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Frequency bands of strongly nonlinear homogeneous granular systems
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Recent numerical studies on an infinite number of identical spherical beads in Hertzian contact showed the
presence of frequency bands [Jayaprakash, Starosvetsky, Vakakis, Peeters, and Kerschen, Nonlinear Dyn. 63, 359
(2011)]. These bands, denoted here as propagation and attenuation bands (PBs and ABs), are typically present in
linear or weakly nonlinear periodic media; however, their counterparts are not intuitive in essentially nonlinear
periodic media where there is a complete lack of classical linear acoustics, i.e., in “sonic vacua.” Here, we study the
effects of PBs and ABs on the forced dynamics of ordered, uncompressed granular systems. Through numerical
and experimental techniques, we find that the dynamics of these systems depends critically on the frequency and
amplitude of the applied harmonic excitation. For fixed forcing amplitude, at lower frequencies, the oscillations
are large in amplitude and governed by strongly nonlinear and nonsmooth dynamics, indicating PB behavior.
At higher frequencies the dynamics is weakly nonlinear and smooth, in the form of compressed low-amplitude
oscillations, indicating AB behavior. At the boundary between the PB and the AB large-amplitude oscillations
due to resonance occur, giving rise to collisions between beads and chaotic dynamics; this renders the forced
dynamics sensitive to initial and forcing conditions, and hence unpredictable. Finally, we study asymptotically
the near field standing wave dynamics occurring for high frequencies, well inside the AB.
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I. INTRODUCTION

One-dimensional ordered arrays of granular particles
exhibit rich dynamical behavior, which has been extensively
studied. The dynamics of these media is highly tunable,
from strongly nonlinear and nonsmooth in the absence of
static precompression, to weakly nonlinear and smooth under
large static precompression [1,2]. The nonlinearity in granular
media arises from two sources: First, the geometry of the
interacting particles leads to a nonlinear Hertzian interaction
[3], and second, a tensionless behavior when beads separate.
This interaction between neighboring spherical elastic beads
may be written as

F =
{

k d3/2, d � 0

0, d < 0
. (1)

Here, d is the overlap displacement between beads, k is the
coefficient of the Hertzian interaction, dependent on size and
material, and F is the resulting force. Granular crystals have
been proposed for a variety of engineering applications; some
of these include shock energy trapping [4–6], vibration filtering
[7,8], focusing [9], energy harvesting [10], and nonlinear local-
ization [11]. In addition, granular crystals have been shown to
support metastable breathers in material systems characterized
as “sonic vacuum” [12], and localized oscillations in diatomic
crystals [13] and in systems with defects [14,15]. Hence,
understanding in detail the mechanisms for controlling energy
propagation, attenuation, and localization in granular crystals
might lead to new classes of purely passive filtering and
protective devices.
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This work examines the response of an uncompressed, har-
monically driven two-bead system, similar to the one discussed
in the theoretical model proposed by Jayaprakash et al. [16].
In contrast to the case of statically precompressed granular
crystals, uncompressed granular crystals exhibit strongly non-
linear dynamic behavior. Their response is not linearizable and
there is complete absence of classical linear acoustic response.
Nesterenko characterized this essentially nonlinear medium
as sonic vacuum [1] since the linearized speed of sound (as
defined in classical linear acoustics) is zero. Despite the fact
that frequency bands are phenomena inherent to linear periodic
systems, Jayaprakash et al. [16] demonstrated the existence
of similar propagation and attenuation bands in essentially
nonlinear uncompressed granular crystals. They predicted that
a one-dimensional granular crystal of infinite extent exhibits
either propagation or attenuation behavior dependent on both
frequency (as is the case in coupled linear periodic oscillators)
and amplitude (due to the nonlinearity of the system).

