated should be periodic (from the outset) in the
translation direction of the model cell. In order to meet these
requirements we have developed the following algorithm.

The coordinates of the first particle in the cell are assigned
randomly. From the last particle, placed in the cell (with the co-
ordinates r0), a ray is set in a direction of random unit vector l0.
An attempt is made to place a new particle on this ray. For this
purpose, we analyze the overlap of the imaginary cylinder with
the radius req , which is centered on the given ray, with the other
particles. Let the j th particle of the filling have the coordinates
rj . Then the distance along the ray up to the point of the
closest convergence with the j th particle is ld = (rj − r0)l0,
and the shortest distance from the j th particle to the ray is lp =
[(rj − r0)2 − l2

d ]1/2. The point on the ray located at the distance
ld + (r2

eq − l2
p)1/2 from r0 is assumed to be a possible place for

the new particle. The following conditions allow us to consider
the j th particle as the potential candidate for the new particle
placing: (1) ld � 0; (2) lp � req ; (3) the new particle does
not overlap other particles. The equality of ld = 0 takes place
when the particle with the coordinates r0 (the origin of the ray)
acts as the j th particle. From a number of possible candidates,
we choose one that has the minimum number of neighbors in
a sphere of the given radius (rmeso). In the case of the equal
number of neighbors we choose the candidate which is farthest
from the origin of the ray. It should be noted that we analyze all
the images of the particles located in the nearest images of the
model cell along the ray. When a location for the new particle
has been chosen at the equilibrium distance req from some
j th particle, the closest position is determined, where the new
particle is in contact with two particles, i.e., with the j th parti-
cle and with another, already placed, one. This is the position
where the final placement of the new particle takes place.
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FIG. 3. An example of an initial structure in 2D geometry. The
cell sizes are xcell = zcell = 30d , the number of the particles is Np =
600.

Figure 3 represents an example of the powder structure,
which is generated by the algorithm described above in the
case of 2D geometry (in 3D geometry the structure images
are not so clear). It can be seen that this algorithm makes it pos-
sible to create an isotropic distribution of the particles which
form a connected cluster. In 3D geometry the cluster consists
almost exclusively of the chains with the thickness of two par-
ticles. The joint positions of the neighboring chains can be con-
sidered as exceptions. So, the average coordination number k

of the initial structures is exactly 4 in the absence of the disper-
sion forces, i.e., when req = 1. The presence of the dispersion
forces reduces the value of the equilibrium distance req and, as
a result, increases slightly the average coordination number.
For example, at d = 9.7 nm and ε = 1224kB the numerical
experiments give k = 4.0062 ± 0.0007. Figure 3 shows that
in 2D geometry the situation is different. When placing a
new particle in contact with two existing particles, even in the
absence of the dispersion forces (req = 1), there is a high prob-
ability of the contact with other particles due to the formation
of the regular hexagonal packing of the disks on the plane. The
latter, of course, leads to a significant increase of the average
coordination number of the initial structure in 2D geometry.

The minimum number (N1) of the particles in a model
cell is determined by the requirement of emergence of the
infinite connected cluster, which is formed by cross linking
of the cluster in the model cell with all of its images in the
neighboring cells. The moment of the formation of such a
cluster in 2D geometry is depicted in Fig. 3. However, the
formation of an infinite connected structure at Np = N1 does
not guarantee a sufficiently homogeneous distribution of the
particles in the model cell. Figure 3 shows the presence of
large pores, the size of which (at least in one direction) is
comparable to the size of the model cell. Further addition of
the particles leads to a rapid tightening of large pores, which
(from “the point of view” of the algorithm used) are the pores
with the sizes, that are substantially larger than the parameter
rmeso. As a result, the algorithm makes it possible to create a
porous structure with a characteristic pore size comparable to
the value of the parameter rmeso. In other words, the adjustment

of rmeso allows controlling the mesostructure of the systems
being generated. However, the study of the systems with
a pronounced mesostructure (i.e., with large pores) requires
large model cells. The inequality of Lcell � rmeso is advisable.
The simulation of such a system is extremely time consuming.
Therefore, in order to reduce a calculation time in this study
the parameter rmeso has been set to a sufficiently smaller value
(rmeso = 2d), when the mesostructure hardly manifests itself.

