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Phase transitions of the p-spin model on pure Husimi lattices
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We consider the p-spin model with spin 1/2 on all pure Husimi lattices. Using an effective representation of
the recursion relations, the phase transitions of the model on all pure Husimi lattices are investigated. First, the
nonexistence of the second order phase transitions in the model on all pure Husimi lattices is proven exactly.
Then the existence and properties of the first order phase transitions in a zero external magnetic field are studied
in detail. An implicit polynomial equation for determining temperatures below which the paramagnetic and
ferromagnetic phases coexist in the model on all pure Husimi lattices is found. In addition, an implicit equation
for exactly determining the transition temperatures of the first order phase transitions in a zero external magnetic
field on all pure Husimi lattices is derived and discussed.
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I. INTRODUCTION

During the last several decades the Husimi trees and
lattices [1–3] have played a significant role in describing many
interesting physical systems and phenomena, especially in
situations where multisite interactions play a relevant role, e.g.,
in binary alloys, rare gases, or lipid bilayer problems [4]. At
the same time, it was also shown (see, e.g., Refs. [5–7]) that for
such systems one can obtain better results by using the Husimi
lattices than using the mean-field theory approximation on
real lattices [8,9]. Therefore, although the Husimi lattices
(as all the so-called recursive lattices) behave effectively as
infinite dimensional systems, nevertheless various Husimi
lattices were also widely used for describing properties of
many other physical systems such as amorphous solids [10],
spin liquids [11], Ising spin glasses [12–18], various polymer
models [19–27], Abelian sandpiles [28,29], lattice gasses [30],
3He systems [31,32], and random optimization problems [33].
In addition, during last two decades many theoretical studies
have been carried out to analyze mathematical properties of
the Ising and Ising-like models on the Husimi lattices (see, e.g.
Refs. [34–43] as well as references cited therein).

However, the common property of the classical Ising and
Ising-like models on various recursive lattices, namely, that
they can be studied with arbitrary precision in the form of
recursion relations (see, e.g., Ref. [44]), gives us a rather
unique opportunity in statistical mechanics for studying global
statistical properties of the models with different values of the
spin variable and/or with different values of the parameters
that characterize the corresponding recursive lattices (e.g., the
coordination number) on the same footing and to analyze also
possible nontrivial relations among them. It can be said without
doubt that apart from purely theoretical and mathematical
interest in this analysis such investigations are also certainly
important for deeper understanding of already existing results
as well as the fact that they have large predictive power
when the corresponding models are applied in new physical
situations. Therefore, it is rather surprising that despite these
facts only a few studies exist in the literature devoted to such
general analysis. In this respect, for example, in Ref. [45]
general investigation of the 1/2 − s mixed spin Ising model
on the Bethe lattices was done. On the other hand, in Ref. [46]
it was shown that there must exist a strong relation between the

critical temperatures of the Ising model with arbitrary values of
spin on a given Bethe lattice. In addition, quite recently [47] it
was shown that there is also the strong relation between critical
temperatures of spin 1/2 Ising model on all pure Husimi
lattices with arbitrary coordination numbers (see the next
section for precise definition of pure Husimi lattices). Strictly
speaking, in Ref. [47] an effective general representation of the
recursion relations for the spin 1/2 Ising model on arbitrary
pure Husimi lattices was found and was used to derive a
polynomial equation which determines exactly the position
of the critical temperatures of the model on all pure Husimi
lattices. In addition, it was also shown that the existence of
this effective representation of the recursion relations allows
one to write common expressions for all important quantities
of the model for all pure Husimi lattices; i.e., it was shown
that the spin 1/2 Ising model on all pure Husimi lattices can
be studied simultaneously. This is a nontrivial result which,
on one hand, from the mathematical point of view, sheds light
on the internal structure of the solutions of the model on various
Husimi lattices and, on the other hand, can be immediately
applied in many physical problems. Without doubt, it would
be also interesting to see if the corresponding general analysis
can be carried out with other models usually studied on various
Husimi lattices.