The propagation band (PB) of the system is observed
at lower drive frequencies. It is characterized by strongly
nonlinear and nonsmooth dynamics, a result of bead sep-
arations and collisions. This gives rise to a time-periodic
train of traveling pulses, similar to solitary waves analytically
predicted and experimentally demonstrated by Nesterenko
[1]. At higher frequencies, the attenuation band (AB) is
characterized by a region where spatially periodic solutions
cannot exist. In this regime, the system exhibits low-amplitude
localized oscillations bounded by decaying spatial envelopes,
similar to evanescent waves predicted in band gaps of linear
media. In this high-frequency regime the chain is dynamically
compressed and weakly nonlinear dynamics governs the
dynamical response. Jayaprakash et al. [16] predicted that
these PBs and ABs exist as well in forced granular media
of arbitrary length. We set out to demonstrate this behavior in
a harmonically forced system of two beads.
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FIG. 1. (Color online) Experimental setup.

II. EXPERIMENTAL SETUP AND NUMERICAL MODEL

In our experiments, we consider a system of two beads
placed between a dynamic sensor (PCB 208C01) and a
piezoelectric actuator (PST 150/5/7 VS10) [17] (Fig. 1).
The actuator is used to harmonically excite the first
bead. The piezoactive material of the actuator is much stiffer
than the actuator cap and acts as a moving wall. We consider the
system to be displacement driven; i.e., the transfer of the initial
excitation is controlled by Hertzian interactions, as expressed
in (2). The dynamic force sensor measures transmitted force
and it is used to infer the dynamics and state of the system, i.e.,
whether the system is driven in a strongly or weakly nonlinear
regime. We use two polycarbonate support rods to align the
beads, actuator, and dynamic sensor along a common axis.
Polycarbonate is chosen to reduce acoustic coupling between
the beads and supports. Finally, we adjust the offset bias
of the actuator to achieve dynamics at near zero precompres-
sion. The dynamics of the experiments is highly dependent
upon this initial condition of zero static compression. Reaching
and maintaining zero static overlap in longer chains is more
difficult and less repeatable. Similar dynamical regimes were
observed in chains of three, four, and five beads, but we
have chosen to omit the results due to a lack of repeatability
in the measurements. We believe such dynamic instabilities
to be caused by rotations and misalignment between the
particles.

We numerically model the setup shown in Fig. 1 by
considering all interactions to be Hertzian and purely elastic.
To obtain the coefficient in the Hertzian contact law, we
consider the experimental material properties of the beads,
actuator, and dynamic sensor. At the boundaries, the particles
are in contact with an actuator and a force sensor, both having
a planar surface. We model the planar surfaces of the actuator
and sensor as spheres with radii tending to infinity. The
beads are made of stainless steel 316 and have a Young’s
modulus Es = 193 GPa, Poisson’s ratio vs = 0.3, mass m =
28.84 g, and radius R = 9.525 mm [18]. The Young’s modulus
and Poisson ratio for the actuator and dynamic sensor are
Ea = 193 GPa, va = 0.3 and Ed = 197 GPa, vd = 0.272,
respectively [18]. The equations of motion for the experimental
setup shown in Fig. 1 are given by

m
d2u1

dt2
= (4/3)E1∗

√
R

{
[F (t)−u1]3/2

+ − 1√
2

(u1 − u2)3/2
+

}
,

m
d2u2

dt2
= (4/3)E1∗

√
R

1√
2

(u1 − u2)3/2
+

− (4/3)E2∗
√

R(u2)3/2
+ ,

1

E1∗
= 1 − ν2

A

EA

+ 1 − ν2
S

ES

= 2
1 − ν2

S

ES

,

1

E2∗
= 1 − ν2

S

ES

+ 1 − ν2
D

ED

, (2)

where u1 and u2 are the displacements of beads 1 and 2,
respectively, and E1∗ and E2∗ the effective Young’s moduli of
the different contact interactions. The subscript “ + ” is used
to capture the tensionless behavior of the particles, signifying
that only positive values of the terms inside the parentheses
should be considered and set equal to zero otherwise.