A sensitive parameter, reflecting the distribution of the
particles in the model cell, is the radial distribution function

g(r) = v0dN

ρdV
, ρ = 1 − θ = v0Np

Vcell
, (13)

where v0 = (π/6)d3 is the volume of a particle; dN is a number
of the particles, which fall into a spherical layer dV = 4πr2dr

with the center at the given particle; ρ is the density, i.e., the
volume fraction occupied by the particles, θ is the porosity,
i.e., the volume fraction of the pores, and Vcell is the volume
of the model cell. Averaging functions g(r) over all particles
of the system, we obtain a more convenient expression for
calculations:

g(r) = v0dM

ρNp4πr2dr
, (14)

where dM is the double number of the pairs of the particles, the
distance between which falls within the range (r − dr/2,r +
dr/2). The last equation allows gathering statistics much faster
than Eq. (13). Figure 4 demonstrates the functions g(r) cal-
culated by Eq. (14) for 3D structures. In general, they exhibit
well-known features of monosized systems [30,40,62]: the δ-
function region at r = req and the split-second peak at r/req =√

3 and 2, which “is a clear signature of the strong local order
in the first two coordination shells of the packing” [62].

The model cell can be considered as a representative
element if its size is much larger than the correlation distance

FIG. 4. Radial distribution functions in 3D geometry for different
densities ρ0 of initial structures: ρ0 = 0.24 (solid lines), 0.22 (dashed
lines), 0.20 (dotted lines), and 0.18 (dashed-dotted lines). The
inset shows the region 4 � r/d � 9 in an enlarged scale. Each
line is constructed by averaging over ten independent numerical
experiments. The simulation parameters are Np = 8000, rmeso = 2d ,
and the horizontal sizes of the model cell are xcell = ycell = 18d .
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of the particles and, in particular, the size of the structural
elements of the modeled system, i.e., the size of the pores.
These conditions are easily controlled by the form of the
radial distribution function: at the distance of Lcell/2 (half of
the minimum size of the cell) the function g(r) should surely
achieve its asymptotic value equal to unity. Figure 4 shows that
in 3D geometry at densities ρ < 0.22 the radial functions do
not achieve asymptotic value [g(r) 	→ 1 at r = Lcell/2], i.e.,
there are large pores in the model cell. Starting with the density
ρ = 0.24 the function g(Lcell/2) = 1 within the statistical
error, i.e., a sufficiently homogeneous particle distribution is
achieved. According to this the value of ρ0 = 0.24 was set
as the initial density of the powder systems simulated for
further analysis. It can be noted that the oscillations of the
radial distribution function g(r) of the initial structures (with
the parameter rmeso = 2d) almost disappear at the distance
r = 6d. Therefore, for the analysis of the low-density states
(with ρ � 0.2–0.5) it would be enough to take model cells with
the size of Lcell = 12d. However, the increase of the density
(as will be demonstrated below) leads to the increase of the
oscillatory behavior of the function g(r) and to the increase of
the correlation distance. That is why we use larger cells with
the minimal size of Lcell = 18d.

IV. CALCULATION PROCEDURE

The periodic boundary conditions are imposed at the sides
of a model cell. A compression step of a model cell is
implemented by a simultaneous reduction of the cell size (all
sizes when simulating the isotropic compaction; the cell height
zcell when simulating the uniaxial compaction; and so on) by
0.1% of the current value and the proportional resizing of
the coordinates of all particles. New equilibrium positions of
all particles are determined after each compression step. This
procedure corresponds to the powder compaction in quasistatic
conditions [3,4,6,16,17]. As known [30], the algorithm without
inertia is convenient to simulate such a process, i.e., the
displacements �ri of the particles are set proportionate to
the forces acting,

�ri = kfi , fi =
∑

j

fij . (15)

The maximum force fi is determined to specify a concrete
value of the proportionality coefficient k, which is the same
for all particles. The value of k is set in such a way that the
displacement of the ith particle under the maximum force fi is
equal to (d − req)/2. The rate of the force change is also taken
into account, namely, the ith particle is not moved farther than
the position, where the minimum of the absolute value of the
force fi is reached. As shown by the test runs, this procedure
allows surely finding a new equilibrium position of the system
at each compression step.

