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How dynamical clustering triggers Maxwell’s demon in microgravity
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In microgravity, the gathering of granular material can be achieved by a dynamical clustering whose existence
depends on the geometry of the cell that contains the particles and the energy that is injected into the system.
By compartmentalizing the cell in several subcells of smaller volume, local clustering is triggered and the so
formed dense regions act as stable traps. In this paper, molecular dynamics simulations were performed in order
to reproduce the phenomenon and to analyze the formation and the stability of such traps. Depending on the total
number N of particles present in the whole system, several clustering modes are encountered and a corresponding
bifurcation diagram is presented. Moreover, an iterative model based on the measured particle flux F as well as
a theoretical model giving the asymptotical steady states are used to validate our results. The obtained results are
promising and can provide ways to manipulate grains in microgravity.
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I. INTRODUCTION

When granular material is vertically driven, the system
rapidly reaches a steady-state for which the injected energy
and the dissipated energy perfectly outbalance over one period
of oscillation [1]. Each collision between particles causes
an energy loss that can be quantified via the coefficient of
restitution ε. Nevertheless, for strong external forcing, high
isotropic velocities are observed and the media behaves like
a macroscopic dissipative gas. When such a granular gas
is generated in a cell that is compartmented by a vertical
wall allowing exchange through a slit, a symmetry breaking
can appear under certain conditions [2,3]. Indeed, the grains
spontaneously start to gather in the same compartment, which
can naı̈vely be related to a sudden drop of the system’s entropy.
By analogy, this phenomenon is referred to as the granular
pendant of Maxwell’s demon. Different cell geometries such
as cylindric systems [4] and grids [5] can be used, but the
relevant physical mechanism remains the same.

In microgravity, granular materials can be gathered by a
clustering [6–8]. Clustering is the tendency of a granular
material to form dense and slow regions that can trap new
incoming grains. While dissipative nature of the collisions
are the main motor of the phenomenon, one can make a
differentiation between the classical clustering, referring to the
cooling of granular media [9], and the dynamical clustering,
which is a condensed steady-state in a driven granular system
[10]. Indeed, the first one is obtained through a long process
of successive collisions that dissipate the energy and slows
down the grains so that nearly immobile stripe-like regions
are formed. On the other hand, the second type relies on a
permanent energy injection (at the walls) that counterbalances
the dissipation. This assures the equilibrium between the
dense cluster phase in the center of the system and the
gas phase surrounding it. If the energy supply is stopped,
the dynamical cluster evaporates and the particles spread in
the entire system until a cooling begins. Figure 1 de-
scribes these different clustering dynamics via a Kolmogorov-
Smirnov (KS) test that confronts the particle distribution with
a uniform law. If the test’s value is above the threshold, the
hypothesis of uniformity is refuted and clustering is observed.
Data is obtained by prolonging earlier simulations of granular

gases [11] and stopping the driving in the system after 10 sec-
onds. The gray (red) KS curve indicates that dynamical clus-
tering is detected until t = 10 s, when the energy injection is
stopped. As the cluster evaporates, the KS curve sharply drops
under the threshold (black line), and the system evolves into
a gas state that rapidly starts to cool down. The KS curve in-
creases and crosses the threshold again at about t = 15 s, which
corresponds to the very beginning of a classical clustering.

Dynamical clustering has been observed in horizontal 2D
cells [12], parabolic flights, and rocket missions [10] that have
been reproduced and completed numerically using molecular
dynamics simulations [13]. Moreover, the European Space
Agency (ESA) is doing intensive research on the behavior of
granular media in microgravity. In particular, the SpaceGrains
project [14] focuses on cluster formation and Maxwell’s
demon. In the main cell of the SpaceGrains device, N spherical
particles with a radius R are enclosed in a box of dimensions
60 × 30 × 30 mm3. Two pistons are oscillating in phase
opposition with an amplitude A and a frequency f around
their respective positions z1 and z2. The distance L between z1

and z2 can be modified in order to tune the accessible volume
of the system. Figure 2 provides a brief description of the
systems parameters.

This work aims to investigate the formation of traps
and the occurrence of Maxwell’s demon in microgravity
by numerical simulations. In order to provide predictive
results, the simulated system is based on a compartmentation
of the main cell of the ESA’s SpaceGrains project. We discuss
the triggering role of clustering for Maxwell’s demon under
microgravity conditions and present two theoretical models
reproducing the observed phenomena.