To study the forced dynamics of system (2) we impose a
harmonic displacement F (t) = A sin(ωt) of the left steel wall
bounding the system; this wall is assumed to be initially in
contact with the first bead. By varying the frequency of the
harmonic excitation of the wall we aim to study the dynamics
of the granular system, and, specifically, to study the intended
transition from a low-frequency PB to a high-frequency AB as
the frequency increases. In addition, we will discuss interesting
complex nonlinear dynamics occurring close to the boundary
between the PB and AB when large-amplitude oscillations of
the bead due to resonance occur. To stabilize the numerical
simulations and simulate more accurately the experiment,
we add a small amount of artificial viscous damping (equal
to 100 N s/m). Otherwise, the model does not include any
damping or dissipative mechanism which is inherent in the
experimental system.

III. NUMERICAL RESULTS

In Fig. 2 we present the response of the system for a low
excitation frequency of 10 Hz. Note that in all numerical
simulations and experiments the excitation amplitude is
approximately 0.4 μm. The force profile in time transmitted
to the wall (opposite to the actuator) is plotted in Fig. 2(a). At
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FIG. 2. (Color online) Response of the two-bead system for ex-
citation frequency equaling f = 10 Hz and amplitude A = 3.951 ×
10−7 m: (a) Transmitted force on the boundary (the site of the dynamic
sensor), (b) bead displacements.
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FIG. 3. (Color online) Response of the two-bead system for
excitation frequency equaling f = 500 Hz and amplitude A =
3.775 × 10−7 m: (a) Transmitted force on the boundary (the site of
the dynamic sensor), (b) bead displacements.

this low frequency, the responses of both beads closely follow
the excitation [see the temporal evolution of the particles’
displacement in Fig. 2(b)]. When the excitation displacement
is positive the beads are compressed against the dynamic
force sensor, and when the excitation is negative the beads
relax and lose contact with the dynamic sensor, resulting in
zero applied force. The beads perform strongly nonlinear,
nearly in-phase and highly asymmetric oscillations about their
equilibrium positions, transmitting a force in the form of a
well-separated train of pulses to the sensor. This is indicative of
dynamics in a PB of the system. Similar force and displacement
responses can be seen at higher excitation frequencies (500 Hz,
Fig. 3 and 1000 Hz, Fig. 4), with the notable difference that
at higher frequencies the bead displacements do not follow
the motion of the actuator but instead have more complex
waveforms.

At higher frequencies, however, we note a qualitatively
different behavior in the dynamic response of the particles,
since now they execute standing wave oscillations. Indeed, at
3000 Hz (Fig. 5), the displacement of the beads cannot keep up
with the high frequency of the actuator and attain a sustained
state of (positive) dynamic compression. Furthermore, at
such a compressed state separation between beads is no
longer possible. This induces a state of sustained compression
[denoted by the nonzero average force in Fig. 5(a)], which
changes the dynamic behavior of the system from strongly
nonlinear (characteristic of the PB), to weakly nonlinear
and spatially localized (characteristics of the AB). In the
AB the dynamics is weakly nonlinear and, as shown in a
later section, can be analyzed by an asymptotic technique.
In addition, the amplitude of the oscillation about the mean
position of each bead is significantly reduced from bead to

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

TIME (ms)

F
O

R
C

E
 (

N
)

(a)

0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

TIME (ms)
D

IS
P

LA
C

E
M

E
N

T
 (

µm
)

BEAD 1 BEAD 2 EXCITATION

(b)

FIG. 4. (Color online) Response of the two-bead system for
excitation frequency equaling f = 1000 Hz and amplitude A =
3.5 × 10−7 m: (a) Transmitted force on the boundary (the site of
the dynamic sensor), (b) bead displacements.

bead [Fig. 5(b)], similar to attenuation in linear media. This
change is brought solely by varying the excitation frequency,
keeping the excitation amplitude nearly constant.