The stress tensor σij , averaged over the model cell, is of
great interest for the comparison with the experimental data.
We calculate the stress tensor by the known expression [30–34]

σij = −1

Vcell

∑
k<l

f
(kl)
i r

(kl)
j , (16)

where the summation is conducted over all pairs (k and l) of
interacting particles.

FIG. 5. The axial pressure pz = −σzz vs the powder density
during uniaxial compaction along the Oz axis. The symbols are
the experimental data of [25] on the compaction of alumina based
nanopowders with a characteristic size of the particles d = 9.7,
16, 21, or 38 nm. The lines are the results of simulations of
corresponding monosized model systems. The simulation parameters
are xcell = ycell = 18d; Np = 8000; rmeso = 2d; ρ0 = 0.24; μ = 0.1;
�rch = 0.008d; σb = 0.018E. The inset shows the small pressure
region in an enlarged scale.

V. UNIAXIAL POWDER COMPACTION

We have performed a simulation of the uniaxial compaction
of alumina based powders with a particle size of d = 9.7,
16, 21, or 38 (nm), for which we have experimental data
(see Ref. [25]), to verify the theoretical model presented in
the previous sections. The simulations have been performed
both with and without the formation of solid bridges between
the particles. In the latter case the parameter �rch is set by
unattainable large value (equal to the diameter of the particles).
Figures 5 and 6 demonstrate the simulation results compared
to the experimental data [25].

Figure 5 shows the compaction curves of the systems
simulated in the coordinates of the “density vs uniaxial
pressure (pz = −σzz).” In order to reduce the errors of the
calculation, each of the curves in the figure is constructed
by averaging of the calculation data on the compaction of
ten macroscopically equivalent but statistically independent
model cells. The experimental data of Ref. [25] at pressure
pz = 100 MPa demonstrate clearly the size effect in the
nanopowder compaction processes: the smaller the particle
size the lower the density achieved. For example, the density
of the powder with the particle size of d = 9.7 nm under the
compression by the pressure of pz = 100 MPa is 38.7%, while
for the powder with 38-nm particles the density is 49.6%,
i.e., the difference of the densities is �ρ = 10.9%. When
increasing the compaction pressure up to pz = 1 GPa the size
effect vanishes, i.e., the densities of all powder compacts are
identical within the experimental error.

In the theoretical model, when the formation and destruc-
tion of solid bridges is taken into account, the values of μ,
�rch, and σb play the role of free parameters (up to some
limits). Figures 5 and 6 show that the theoretical model makes
it possible to reproduce the experimental data [25] to high
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FIG. 6. The density difference �ρ = ρ(d) − ρ(d1) after the
uniaxial compaction up to the pressure pz = 100 MPa between
the powder systems with the particle size of d and d1 = 9.7 nm.
The symbols are the experimental data of [25]. The solid line is
the simulation result (simulation parameters are the same as in
Fig. 5). The dashed line is the result of simulations by the granular
dynamics method without the formation of the solid bridges between
the particles (the modified parameters are μ = 0.4; �rch = 1.0d).

precision. This is achieved at the values of free parameters,
μ = 0.1, �rch = 0.008d, and σb = 0.018E, which appear
to be quite reasonable. It is worth noting that at pressure
of pz = 1.0 GPa the density differences between the model
systems remain, for example, it is equal to 1.5% between
the systems with d = 38 nm and d = 9.7 nm. But after the
unloading of the model systems (removal of the axial pressure)
the density differences disappear completely. It should be
noted also that unloading from the level of pz = 100 MPa
(these lines are not shown in Fig. 5) leads to a reduction of the
densities of all model systems by about 0.6%.