II. NUMERICAL APPROACH

The realized simulations are based on a molecular dynamics
(MD) approach. This model is widely used in soft-matter
physics and especially in the simulation of granular ma-
terials [13,15] because of its capacity to handle efficiently
multiple collisions that are unavoidable in dissipative systems.
Normal forces Fn

ij are composed by a repulsive F
rep
ij and a

dissipative F dis
ij component. The repulsive component follows
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FIG. 1. (Color online) The KS test, represented by a gray (red)
curve, indicates the evaporation of a dynamical cluster in microgravity
once the driving is stopped (at t = 10 s). After a short period of gas
phase, a cooling process is observed.

Hooke’s law,

F
rep
ij = −knδij , (1)

where δij is the surface-to-surface distance between two
solids, i and j . The constant kn is the numerical normal
stiffness, which is determined by fixing the maximum particle
deformation at R/100. The dissipative component is taken into
account by viscous forces according to the following law:

F dis
ij = −γn(kn,ε)

∂δij

∂t
, (2)

where the viscous constant γn is function of kn and the
restitution coefficient ε. This restitution coefficient is used
for both grain-grain and grain-wall collisions. Tangent forces
F t

ij are bounded and depend on the relative tangent velocities
vt

ij between the colliding solids i and j . One has

F t
ij = −ktv

t
ij and

∥∥F t
ij

∥∥ � μFn
ij , (3)

where μ is a friction coefficient and kt a purely numerical
constant. A complete description of this MD approach is given
by Taberlet [16].

III. NUMERICAL RESULTS

A. Observations

We realized a large number of numerical simulations
reproducing a compartmentalized version of SpaceGrains. Our
cell is filled homogeneously with N spherical particles of
radius R = 0.5 mm. The average distance L between the
pistons is fixed at 50 mm. In addition to the basic cell, two
orthogonal walls of height h = 30 mm are inserted in the
center of the cell, as displayed in Fig. 3. This way four
subcells are formed. The system is periodically driven with
an amplitude A = 5 mm and a frequency f = 10 Hz. The
granular media is shaken up and grains are free to travel from
one compartment to another. The observed dynamics depend
strongly on N . Indeed, for a small number of grains, the whole
system remains in a gas state. The particles travel with high
speed and spread homogeneously. For a larger N , a cluster

A, f
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L
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30
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FIG. 2. (Color online) Sketch of ESA’s SpaceGrains cell. Spher-
ical particles of radius R are enclosed in a 60 × 30 × 30-mm3 box.
Two pistons are oscillating in phase opposition with an amplitude A

and a frequency f around their respective positions z1 and z2. The
distance L = |z2 − z1| can be modified in order to tune the accessible
volume of the system.

forms and the grains start to gather in the same compartment.
This cluster keeps growing and traps the incoming grains until
the compartment is filled. When more grains are injected
in the system, a second cluster can form and a competition
between two traps is observed. Moreover, the second cluster
mostly forms in the diagonal neighboring compartment of
the first cluster. A further increase of N leads then to the
formation of three and, finally, four clusters. This last regime
can also be considered as a second homogenous state since all
particles are distributed equally in the system. Figure 3 gives a
brief overview of the encountered dynamics for an increasing
total number of particles. The top row presents the simulated
systems while the bottom row shows the top views of the
corresponding cells.

B. Filling measures

In addition to its dependency on the total number of grains,
the formation of the traps in the system is a dynamical
process that evolves continuously. Tracking the filling number
n1,n2,n3, and n4 of the four compartments allows us to evaluate
the stability of the observed clusters. This measure implies
a temporal discretization that is achieved by using as unit
time step the oscillation period T . Figure 4 presents in black
lines the evolution of ni as a function of the number of time
steps t . The total number of grains in the system is fixed at
N = 4200 (two traps are formed). Other colors correspond to
complementary simulations explained in Secs. V and VI.

For most simulated systems, a steady-state is reached
after 1200 periods. Thanks to the obtained final compartment
fillings, a bifurcation diagram describing the different values of
n1,n2,n3, and n4 as a function of N is established and presented
in Fig. 5. Until a certain threshold Nc (left dashed line),
no trap is observed and all compartment fillings are roughly
equal. Then, abruptly, a very neat bifurcation corresponding
to the cluster formation occurs. Almost all grains gather
in a single compartment leaving three others poorly filled.
Recent results [11] allow us to predict the apparition of such
dynamical clustering. Indeed, for a given system of maximal
volume v = �2(L + 2A), the clustering criterion is given by
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FIG. 3. (Color online) Dynamics of the compartmentalized system for increasing N . The top row displays snapshots of the simulated cells.
For high enough filling numbers, clustering is encountered and grains gather in one (or more) compartment(s). The bottom row shows the top
view of the corresponding cells.

the following condition:

δ(L,�,A)

R
>

ξ (ε)

3φ

(
1

1 − cφ

)
, (4)

where δ is the characteristic length scale of the cell, c is a
constant, and the function ξ depends only on ε. The packing
fraction φ is defined by

φ = N
4πR3

3v
. (5)
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FIG. 4. Evolution of the filling number of the different com-
partments over 1200 periods in a system of 4200 grains. Molecular
dynamics simulations are represented in black, the iterative model in
light gray, and the asymptotic results are displayed as two dark-gray
horizontal lines.