When increasing the excitation frequency to 5000 Hz
(Fig. 6), the mean force calculated at the wall remains nearly
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FIG. 5. (Color online) Response of the two-bead system for
excitation frequency equaling f = 3000 Hz and amplitude A =
3.408 × 10−7 m: (a) Transmitted force on the boundary (the site of
the dynamic sensor), (b) bead displacements.
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FIG. 6. (Color online) Response of the two-bead system for
excitation frequency equaling f = 5000 Hz and amplitude A =
3.57 × 10−7 m: (a) Transmitted force on the boundary (the site of
the dynamic sensor), (b) bead displacements.

unchanged [Fig. 6(a)], but the oscillation amplitude about
the mean value is considerably reduced [Fig. 6(b)]. As the
frequency of the excitation increases, the spatial localization
of the bead response similarly increases. In conclusion, we
note that above 1000 Hz the system response is in the AB.
Figure 7 shows the significant decrease of the power of the
higher harmonics of the nonlinear standing wave response
when transitioning from the strongly nonlinear dynamics in
the lower-frequency PB [Fig. 7(a)] to the weakly nonlinear
response in the higher-frequency AB [Fig. 7(b)]. In addition,
the compressed state in the AB allows us to linearize the system
for a more comprehensive analytical study, as described in
Sec. V below.

IV. EXPERIMENTAL RESULTS

We test the experimental setup shown in Fig. 1. We excite
the first bead harmonically with amplitudes of approximately
0.4 μm (reproduced in the numerical simulations). Small
deviations (±0.05 μm) from this excitation value occur due
to inherent nonlinear behavior of the actuator. We measure the
force exerted on the dynamic sensor and show the existence of
a high-amplitude strongly nonlinear state at low frequencies
(the PB), and a low-amplitude weakly nonlinear state at high
frequencies (the AB).

In Figs. 8(a) and 8(b), we show the experimental time series
of the force measured at the sensor at driving frequencies of
10 and 500 Hz, respectively. These are qualitatively similar to
the simulations at the same frequencies. We note a series of
transmitted compressive force pulses, similar to the dynamics
observed in simulation. At 10 Hz the width of this pulse is
approximately half the period of the drive; however, at 500 Hz
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FIG. 7. (Color online) Fourier transform of the transmitted force
to the dynamic sensor at forcing frequency equaling (a) f = 500 Hz
and (b) f = 3000 Hz.

this pulse width decreases below half the drive period. This is
in agreement the numerical results predicting decreasing pulse
width for higher frequencies. The maximum transmitted force
is higher at 500 Hz, also in qualitative agreement with the
numerical simulations. However, in the numerical simulations
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FIG. 8. (Color online) Experimental time series of the force at
the dynamic sensor at (a) f = 10 Hz and A = 3.951 × 10−7 m, and
(b) f = 500 Hz and A = 3.775 × 10−7 m.
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we observed resonance phenomena where the maximum force
recorded was much higher at 1000 Hz. The experimental
observation of resonances is not included in this paper due
to difficulty in experimental repeatability.

A number of experimental uncertainties such as misalign-
ment, surface roughness, and bead rotations become important
and difficult to avoid as the displacement amplitudes increase
at resonance. In addition, we performed an extensive series
of numerical simulations of harmonically forced ordered
granular systems close to the boundary between their PB and
AB where nonlinear resonances are excited and the granular
media execute large-amplitude oscillations. In these regions,
there occur strong collisions between beads, which are well
known to give rise to chaotic dynamics [19]. Due to the
existence of such chaotic (nonsmooth) motions the forced
dynamics of the forced granular systems exhibits sensitive
dependence to initial and forcing conditions and become, in
essence, unpredictable. This was verified in the experiments
where in the resonance region (i.e., for frequencies close
to the boundary between the PB and the AB) different
experimental runs that were performed under identical forcing
and initial conditions yielded completely different results.
Close to the boundary between the PB and AB the inherent
chaotic dynamics of the harmonically forced system prevents
the accurate measurement of the dynamic response, and the
resulting chaotic dynamics becomes unpredictable.