When the formation of solid bridges is not taken
into account, i.e., at �rch = 1.0d, there is only one free
parameter in the theoretical model. It is the friction
coefficient μ. The best agreement with the experimental data
is reached at μ = 0.4. In this case the compaction curves pz(ρ)
are rather close to the corresponding curves shown in Fig. 5.
This indicates that for a qualitative description of the size
effect in the compaction processes of oxide nanopowders it
is sufficient to consider the presence of the dispersion forces
of attraction only. If a quantitative description is required,
the disregard of the bridge formation reduces the model
flexibility, as Fig. 6 illustrates. Here the density differences
between the powder systems with different particle size at
the compaction pressure pz = 100 MPa are presented. Within
the model without bridge formation, for example, the density
difference between the systems with a particle size of 38 and
9.7 nm is equal to 9.4%, which is noticeably lower than the
data of natural experiments (10.9%).

Figures 7 and 8 demonstrate such structural characteristics
of the powder systems studied as the radial distribution
function and the average coordination number. Figure 7 shows
that the particle size and, therefore, the amplitude of the
dispersion forces of attraction have a little effect on the form of

FIG. 7. The radial distribution functions at pressure pz = 1.0 GPa
for the model systems with a particle size of d = 9.7 nm (solid curve)
and 38 nm (dashed curve). The simulation parameters are the same
as in Fig. 5. The inset shows the region 5 � r/d � 9 in an enlarged
scale.

the radial distribution function. As the powder is condensed the
partial short-range ordering begins to appear. In comparison
with the initial structure (see Fig. 4) the dependencies of g(r) at
the pressure of pz = 1.0 GPa disclose the fourth and fifth peaks
in addition to the first three. Nevertheless, the oscillations of
the function g(r) fade quickly and at the distances r > 8d

within the statistical error we have g(r) = 1. In particular, this
fact means that the model cell with minimal size equal to 18d is
certainly a representative element of a powder system. Figure 8
shows that the average coordination number k is more sensitive
to the particle size than the radial distribution function.
Although all model systems have almost the same value k = 4
from the beginning, a noticeable difference between them
appears upon compaction. For example, when the pressure
reaches pz = 1.0 GPa we have k = 6.56 for the system with

FIG. 8. The average coordination number vs the density of the
model systems with d = 9.7 nm (solid line), 16 (dashed line), 21
(dotted line), and 38 (dashed-dotted line). The simulation parameters
are the same as in Fig. 5.
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FIG. 9. SEM micrograph of Al2O3 powder.

a particle size d = 9.7 nm and k = 6.41 for the system with
d = 38 nm. The difference increases yet more after unloading,
where we have k = 6.26 and k = 5.41 for those systems. As
a whole, the relatively low values of the average coordination
number are an indication of quite irregular structures, where
the regions of close-packed particles are absent. For example,
at the compaction pressure of pz = 1.0 GPa the share of the
particles with the coordination number of 10 is only 0.5% for
the system with d = 9.7 nm and 0.3% for the system with
d = 38 nm. The particles having 12 contacts are absent.

VI. COMPARISON OF UNIAXIAL, BIAXIAL, AND
ISOTROPIC COMPACTION PROCESSES

The natural and numerical experiments have been per-
formed on the effect of the conditions of the compaction
process, i.e., on the comparison of such processes as the
uniaxial compaction, the biaxial (radial) compaction, or the
isotropic (isostatic) compaction to further verify the theoretical
model. In the course of natural experiments the closed-die
compaction and cold isostatic pressing of Al2O3 nanopowders
(phase composition is 0.9γ + 0.1δ) and 1% Nd:Y2O3 (yttrium
oxide doped by 1% of neodymium in the monoclinic phase)
have been performed. The powders were obtained in the
Institute of Electrophysics (Ural Branch of RAS) by the target
evaporation with a pulse-periodic CO2 laser, followed by
the subsequent condensation in the air stream [63,64]. The
particle size analysis of the powders was performed with a
scanning microscope. Figure 9 shows a typical image. As
can be seen, the powders display weak agglomeration that
is characteristic for the target evaporation method [63,64].
Computer processing of the images allowed constructing the
size distribution of the powders, see Fig. 10, which was
adequately fitted by a log-normal distribution,

ω(x) = 1

xσ
√

2π
exp

[
− (m − ln x)2

2σ 2

]
. (17)

In particular, the fitted parameters are σ = 0.547 and m =
2.644 for the Al2O3 powder. The characteristic size of the
particles, where the maximum of the function ω(x) is located,

FIG. 10. The size distribution of Al2O3 powder particles obtained
by laser target evaporation. The symbols are the results of micro-
graphs processing; the line is the approximation by the log-normal
distribution function (17) with parameters σ = 0.547 and m = 2.644.

is d � 10.4 nm. The Y2O3 nanopowder is characterized by
close values of the parameters.