In this respect, in the present paper we shall concentrate
on the so-called p-spin model on pure Husimi lattices,
i.e., on the model with the multisite interaction among all
sites of elementary polygons out of which the corresponding
pure Husimi lattice is built up. An effective representation
of the recursion relations will be found which will allow us
to perform the global analysis of the phase transitions of the
model simultaneously for all pure Husimi lattices.

The existence of the aforementioned representation of the
recursion relations will allow us to prove exactly that the
phase transitions of the second order are not possible in this
model regardless of the form of the pure Husimi lattice.
On the other hand, the phase transitions of the first order
in a zero external magnetic field between paramagnetic and
ferromagnetic phases are studied in detail by using numerical
as well as analytical means. As one of the main results of
the present paper, an implicit polynomial-like equation is
derived which determines exact positions of the transition
temperatures of the first order phase transitions of the model
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in a zero external magnetic field simultaneously on all pure
Husimi lattices. In addition, an explicit expression for exact
determining temperatures below which the paramagnetic and
ferromagnetic phases coexist is derived.

The paper is organized as follows. In Sec. II, the model is
briefly defined. In Sec. III, an appropriate representation of
the recursion relations is found and discussed. In Sec. IV, it
is shown exactly that the phase transitions of the second order
are not possible in the present model. In Sec. V, the phase
transitions of the first order in a zero external magnetic field
are studied in detail. In Sec. VI, the main results of the paper
are reviewed.

II. THE MODEL

Let us consider the so-called p-spin model (also known
as the multisite interaction model) with spin s = 1/2 on an
arbitrary pure Husimi lattice defined as follows [1,2]: By
definition a Husimi tree is a connected graph in which no line
lies on more than one cycle. A pure Husimi tree is a special
type of Husimi tree which consists of only one type of figure
(lines, triangles, etc.) out of which it is built up. For example,
the well-known Cayley tree which consists only of lines, i.e.,
it has no cycles, is the simplest case of the pure Husimi tree.
The pure Husimi lattice is now obtained in the same way as
the Bethe lattice is defined from the corresponding Cayley
tree (see, e.g., Ref. [44]); i.e., we suppose that we are located
deep inside of the graph, where all sites are equivalent to each
other. Thus, each pure Husimi lattice is exactly defined by two
numbers, namely, by the number of sites of the single polygon
p � 2 and by the coordination number z = 2q (for p > 2),
where q denotes the number of p polygons which meet at
each site (see Fig. 1). In addition, in the special case with
p = 2 one comes to the Bethe lattice with the coordination
number z = q.

The Hamiltonian of the model has the following form:

H = −J
∑
P

∏
si∈P

si − H
∑

i

si , (1)

where each variable si can acquire one of the two possible
values, namely, 1/2 and −1/2, J is the multisite interaction
among the sites of each polygon P , and H represents the
external magnetic field. In Hamiltonian (1), the first sum runs
over all polygons, and the second sum runs over all spin

s0

s1,1

s1,2

s1,3

s1,1

s1,2

s1,3

s2,1

s2,2

s2,3

FIG. 1. The pure Husimi lattice with p = 4 and q = z/2 = 2.
The site denoted as s0 is taken to be the central site. The sites denoted
as s1,i ,i = 1, 2, 3 form the first layer of the Husimi lattice, etc.

sites. In the special case p = 2, Hamiltonian (1) turns to the
Hamiltonian of the well-known Ising spin 1/2 model, i.e., to
the model with the nearest-neighbor interaction, on the Bethe
lattices; therefore we shall not consider it here. Thus, in what
follows, we always suppose that p � 3.

The partition function of the model (1) is

Z ≡
∑

s

e−βH =
∑

s

e
K

∑
P

∏
si∈P si+h

∑
i si , (2)

where β = 1/(kBT ), T is the temperature, kB is the Boltzmann
constant, K = βJ , and h = βH . The sum over s in Eq. (2)
means the summation over all possible spin configurations on
the considered lattice.