By introducing the geometrical parameters of a compartment
into Eq. (4), the local threshold is found to correspond to a
filling number Nc = 808, denoted by a vertical dashed line in
Fig. 5. This single cluster regime persists until a filling number
of approximatively 3000 particles, when it is replaced by a
regime with two traps. This region is far more noisy, so that
the relative compartment fillings ni/N spread around the value
of 0.5. Systems with three clusters are recorded for N > 4200;
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FIG. 5. Bifurcation diagram of the encountered final states of the
system. After 1200 periods, the filling ration ni/N is plotted with
black triangles against the total number of particles N . The first
bifurcation is predicted by Eq. (4) at a value of N = 808. The vertical
dashed lines correspond to the critical values of Nc and Nm discussed
in the main text.
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however, they are rarely observed and seem less stable. Finally,
above 6000 grains, the system becomes homogenous again,
i.e., clustering takes place in all compartments.

C. Analogy with a granular fountain

These first results described in Sec. III present a lot
of similarities with what is found for a granular fountain
[17]. In a granular fountain, granular material is driven in
a compartmented cell under gravity. Each compartment can
communicate with its neighbors either through a slit at a
certain height h or by the means of another slit at the
bottom of the cell. Like our system, a granular fountain
exhibits several trapping modes and multistable regimes.
Moreover, the same discontinuous transition is observed on
their respective bifurcation diagrams when the first trap occurs.
Despite these intriguing analogies, several differences due to
the experimental conditions are noted. Indeed, gravity has an
impact on the symmetry of the system. The granular fountain
as well as our system present two openings per compartment.
However, the fluxes present in the fountain are influenced by
gravity and have unequal intensities while they are perfectly
symmetric in our cell. One can also note that fixed driving
parameters were used in the microgravity simulations and
that phase transitions are induced by the variation of the
number of particles N . Since higher filling fractions can
be obtained this way, additional features such as dynamical
clustering, crystallization, and overflowing compartments can
be generated.

IV. GRANULAR FLUXES

A. Mean flux function

The formation mechanisms of the traps and the complex
dynamics of the system are linked to the number of grains
that the different compartments exchange. In order to quantify
this particle flux, each time a compartment filled with n

grains is encountered, the number Xn of grains leaving it
for a neighboring compartment is recorded. For a fixed n,
the obtained distribution of outgoing grains follows roughly a
binomial law

Xn ∼ B (n,pn) , (6)

where pn denotes the probability that a grain leaves a
compartment filled with n particles. Indeed, this binomial
behavior can be interpreted as following: At each time step, the
binary-experience leave versus stay is repeated for each of the
n grains. Since the event leave has a probability pn, the random
variable Xn follows a binomial distribution. Accordingly, the
escape probability is given by the following relation:

pn = 〈Xn〉
n

, (7)

where the mean flux 〈Xn〉 is the average value of Xn.
Figure 6 represents with black dots the evolution of 〈Xn〉 for
an increasing number of grains. For low n, the agitation is
strong in the cell and the flux raises up to a maximum value.
After that peak, a cluster tends to form; accordingly, the flux
drops and becomes nearly constant once the critical value Nc

is reached. At that point, the trap becomes stable. The flux
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FIG. 6. (Color online) Top figure describes 〈Xn〉 in black dots
and its fit, the mean flux function F (n), in medium gray (blue)
for an increasing number of grains. F can be subdivided into three
invertible functions in each shaded zone. Moreover, a fixed flux ϕ

can correspond to three fillings as presented by the light gray (red)
horizontal line. Bottom figure shows the corresponding evolution of
the measured escape probability in black dots and the fitted pn with
a solid gray (green) line.

remains low until the compartment is abundantly filled. The
distance between cluster and borders of the compartment gets
then smaller and grains can more easily escape. Moreover, the
increase of the flux can also be linked to the natural evaporation
that is part of the formation mechanism of dynamical clusters.
Note that qualitatively similar fluxes are observed in analog
systems such as ratchets [18] and granular fountains [17].
However, the observed plateau is a particular feature of our
system. An analytical function approaching this mean flux can
be found using statistical arguments. For a low n, the escape
probability can be approached by the linear combination of
two exponential laws of base 0 < p < 1.

pn = C1p
γgn(σ/�2) + C2p

γcn(σ/�2), (8)

where σ/�2 is the dimensionless cross section of a particle
and the coefficients C1 and C2 are free fitting parameters. The
constants γc = 0.14 and γg = 0.86 model the density increase
in the central part of the system under the hypothesis of normal
distribution along the oscillation axis.