During the natural experiments the powders were subjected
to pressures of 100, 150, and 200 MPa. The closed-die
compaction was performed in a hydraulic decimal press
DP-36. Here the powder was placed into the cylindrical
hole (14 mm in diameter) of a metal mold, and the external
pressure pz was applied to the upper movable punch. The iso-
static pressing (px = py = pz) was performed by an original
izostate based on the hydraulic machine NGR-2000. Here the
powder was packed in an impermeable flexible latex envelope.
The ethylene glycol was the working fluid of the hydrostat.
Figure 11 presents the experimental results in the “density vs
pressure pz” coordinates.

As compared to the powders obtained by the wire explosion
method, those compaction experimental data [25] have been
shown in Fig. 5, the nanopowder used in the present study has
a much higher density in the pressure range investigated. Thus,
according to Ref. [25] at pressure pz = 100 MPa the density of
the powder with the particle size d = 10 nm amounts to 38.7%,
while now we have ρ � 50.5% for the powder with d = 9.7 nm
under uniaxial compaction. The difference in compressibility
of the powders obtained by different methods can appear due
to the influence of gases adsorbed on the surfaces of the
powder particles. According to Ref. [63] the mass fraction of
the adsorbates in Al2O3 nanopowders obtained by the target
evaporation is about 5%. The cleaning of the particle surface,
which is necessary, for example, in the production of laser
ceramics [64], occurs usually during the powder annealing.
However, in this study, the annealing has not been performed
to keep a low powder agglomeration.

In terms of the theoretical model the high content of the
adsorbates on the particle surface makes the formation of
solid bridges difficult (that is why there is no agglomeration of
the powder; see Fig. 9) and has an influence on the effective
values of the friction coefficient (μ) and the parameter α. The
latter determines the minimum distance between the powder
particles, h0 = αd0, which is considered as the contact of
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FIG. 11. The powder density ρ vs the external pressure pz.
The symbols are the experimental data on the uniaxial compaction
(diamonds) and the isotropic compaction (circles) for the Al2O3

powders (grey dots) and Y2O3 powders (open dots). The lines are
the results of computer simulations of uniaxial compaction of Al2O3

powder: the curve of monotonic loading and the curves of elastic
unloading from the levels of pz = 100, 150, and 200 MPa are shown.
The simulation parameters are �rch = 1.0d (i.e., there are no solid
bridges between particles); ε = 1224kB , d = 10.4 nm, μ = 0.13,
α = 0.37.

particles. The value α = 0.24 was obtained in Refs. [23,24,53]
with the reference to the clean surfaces of the particles, when
nothing prevented its connection. The presence of adsorbates
should increase the minimum distance between the particles,
i.e., the value of α. Hence, in order to describe the experimental
data on uniaxial compaction of Al2O3 nanopowder the value of
�rch was equate with the particles’s diameter, which excludes
the possibility of the bridge formation, and the quantities μ

and α were playing the role of free parameters.
The best description of the experimental data has been

obtained with the following values: μ = 0.13 and α = 0.37.
Figure 11 shows the results of computer simulations at these
parameters in comparison with the experimental data. The
theoretical curves in the figure have been constructed by the
averaging over ten independent simulations. In addition to
the monotonic loading curve, the lines of elastic unloading
have been presented, where the external axial pressure pz is
decreased from the values of 100, 150, and 200 MPa down
to zero. It is the powder density, realized by the pressure
release (the unloading density), which should be compared
to the experimental data, since the latter are also obtained
from the analysis of the unloaded compacts. Figure 11 shows
that the theoretical model can reproduce the experimental data
with high accuracy, the error in the density is less than the
scattering of the experimental points.