Standardly, the model (1) on an arbitrary pure Husimi lattice
can be studied by using the method of recursion relations in
a similar way as it is usually performed on the Bethe lattices
(see, e.g., Ref. [44]). However, using the formalism introduced
in Ref. [47] a simple representation for the recursion relations
can be found which allows one to study the properties of the
model on different pure Husimi lattices on the same basis;
e.g., it will allow us to make a general analytic analysis of the
properties of the phase transitions of the model.

III. GENERAL SOLUTION OF THE MODEL

A. A suitable representation of recursion relations

If a pure Husimi recursive lattice is cut in the site 0 (see
Fig. 1), then the corresponding graph splits into q = z/2
(for p � 3) disconnected identical pieces (subgraphs) and the
partition function (2) can be rewritten as follows:

Z =
∑
s0

exp (hs0) [gn(s0)]q, (3)

where functions gn(s0) for s0 = 1/2 and −1/2 can be ex-
pressed in the form of recursion relations, namely,

gn(s0) =
∑

s1,1,...,s1,p−1

exp

{
Ks0

p−1∏
l=1

s1,l + h

p−1∑
l=1

s1,l

}

×
p−1∏
l=1

[gn−1(s1,l)]
q−1, (4)

where we suppose that the pure Husimi lattice has n layers
and s1,l , l = 1, . . . ,p − 1 represent the spin variables of sites
which lie on shell 1 (see Fig. 1).

However, it is usually appropriate to rewrite the recursion
relations (4) for gn(s0) into the form of recursion relations for
their ratios:

xn(i,t) = gn

(
si

0

)
/gn

(
st

0

)
, i = 0,1, (5)

where si
0 = 1/2 − i is introduced for possible values of the

spin variable and the integer t can be chosen arbitrary from
two possible values 0 and 1. The choice is completely free.
But once one of the two possibilities is chosen, then it must be
used in all calculations.
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The explicit form of recursion relations xn(i,t),i = 0,1 in
Eq. (5) for the model (1) is given as follows:

xn(i,t) =
∑1

j1=0 . . .
∑1

jp−1=0 Ai;j1,...,jp−1

∏p−1
l=1 [xn−1(jl,t)]q−1∑1

j1=0 . . .
∑1

jp−1=0 At ;j1,...,jp−1

∏p−1
l=1 [xn−1(jl,t)]q−1

,

(6)
where coefficients Aa;j1,...,jp−1 for a = i,t are

Aa;j1,...,jp−1 = eK(1/2−a)
∏p−1

l=1 (1/2−jl ) +h
∑p−1

l=1 (1/2−jl ). (7)

Although, recursion relations (5) play the central role in
the numerical analysis of the present model for given values
of the parameters, nevertheless their representation given in
Eq. (6) is not suitable for a general analysis of the model
simultaneously on all pure Husimi lattices simply because
representation (6) contains a different number of summations
for different values of parameter p. However, as was shown in
Ref. [47], a more appropriate and effective representation of
the recursion relations (6) exists. This representation can be
further simplified when only pure multisite interaction within
single polygons is considered. To this end, first, it is necessary
to fix the value of t in Eq. (5). Without loss of generality, let
us put t = 0. In this case, xn(0,0) = 1, and one has only one
independent recursion relation for the quantity xn ≡ xn(1,0)
in Eq. (6), which can be rewritten in the following convenient
form:

xn = Y1(xn−1)

Y0(xn−1)
, (8)

where now

Y0(x) =
p−1∑
j=0

(
p − 1

j

)
xj (q−1)e

h(p−2j−1)
2

× [
σj e− K

2p + (1 − σj )e
K
2p

]
(9)

and

Y1(x) =
p−1∑
j=0

(
p − 1

j

)
xj (q−1)e

h(p−2j−1)
2

× [
σj e

K
2p + (1 − σj )e− K

2p
]
, (10)

where

σj ≡ j (mod 2), (11)

and
(
a

b

) = a!/[b!(a − b)!] is the binomial coefficient.
Derivation of representation (8)–(10) for recursion rela-

tions (6) with (7), which plays the central role in what follows,
is based on relatively simple straightforward combinatory
analysis. The main idea is the following. All exponents in
Eq. (7) have the form eα1K+α2h, where α1 can obtain only two
possible values, namely, −1/2p and 1/2p, depending on the
spin configuration in the polygon. On the other hand, α2 runs
from −(p − 1)/2 to (p − 1)/2 with increment 1. Thus, the
main task is to find the number of all spin configurations in
the polygon that simultaneously lead to given values of α1

and α2. These numbers are exactly given by the corresponding
binomial coefficients together with factors σj and 1 − σj as
they are shown explicitly in Eqs. (9) and (10).