By increasing the frequency of the excitation the
dynamics becomes again regular and fully predictable (and
reproducible). Indeed, a weakly nonlinear regime is found
at higher frequencies [3000 Hz, Fig. 9(a) and 5000 Hz,
Fig. 9(b)], with the nonzero mean force indicating a state
of sustained compression. The small-amplitude oscillations of
the measured force about this mean value indicates weakly
nonlinear interactions in the dynamics. Moreover, increasing
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FIG. 9. (Color online) Experimental time series of the force at the
dynamic sensor at (a) f = 3000 Hz and A = 3.408 × 10−7 m, and
(b) f = 5000 Hz and A = 3.57 × 10−7 m.
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FIG. 10. (Color online) Experimental power spectral densities of
the force time series of (a) Fig. 8(b): f = 500 Hz, and (b) Fig. 9(a):
f = 3000 Hz.

the frequency decreases the transmitted force amplitude for
these oscillations. A comparison of the Fourier spectrum,
calculated using a discrete fast Fourier transform, of the
dynamics in the PB [Fig. 10(a)] with those in the AB
[Fig. 10(b)] underlines that fewer harmonics are excited in the
weakly nonlinear phase, in agreement with the simulations.
It should be noted that, although the experimental results
do not match the numerical results quantitatively, we have
good qualitative agreement between the two responses. The
mismatch can be attributed to the dry friction, material
damping, and other uncertainties present in the experimental
setup.

It should be emphasized that the reported experimental
results are only for a system of two interacting beads. These
experimental results show qualitative agreement with the
numerical results for two beads. We believe this validates
the modeling and suggests that the numerical results for
longer chains hold true. At small initial compressions the
experiment demonstrates similar dynamics to that predicted
by our analysis for longer chains. We analytically examine the
differences in dynamics for chains of arbitrary length below.

V. ANALYSIS

In this section, we analytically study the weakly nonlinear
dynamics in the AB. The induced permanent compression
leads to a linearizable system suitable for analytical tech-
niques. We extend the previous results by considering a
homogeneous crystal of N beads. Similar to the setup of Sec. II
for two beads, the first bead is harmonically driven and the N th
bead is constrained by a fixed wall. All the beads interact
with their nearest neighbors through Hertzian interaction
law. We incorporate linear viscous damping (coefficient λ)
between interacting beads to simulate dissipative effects in
the experimental system and to suppress transient dynamics.
Here, we account for the damping force only when the beads
are in contact and thus incorporate the Heaviside function (�)
on the relative displacement of the beads. In our analytical
approach we nondimensionalize the equations of motion so
that the results are of general applicability. We therefore begin
with presenting the equations of motion of the theoretical
model of an N -bead chain with right end fixed and the
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left end harmonically excited:

m1
d2u1

dt2
= (4/3)E1∗

√
R[F (t) − u1]3/2

+ − (4/3)E∗

√
R

2
(u1 − u2)3/2

+ + λ[ḟ (t) − u̇1]�[f (t) − u1] − λ(u̇1 − u̇2)�[u1 − u2]

· · ·
mi

d2ui

dt2
= (4/3)E∗

√
R

2
{(ui−1 − ui)

3/2
+ − (ui − ui+1)3/2

+ } + λ(u̇i−1 − u̇i)�[ui−1 − ui] − λ(u̇i − u̇i+1)�[ui − ui+1] (3)

· · ·
mN

d2uN

dt2
= (4/3)E∗

√
R

2
uN−1 − uN )3/2

+ − (4/3)E2∗
√

R(uN )3/2
+ + λ(u̇N−1 − u̇N )�[uN−1 − uN ] − λ(u̇Ni)�[uN ],

where i = 2,3, . . . ,(N − 1) are the bead subscripts and F (t) = A sin(ωt) is the harmonic base excitation as defined in Sec. II.
The appropriate nondimensionalization leads to the set of normalized equations of motion,

d2X1

dτ 2
= η[sin(βτ ) − X1]3/2

+ − 1√
2

(X1 − X2)3/2
+ + ξ [β cos(βτ ) − X′

1]�[sin(βτ ) − X1] − ξ (X′
1 − X′

2)�[X1 − X2]

· · ·
d2Xi

dτ 2
= 1√

2
{(Xi−1 − Xi)

3/2
+ − (Xi − Xi+1)3/2

+ } + ξ (X′
i−1 − X′

i)�[Xi−1 − Xi] − ξ (X′
i − X′

i+1)�[Xi − Xi+1] (4)