The theoretical model with the fixed parameters μ and
α has been used to study the powders compaction in other
geometries of the external load (not uniaxial): the biaxial (or
radial) load, when the model cell is compressed along two axes
(Oz and Oy), and the isotropic (or isostatic) load. Figure 12
demonstrates the simulation results. A joint analysis of the
experimental data, presented in Fig. 11, and the simulation

FIG. 12. The comparison of the uniaxial (solid lines), biaxial
(dashed lines), and isotropic (dotted lines) compaction processes in
the density vs pressure pz coordinates. The numbered lines have been
calculated within the continuum theory of plastically hardened porous
body, Eqs. (20)–(23). The unnumbered lines are simulations by the
granular dynamics method (here, in addition to the loading curves,
the curves of elastic unloading from the levels of pz = 100, 150, and
200 MPa have been shown). The simulation parameters are the same
as in Fig. 11.

curves in Fig. 12 show a complete consent of them. It turned
out that the density of oxide nanopowders (Al2O3 or Y2O3)
depends very weakly on the geometry of the external load.
Both the simulation and the natural experiments reveal a little
difference (less than 1%) between the unloading densities of
the compacts after isostatic or uniaxial compaction with the
pressure of pz = 100 MPa. When the maximal pressure pz is
raised up to 200 MPa, these differences disappear completely.

It should be noted that the observed insensitivity of
oxide nanopowders to the geometry of external loads is very
surprising. In order to describe the mechanical properties of
the powder bodies a continuum theory of plastically hardening
porous body [5,9,10] is usually applied. This theory describes
the compaction processes of micron sized and coarser powders.
According to the continuum theory, the border between the
regions of the elastic and plastic deformation of the body, i.e.,
the loading surface, is given by

p2

�
+ τ 2

φ
= (1 − θ )τ0(γ0), (18)

where p = −Sp (σij )/3 is the hydrostatic part of the stress
tensor, τ = √

τij τji is the intensity of the stress deviator
(τij = σij + pδij , δij is the unit tensor), τ0 is the yield strength
of the solid phase of the porous body. The measure of the
accumulated shear deformation of the solid phase, γ0, is given
by the relations

γ0 =
∫ t

0
γ̇0dt, (1 − θ )γ̇ 2

0 = �ė2 + φγ̇ 2, (19)

where ė = Sp (ėij ) and γ̇ are the first invariant of the strain
rate tensor and the intensity of its deviator, respectively. The
functions of porosity, �(θ ) and φ(θ ), which are in Eqs. (18)
and (19), have been established in Ref. [11] within the
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hydrodynamic analogy with the theory of elasticity, and can
be presented in the form of [6]

φ = (1 − θ )5/3, � = 2

3

1 − θ + θ2/2

θ
φ. (20)

Eqs. (18)–(20), together with the associated flow law, give

pz =
√

� + 2

3
φ

√
1 − θ τ0(γ0),

(21)

γ0 =
∫ θ0

θ

√
� + 2

3
φ

dθ

(1 − θ )3/2
,

for the process of uniaxial compression along the axis of Oz;

pz = py =
√

� + 1

6
φ

√
1 − θ τ0(γ0),

(22)

γ0 =
∫ θ0

θ

√
� + 1

6
φ

dθ

(1 − θ )3/2
,

for the process of biaxial compression along Oz and Oy axes;
and

pz = py = px =
√

�
√

1 − θ τ0(γ0),
(23)