However, each compartment has a critical capacity, noted
Nm, above which the escape probability is expected to increase.
This can be modeled by a symmetrization of pn about Nm that
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is noted p∗
n. The mean flux function F is finally defined by

F (n) = np∗
n. (9)

Fitting F on the average 〈Xn〉 leads then to a critical filling
Nm = 2849 that corresponds to a packing fraction of 19%.
This critical value is represented by the right dashed line in
Fig. 5 and corresponds to a threshold beyond which a second
trap can form. The obtained function F is plotted in gray (blue)
in the top of Fig. 6 and is in good agreement with the data.
The bottom of Fig. 6 shows the corresponding evolution of
the measured escape probability in black dots and p∗

n in gray
(green).

B. Geometrical coefficients

The relative positions of the compartments also have an
impact on the grain exchanges. In order to determine the
direction of the outgoing flux, the flux coefficients cij have
to be introduced. They measure the fraction of the flux going
from the compartment i to j when i �= j and have the value
cij = {−1} for i = j . These coefficients are evaluated on each
simulation and then summarized in the following flux matrix:

C =

⎡
⎢⎣

−1 0.46 0.46 0.08
0.46 −1 0.08 0.46
0.46 0.08 −1 0.46
0.08 0.046 0.46 −1

⎤
⎥⎦ . (10)

The conservation of the total number of grains implies that
summing on a row of C yields 0. Moreover, one can note that
the exchange of particles is strong with direct neighbors and
weak with the diagonal neighbors. This asymmetry explains
why, in the case of a two-cluster system, both traps form in
diagonal neighboring compartments. Indeed, this particular
configuration minimizes the granular exchange between the
clusters and allows, thus, an higher stability of the regime.

V. ITERATIVE MODEL

In order to realize efficiently a great number of simulations,
a statistical model based on the mean particle flux has been
elaborated. Using F and the flux coefficients cij , the evolution
of the filling ni of each of the i compartments can be
determined according to the following equations:

∂ni

∂t
=

4∑
j=1

cjiF (nj ), (11)

with 1 � i � 4 and t being the number of time steps. To
take into account the statistical fluctuations and to avoid
unstable stationary solutions, a stochastic noise term must be
injected into Eq. (11). The fluctuations are represented through
random variables ζ following a standard normal distribution.
According to the Moivre-Laplace theorem, a global flux
function can be described by

Fζ (n) = F (n) + ζ
√

F (n) (1 − F (n)/n). (12)

The evolution of the number of grains in the different compart-
ments is then given by Eq. (11), where F (nj ) is replaced by
Fζ (nj ). For identical initial conditions, the results of this model
are in good agreement with of our MD simulations. Indeed,

 0

 0.2

 0.4

 0.6

 0.8

 1

2000 4000 6000 8000 10000

Nc Nm

n i
/N

N

IT
MD

FIG. 7. Comparison between MD simulations described by black
triangles and iterative model in light gray based on a limit normal
assumption. Critical values Nc and Nm are represented by two dashed
vertical lines.

Fig. 4 shows a similar evolution of the iterative approach
in light gray and the MD data in black. Moreover, Fig. 7
displays the ratio ni/N of grains present in each compartment
i as a function of N after 1200 iterations. The molecular
dynamics simulations are represented by black triangles while
the iterative model is colored in light gray. Main branches of
the bifurcation diagram are obtained.

VI. THEORETICAL MODEL

A. Stationary solutions

In analogy to earlier works [4,19,20], an asymptotic
bifurcation diagram for a granular system in microgravity can
be realized. Obviously, the final values of n1,n2,n3, and n4 are
reached once the filling number of all compartments remains
constant in time. By writing Eq. (11) in its matrix form, this
condition becomes equivalent to

M( �F ) = C · �F = �0, (13)

where �F = [F (n1), . . . ,F (n4)]. Since each row of the flux
matrix sums up to zero, the kernel of M is the linear hull
of the vector �1 = (1,1,1,1). Accordingly, stationary solutions
are characterized by �F = ϕ�1, ϕ ∈ R, and the fixed-point
conditions become{

F (ni) = ϕ ∀i ∈ {1, · · · ,4}∑4
i=1 ni = N,

(14)

with ϕ being a constant particle flux. These conditions imply
the conservation of the total number of particles coupled with
an identical flux for all compartments.