· · ·
d2XN

dτ 2
= 1√

2
(XN−1 − XN )3/2

+ − α(XN )3/2
+ + ξ (X′

N−1 − X′
N )�[XN−1 − XN ] − ξ (X′

N )�[XN ],

where E∗ is the effective stiffness between the interacting
beads, and Xi = ui/A, τ = (4E∗

√
AR/3m)1/2t ≡ ψt , η =

E1∗/E∗, α = E2∗/E∗, β = ω/ψ , ξ = λ/mψ are nondimen-
sional variables relating (3) and (4). Without loss of generality,
we consider η = 1 and α = 1 denoting that the dynamic
sensor, actuator, and beads are made of the same material. This
does not affect the validity of the resulting dynamics. Recalling
the material and experimental data from Sec. II, we obtain
E∗ = ES/[2(1 − ν2

S)], A = 3.5 × 10−7 m, and ω = 8500Hz;
moreover, the nondimensional quantities are computed as
β = 3.1742, ψ = 1.6825 × 104, and ξ = 0.5.

As a second step, and in view of the fact that a sustained
compression is experienced by the beads in the AB, we
decompose the bead displacements into “static” (permanent
constant compression) and “dynamic” (oscillatory) compo-
nents. For high-frequency excitations in the AB, experiment
and simulation indicate that small-amplitude oscillations about
a permanent compressed state occur, and this decomposition
is in line with this observation. This motivates us to introduce
translated coordinates Xj (τ ) = δj + xj (τ ), where the j th
bead’s displacement is expressed as a combination of its static,
δj > 0, and dynamic, xj (t), components. In simulations we
observed that δj > δj+1, i.e., that the permanent compression

experienced by each bead decreases as we move away from the
actuator and the standing wave oscillation in the AB becomes
spatially localized (Fig. 11). The axes in Figs. 11–15 denote
the nondimensional units derived above. From the previously
shown results it can be deduced that no separation occurs
between beads once the dynamics enters the AB, i.e., the
dynamics is smooth between interacting beads. Therefore the
subscript + can be eliminated from the equations of motion
(4), which greatly facilitates the asymptotic analysis. The only
exception is the contact between the actuator and first bead.

When the dynamics is well inside the AB it holds that
|sin(βτ ) − δ1| � x1(τ ), except in the close neighborhood
of points “a” and “b” as shown in Fig. 12(a). Thus, it
can be assumed that [sin(βτ ) − δ1 − x1] > 0 in the region
between points a and b where the actuator displacement
exceeds the permanent compression of the first bead δ1,
and [sin(βτ ) − δ1 − x1] < 0 when the actuator displacement
is less than δ1. Figure 12(b) shows a detailed view of
the region between points a and b. It follows that we can
modify (4) by decomposing the responses in terms of static
and dynamic components and incorporating the observations
mentioned above. This leads to the following modified
equations:

d2x1

dτ 2
= η [sin (βτ ) − δ1]3/2

+ − 3

2
η [sin (βτ ) − δ1]1/2

+ x1 − 1√
2

(δ1 − δ2)3/2 − 3

2
√

2
(δ1 − δ2)1/2(x1 − x2)

+ ξ [β cos (βτ ) − x ′
1]H [sin (βτ ) − δ1] − ξ (x ′

1 − x ′
2) + O

(
x

p

1 x
q

2

)
· · ·

d2xi

dτ 2
= 1√

2

{
(δi−1 − δi)

3/2 + 3

2
(δi−1 − δi)

1/2(xi−1 − xi) − (δi − δi+1)3/2 − 3

2
(δi − δi+1)1/2(xi − xi+1)

}

+ ξ (x ′
i−1 − 2x ′

i + x ′
i+1) + O

(
x

p

i−1x
q

i

) + O
(
xr

i x
s
i+1

)
· · ·
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d2xN

dτ 2
= 1√

2
(δN−1 − δN )3/2 + 3

2
√

2
(δN−1 − δN )1/2(xN−1 − xN ) − α(δN )3/2 − 3

2
α(δN )1/2xN

+ ξ (x ′
N−1 − 2x ′

N ) + O
(
x

p

N−1x
q

N

) + O
(
xz

N

)
, i = 2,3, . . . ,(N − 1), p + q � 2, r + s � 2, z � 2. (5)

As in the previous discussion, the only nonsmooth compo-
nent is in the first equation of (5), modeling the separation of
the actuator and first bead.