For convenience it is also appropriate to introduce the
following notation:

zj = j (q − 1), (12)

B±
j = ± 1

2p
+ h

K

(p − 2j − 1)

2
, (13)

Cj =
(

p − 1

j

)
. (14)

This notation allows us to write functions Y0 and Y1 in Eqs. (9)
and (10) in the following compact symmetric form appropriate
for further analysis:

Y0(x) =
p−1∑
j=0

Cj xzj
[
σj eKB−

j + (1 − σj )eKB+
j

]
, (15)

Y1(x) =
p−1∑
j=0

Cj xzj
[
σj eKB+

j + (1 − σj )eKB−
j

]
. (16)

B. Magnetization and spontaneous magnetization

For the model under consideration the standard definition
of the magnetization per site m gives

m ≡ 〈s0〉

= Z−1
∑

s

s0 exp

⎛
⎝K

∑
P

∏
si∈P

si + h
∑

i

si

⎞
⎠ , (17)

and by using the ratios defined in Eq. (5) the expression for
magnetization (17) can be written in the following form:

m = 1

Z′

1∑
i=0

(1/2 − i) exp[h(1/2 − i)] [xn(i,t)]q, (18)

where the explicit expression for Z′ ≡ Z/[gn(st
0)]q is

Z′ =
1∑

i=0

exp [h(1/2 − i)] [xn(i,t)]q . (19)

Finally, using the representation of the recursion relation (8)
with (15) and (16) in the limit n → ∞, when xn obtains the
fixed point value x ≡ limn→∞ xn, one has

m = 1

2

eh/2 − e−h/2xq

eh/2 + e−h/2xq
, (20)

and for the spontaneous magnetization in the zero external
magnetic field one finally obtains

m = 1

2

1 − xq

1 + xq
. (21)

Thus, solving the recursion relation (8) with (15) and (16)
for given reduced temperature K−1 = kBT /J and for a given
value of the magnetic field h the behavior of the magnetization
of the system can be studied for an arbitrary pure Husimi
lattice with given p and q. We shall return to the analysis of
the behavior of the spontaneous magnetization (21) in Sec. V,
where the first order phase transitions of the model will be
discussed.
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C. Free energy

One of the most important quantity, especially for analysis
of the first order phase transitions, is the free energy standardly
given by the partition function Z as follows:

βF = − ln Z. (22)

However, when one works with recursive lattices the surface
sites of the corresponding trees play important role even in
the limit n → ∞, and the free energy defined by Eq. (22)
strongly depends on surface conditions (see, e.g., Refs. [7,39]
and references cited therein). In this situation, the free energy
defined directly through the entire partition function Z can lead
to strange results that are usually not in agreement with results
obtained on regular lattices [48–50]. Therefore, although the
free energy defined by Eq. (22) is exact, it represents the free
energy of the recursive trees (e.g., Caley trees or pure Husimi
trees) and cannot be considered as an appropriate definition
of the “interior” free energy of the corresponding recursive
lattices that should be independent of the surface properties.