γ0 =
∫ θ0

θ

√
�

dθ

(1 − θ )3/2
,

in the case of the isostatic compression.
The dependence of τ0(γ0), the so-called hardening law of

the material, is not determined within the continuum theory,
i.e., it is an input parameter of the theory. As a rule, the
hardening law is established empirically. We can determine
the dependence of τ0(γ0) from any of the simulation curves
obtained by the granular dynamics method, for example, from
the curve of uniaxial compaction. After that the continuum
theory in accordance with Eqs. (20)–(23) determines uniquely
the powder behavior at other loading geometries. Figure 12
shows the curves calculated in this way (the numbered lines).
As can be seen, the traditional continuum theory predicts an
appreciable influence of the loading geometry on the final
porosity of the compacts. For example, in the pressure range
investigated (pz = 100–200 MPa), it predicts the difference
in density between the isostatic and the uniaxial compaction
processes of about 10%, i.e., the transition from the geometry
of the uniaxial compaction to the biaxial process, and then to
the isostatic process, should significantly increase the density
of the compacts. This theoretical prognosis conforms to the
behavior of the coarse powders, where the difference in the
density between the uniaxial and the isostatic compaction
processes is just about 10% [65].

Contrary to the predictions of the continuum theory,
the oxide nanopowders studied, as Fig. 11 shows, have
a qualitatively different behavior, namely, they display the
extremely low sensitivity to the geometry of the external
loads. On one hand, it is the evidence of the inapplicability of
the traditional continuum theories to describe the mechanical
properties of these powders. On the other hand, it emphasizes
the high reliability of the simulations within the theoretical
model developed, which makes it possible to reproduce this
specific behavior of oxide nanopowders to high precision.

The insensitivity of the powder density with respect to the
geometry of loading seems to bring the powder behavior to

FIG. 13. The ratio of the lateral (px = −σxx) to the axial (pz)
pressures vs the density. The solid line is for the uniaxial compression
of the model cell along the Oz axis; the dashed line is for the biaxial
compression along the Oz and Oy axes. The simulation parameters
are the same as in Fig. 11.

the fluid one, for which, in particular, the stress tensor in the
static limit is always spherical irrespective of the scheme of
the external loads. However, Figs. 13 and 14 prove that for
the nanopowders this is not the case. Figure 13 shows that
in the powders studied there is no evening the stresses in
different directions. The lateral pressure px = −σxx (in the
direction of the Ox axis, where there is no compression of
the model cells) under the uniaxial or biaxial compaction
is significantly lower than the axial pressure pz = −σzz. At
the microlevel, this is expressed in the emergence of an
appreciable anisotropy induced by the compaction processes.
As the anisotropy illustration, Fig. 14 shows a strong angular
dependencies of the contact forces in the system after the
uniaxial and biaxial compaction processes.

FIG. 14. The average force of the particles normal interactions
fn = fe − fa vs the angle between the contact axis and the vertical
axis Oz at the external pressure pz = 500 MPa for uniaxial /1/, biaxial
/2/, and isotropic /3/ compactions. The simulation parameters are the
same as in Fig. 11.
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VII. CONCLUSION

A discrete theoretical model of a powder body has been
presented. The model makes it possible to reproduce the
mechanical properties of the oxide nanopowders to high
precision. The verification of the model has been performed
by the experimental data on the compaction of alumina
based nanopowders and 1% Nd:Y2O3 nanopowders (yttrium
oxide doped by 1% of neodymium). It is shown that the
model describes reliably such specific features of nanopow-
der behavior as the size effect and the low sensitivity
to the geometry of loading (uniaxial, biaxial, or isotropic
compression).

The main results of the research are as follows:
(1) The origin of the size effect in the processes of the cold

compaction of dry oxide nanopowders is the dispersion forces
of interparticle attractions (van der Waals–Hamaker interac-
tions). It is sufficient to take into account these interactions
in the theoretical model in order to describe the size effect
on a qualitative level. However, the accurate (quantitative)
analysis of easily aggregating nanopowders (for example,

annealed powders with an adsorbates-free surface) requires
the introduction to a theoretical model of the possibility of
formation and destruction of stronger interparticle bonds of
chemical nature.

(2) The oxide nanopowders exhibit very low sensitivity to
the geometry of compression: the differences in the density
of the compacts at a fixed level of external load for the
schemes of uniaxial and isostatic compaction are less than 1%.
Such behavior is qualitatively different from the one of micron
sized or coarser powders and is not described by the continuum
theory of plasticity of hardening porous body, which is
traditionally used to describe the mechanical properties of the
powder bodies.
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