We observe that there are two terms on the right-hand side of
(5) resulting from the interaction between beads; namely static
components dependent only on δj , and dynamic components
involving xj (τ ). We account for the nonsmooth terms in (5)
by expanding the harmonic excitation term ([sin(βτ ) − δ1]3/2

+ )
in Fourier series to obtain static and dynamic components as
follows:

[sin(βτ ) − δ1]3/2
+ = a0 +

∞∑
n=1

an cos(nβτ ) +
∞∑

n=1

bn sin(nβτ ),

(6)

with the coefficients defined as

a0 = β

2π

∫ π/β

−π/β

[sin(βτ ) − δ1]3/2
+ dτ ,

an = β

π

∫ π/β

−π/β

[sin(βτ ) − δ1]3/2
+ cos(nβτ )dτ , (7)

bn = β

π

∫ π/β

−π/β

[sin(βτ ) − δ1]3/2
+ sin(nβτ )dτ .

Now, by balancing the static components in all (smooth)
equations (5), we obtain the following recursive relation
that can be used for computing the permanent compression
between beads:

(δj−1 − δj )3/2 − (δj − δj+1)3/2 = 0,

· · · (8a)
1√
2

(δN−1 − δN )3/2 − α(δN )3/2 = 0,
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FIG. 11. (Color online) The displacement response of first, third,
fifth, and seventh beads of a ten-bead homogeneous chain under
harmonic excitation with frequency in the attenuation zone. All units
are nondimensional.

where j = 2,3, . . . ,(N − 1). A trivial algebraic manipulation
yields

δj−1 = 2δj − δj+1,

· · · (8b)

δN−1 = δN (1 + γ ),

δi = δi−1 [1 + (N − i)γ ]

[1 + (N − i + 1)γ ]
, 1 < i � N, (8c)

where γ = 21/3α2/3. The only unknown in the above set of
equations is the permanent compression of the first bead, δ1.
Once this is evaluated the compression of all the other beads
can be expressed in terms of δ1. The compression δ1 can be
obtained by balancing the static force components in the first
equation of (5), i.e., balancing the constant term from the
Fourier series (6) with the constant force interaction between
the first and the second beads. Then, we obtain an implicit
relation of the form

ηβ

2π

∫ π/β

−π/β

[sin(βτ ) − δ1]3/2
+ dτ − 1√

2
(δ1 − δ2)3/2 = 0. (9a)

Substituting for δ2 in terms of δ1 and rescaling time τ̃ = βτ , we
derive the final form for the equation governing the permanent
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FIG. 12. (Color online) The displacement response of the ten-
bead homogeneous chain under harmonic excitation with frequency
in the attenuation zone: (a) Response of the first bead superimposed
to the excitation, and (b) detail of (a). All units are nondimensional.
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FIG. 13. (Color online) The displacement response of the first
bead of a ten-bead homogeneous chain with varying normalized
excitation frequency and fixed normalized excitation amplitude
equaling unity (dynamics deep inside the attenuation zone). All units
are nondimensional.

compression of the first bead,

{
η

π

∫ π/2

sin−1(δ1)
[sin(τ̃ ) − δ1]3/2 dτ̃

}2/3

= δ1

[
1

1 + (N − 1)γ

]
,

(9b)

where the + sign is removed from (8b) since
[sin(τ̃ ) − δ1]3/2 � 0 within the limits of integration.