B. Sum functions

Since the mean flux F (n) presents both a minimum and
a maximum, a same fixed value of ϕ can be obtain for up
to three different fillings as presented in light gray (red) in
Fig. 6. Indeed, F (n) can only be inverted piecewise around
the different extrema and for each section l ∈ {1,2,3} the
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respective inverse function is noted F−1
l . In order to find

the asymptotical compartment fillings for a fixed N , all
possible combinations implying the three inverse functions
and the four boxes have to be considered. For that purpose, the
sum functions Sij are introduced and defined by the following
relations:

Sij (ϕ) = iF−1
1 (ϕ) + jF−1

2 (ϕ) + kF−1
3 (ϕ), (15)

where k = (4 − i − j ) with 0 � i,j � 4. The coefficients
i,j,k give the effective of the corresponding filling number.
Indeed, let ϕ0 be a solution of Sij (ϕ) = N . If one defines
zl = F−1

l (ϕ0) for l ∈ {1,2,3}, the system is composed by i

compartments of z1 grains, j compartments of z2 grains, and
k compartments of z3 grains.

C. Stability

The stability of the obtained solutions can be determined
via the Jacobi matrix J relative to Eq. (11), which can be
calculated from

J = C · diag

[
∂F

∂n

∣∣∣∣
n=n1

, . . . ,
∂F

∂n

∣∣∣∣
n=n4

]
. (16)

A solution (n1, . . . ,n4) is stable if all the corresponding
eigenvalues of the Jacobi matrix are negative or equivalently
if

max
λ

{λ|det(J − Iλ) = 0} < 0. (17)

Figure 8 presents the stationary solutions of the system using
the theoretical approach. Stable branches are described by
thick dark gray and unstable by thin black lines. The MD
simulations are represented by black triangles. Moreover,
the stable solutions for a system of 4200 particles are also
represented by two dark gray lines in Fig. 4.

Nevertheless, some differences are noted between the
iterative and the theoretical model. This is due to the fact that
the theoretical model represents the asymptotic steady state.
By computing the iterative diagram for a large number of time
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FIG. 8. Comparison between MD simulations (black triangles)
and theoretical model. Stable branches are represented with thick
dark gray and unstable with thin black curves.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 4000 8000 12000 16000

n i
/N

N

IT
TH

FIG. 9. Comparison between the iterative model in light gray and
the theoretical model in dark gray. For a large enough number of
iterations, both models converge to the same final states.

steps (12 000) and all different initial conditions, both models
converge as shown in Fig. 9.

Moreover, in the multistable region (N > 6500), the
measured data seemed to prefer the four-cluster state. This
repartition is obviously triggered by the homogenous initial
conditions that were used in the MD simulations. Indeed, the
completed simulations presented in Fig. 9 recover the other
branches.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a particular cell geometry that
allows us to produce Maxwell’s demon in ESA’s SpaceGrains
project. Molecular dynamics simulations showed trapping in
the different compartments that is triggered by dynamical
clustering. Moreover, the presence of clustering and trapping
could be predicted thanks to earlier theoretical results [11].
Many analogies with classical systems, such as granular foun-
tains, granular clocks, and ratchets, have been observed and
qualitatively similar flux functions were obtained. However,
a nonnegligible, almost constant, residual flux was observed
for intermediate filling fraction, so that usual models could
not properly reproduce the dynamics. A bifurcation diagram
recovering the totality of our simulations was presented.

An iterative stochastic model reproducing the systems
evolution has been proposed and allowed a more efficient way
to simulate the dynamics present in Maxwell’s demon. Finally,
we describe a theoretical model that gives the asymptotic stable
states of the system. Mutlistable regions were expected, but
given our initial conditions, a homogenous repartition of the
particles is preferred. Note that for a high number of iterations
the stochastic model converges to the asymptotic solutions.

Our results are promising because ratchets and others’
transport mechanisms, providing ways to manipulate grains in
microgravity, can be envisaged in the SpaceGrains experiment.

In the future, larger lattices of 9 or 16 compartments on
could be realized. The major difference would be the presence
of different fluxes depending on the compartment of interest.
Indeed, the central compartments lose grains more easily than
the ones in the corners. This could be modeled by either several
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flux functions or by an adapted flux matrix. Other types of
compartment arrangements (linear or cylindric) could easily be
implemented and compared to our results. Moreover, the effect
of the shape of the compartment itself on the flux dynamics
could be studied. By using more complex aspherical particles,
the influence of the interlocking [21] on Maxwell’s demon
could be investigated.
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