The above equation is evaluated numerically to obtain δ1.
This analysis predicts that the static compression δ1 of the first
bead (and therefore of any other bead) is independent of the
excitation frequency when the dynamics is well inside the AB
(i.e., for relatively high frequencies). This is verified through
numerical simulations (Fig. 13), where we depict the response
of the first bead for a homogeneous chain with N = 10 at
various excitation frequencies β inside the AB. The static
component of the response is independent of the excitation
frequency. This analysis assumes weakly nonlinear behavior,
and these predictions are not valid at lower frequencies as the
dynamics makes the transition from the PB to the AB.

The static overlap of each bead in the granular chain is
evaluated using (8) and (9) and is compared to the results
derived from numerical simulation for a 20-bead crystal,
N = 20 (Fig. 14). The numerical simulations show good
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FIG. 14. (Color online) Spatial variation of permanent precom-
pression (δi) in a 20-bead chain when the dynamics is deep in the
attenuation zone. All units are nondimensional.
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FIG. 15. (Color online) Correspondence between analytical and
numerical response of the two-bead system when the dynamics is in
the attenuation zone. All units are nondimensional.

correspondence with the analytical estimates and confirm that
the spatial variation of the static overlap is nearly linear. As
the length of the crystal is increased the static component
of the first bead’s displacement reaches unity asymptotically,
whereas the static offset of the last bead approaches zero.
Hence, the resulting standing wave oscillations executed
by the beads become spatially localized well inside the
AB of the harmonically forced system. In essence, for a
sufficiently large number of beads, the chain detaches from
the exciter and the energy input to the chain approaches zero
asymptotically.

Finally, we obtain analytic estimates of the individual
oscillatory responses of the beads by considering the dynamic
components of the bead displacements in (5). We arrive at
reduced dynamic equations for each xj (τ ) by removing the
static components of (5). These reduced equations depend
on the dynamic components of the Fourier series expansion
(6). We then find analytic approximations for the oscillatory
components of the bead responses for an N degree of freedom
linear damped oscillator system with periodically varying
forcing frequency. The presence of damping terms leads
to steady state periodic responses. Due to the presence of
damping, the amplitudes of the dynamic components of the
bead responses (i.e., the oscillations about the beads’ static
offsets) decrease with increasing frequency. For a particular
fixed frequency these amplitudes decrease away from the
site of the actuator, i.e., xj (τ ) > xj+1(τ ), confirming the
attenuating nature of the dynamics, as described above.

The agreement between numerical and analytical response
for the forced two-bead system is presented in Fig. 15.
The analytical responses closely match the numerical ones,
and both x1(τ ) > x2(τ ) and δ1 > δ2. Although the transient
dynamics is not captured by our analytic study, the steady
state dynamics shows good correspondence between analytical
prediction and numerical simulation.

VI. CONCLUDING REMARKS

This paper explores the presence of frequency bands in
harmonically forced essentially nonlinear granular crystals.
For fixed amplitude of excitation, the low-frequency dynamics
is found to be strongly nonlinear, involving bead separations
and collisions, and resulting in periodic trains of traveling
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solitary pulses. This represents the dynamics in a propagation
band (PB) of the system. As we increase the drive frequency,
the system enters into a state of permanent compression
which results in weakly nonlinear and smooth dynamics. In
this regime, the response is localized close to the actuator’s
excitation and rapidly decays away from it. In contrast to
the propagatory dynamics realized in the PB, the higher-
frequency dynamics is in the form of spatially decaying (and,
hence, spatially localized) standing wave oscillations. This
represents the attenuation band (AB) of the system. Between
these two regimes, nonlinear resonance phenomena occur,
where the dynamics becomes chaotic due to strong collisions
between beads; the dynamics exhibits sensitive dependence on
initial and forcing conditions and becomes unpredictable. This
regime was not considered in this work.

Finally, when the dynamics is realized in the AB, we
employed an asymptotic technique based on static and

dynamic partitions of the bead responses, and analytically
deduced that the sustained state of compression realized in
the granular crystal becomes independent of the excitation
frequency. However, an increase in the size of the granular
crystal does increase the permanent compression which
reduces the amount of energy transferred to the crystal. These
results can contribute to designing of granular-based acoustic
metamaterials as acoustic filters and attenuators of externally
applied periodic or transient disturbances.
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