The general analysis of the free energy of the Ising model
with arbitrary value of spin on arbitrary pure Husimi lattices
was performed in Ref. [39] (see also discussion in Ref. [7]).
Thus, using the results of Ref. [39] one can write the interior
free energy per site of the present model on pure Husimi lattices
as follows:

βF = (p − 1)(q − 1) − 1

p
ln[Y2(x)] − q

p
ln[Y0(x)], (23)

where Y0(x) is given in Eq. (15) and

Y2(x) = eh/2 + e−h/2xq. (24)

Let us note that the free energy (23) for p = 2, i.e., for the
Bethe lattices, is equal to the free energy per site given by
Baxter [44] and is 2/q times the free energy derived by Gujrati
[7]. In Sec. V, the free energy defined by Eq. (23) will be used
for analysis of the first order phase transitions in the present
model. It should be also noted that the free energy obtained by
using the procedure shown, e.g., in Ref. [47], which is in fact
the free energy per site for infinite pure Husimi trees, cannot
be used for this purpose.

IV. NONEXISTENCE OF THE SECOND ORDER
PHASE TRANSITIONS

One of the basic characteristics of the lattice statistical
models is the existence or nonexistence of the critical tem-
perature Tc, i.e., the temperature at which the second order
phase transition occurs in zero external magnetic field h = 0.
We shall show that the existence of the phase transition of the
second order is not possible in the pure multisite model on
arbitrary pure Husimi lattices.

As was already mentioned in the previous section, in the
limit n → ∞, i.e., when we are deep inside of the Husimi
lattice, the recursion relation xn ≡ xn(1,0) in Eq. (8) obtains
a fixed point value x. In principle, there can exist more than
one stable fixed point. Each of them has its own region of
attractiveness, i.e., the value of the fixed point obtained by
the recursion relation can depend on the initial conditions.
However, all possible fixed points of the recursion relation (8)
must be also solutions of the following implicit equation for

x, namely,

x − Y1(x)/Y0(x) = 0, (25)

where Y0 and Y1 are defined in Eqs. (9) and (10) or in
Eqs. (15) and (16). Because Y0 is always positive, i.e.,
Y0(x) 	= 0, condition (25) can be rewritten into more suitable
form, namely,

xY0(x) − Y1(x) = 0. (26)

Further, let us suppose that there exists the critical tem-
perature Tc, i.e., the temperature in zero magnetic field at
which the second order phase transition occurs. Under this
assumption and from the fact that for T � Tc the spontaneous
magnetization vanishes, it follows that x = 1 must be the
solution of Eq. (26) taken at h = 0. It means that, at least
for T � Tc,

Y0(1) = Y1(1), (27)

where functionsY0(x) andY1(x) are functions Y0(x) and Y1(x)
defined in Eqs. (9) and (10), respectively, taken at zero external
magnetic field, i.e.,

Y0(x) =
p−1∑
j=0

Cj xzj
[
σj e− K

2p + (1 − σj )e
K
2p

]
, (28)

Y1(x) =
p−1∑
j=0

Cj xzj
[
σj e

K
2p + (1 − σj )e− K

2p
]
. (29)

Now, it is easy to see that the necessary condition (27) for the
existence of the second order phase transition is satisfied for
arbitrary temperature T > 0, as well as for arbitrary possible
values of parameters p and q.

At the same time, if the critical temperature exists then
for T < Tc in addition to solution x = 1 two other solutions,
namely, x ′ < 1 and x ′′ > 1, must exist which correspond to
the two values of the nonzero total spontaneous magnetization
±|m|. Therefore, directly at the critical point (T = Tc) the
function x − Y1(x)/Y0(x) or xY0(x) − Y1(x) has the inflec-
tion point at x = 1; i.e., the first and the second derivatives
of this function with respect to x are simultaneously equal to
zero at this point.

Thus, the necessary conditions for the existence of the
second order phase transition which must be fulfilled simulta-
neously directly at the critical point are

f (x)|T =Tc,x=1 = 0, (30)(
∂f (x)

∂x

)
T =Tc,x=1

= 0, (31)

(
∂2f (x)

∂x2

)
T =Tc,x=1

= 0, (32)

where we have defined

f (x) = xY0(x) − Y1(x), (33)

with Y0(x) and Y1(x) given in Eqs. (28) and (29).
As was discussed above, the first necessary condition for

the existence of the second order phase transition, namely,
Eq. (30) is satisfied for arbitrary temperature and arbitrary
values of the parameters p and q.
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Let us have a look at the second necessary condition given
in Eq. (31), which can be written as follows:

{∂/∂xY1(x) − x∂/∂xY0(x) − Y0(x)}T =Tc,x=1 = 0. (34)

Its explicit form is

y−1/2
p−1∑
j=0

Cj {(1 − y)[σj (2zj + 1) − zj ] + y} = 0, (35)

where σj , zj , and Cj are given in Eqs. (11), (12), and (14) and

y = e
K

2p−1 . (36)

After simple algebraic manipulations, Eq. (35) can be rewritten
into the following form:

(1 + y)y−1/2
p−2∑
j=0

(
p − 2

j

)
= 0. (37)

Now, using the fact that
∑p−2

j=0 ( p − 2
j ) = 2p−2 as well as the

definition of y in Eq. (36) one obtains the final explicit form
of the second necessary condition for the existence of the
second order phase transition on arbitrary pure Husimi lattices,
namely,

2p−1 cosh(K/2p) = 0, (38)

from which it is immediately evident that this condition,
which is independent of the coordination number q, cannot
be satisfied for any value of p, as well as for any value
of the temperature. Because the second necessary condition
for the existence of the second order phase transitions is
not satisfied, therefore, regardless of the validity of the third
necessary condition given in Eq. (32), we can conclude that
the second order phase transitions do not exist in the spin 1/2
p-spin (multisite) model on arbitrary pure Husimi lattices with
arbitrary values of parameters p and q.

V. THE FIRST ORDER PHASE TRANSITIONS IN A ZERO
EXTERNAL MAGNETIC FIELD

A. General discussion

As was shown in previous section, x = 1 is always the
solution of Eq. (25) in a zero external magnetic field, therefore
the paramagnetic solution with m = 0 still exists. Moreover,
because the model does not exhibit the second order phase
transitions, i.e., there does not exist critical temperature Tc

for which the function (33) has inflection point at x = 1, then
solution x = 1 is always the stable fixed point of recursion
relation (8). It means that if, for given temperature T > 0, there
exists another stable fixed point x > 0, which corresponds to
the ferromagnetic phase with nonzero spontaneous magnetiza-
tion, then only one of the two phases, the paramagnetic or the
ferromagnetic one, is physically (thermodynamically) stable.
The answer to the question which of them is stable is given by
the values of the free energy for these two phases. The stable
phase has a smaller value for the free energy, and the second
phase with the larger value of the free energy is the so-called
metastable phase. It should be emphasized that, in principle,
there can exist more than one stable fixed point x > 0 ∧ x 	= 1
which correspond to different ferromagnetic phases. In this

case, a physically stable phase will be again given by the fixed
point with the smallest value of the free energy.

Thus, the coexistence of the paramagnetic and the ferro-
magnetic phases is given by the specific behavior of function
f (x) defined in Eq. (33), and, strictly speaking, it is related
to the existence of more than one stable fixed point of the re-
cursion relation (8) with nonsingular regions of attractiveness.
The borders of these temperature regions, where the number
of the stable fixed points is changed, are accompanied by a
jump of the value of the order parameter (the spontaneous
magnetization). Let us denote these temperatures as Tms [13].
However, in what follows, we shall always have at most one
independent ferromagnetic stable fixed point; therefore, in our
case, temperature Tms will always represent the border such
that for T < Tms the ferromagnetic and paramagnetic phases
coexist, and for T > Tms only the paramagnetic phase exists.
As we shall see, the existence of the representation (8)–(10) of
the recursion relations (6) allows us to determine Tms exactly
for arbitrary pure Husimi lattice.

Thus, the paramagnetic and ferromagnetic phases coexist
for T < Tms . Which of them is thermodynamically stable is
determined by the corresponding values of the free energy.
Here, at least, three typical possibilities can exist. Two
of them are trivial, namely, either the free energy for the
paramagnetic phase is smaller than the ferromagnetic one for
all temperatures 0 < T < Tms , i.e., the paramagnetic phase
is stable and the ferromagnetic phase is always metastable,
or, vice versa, the free energy for the ferromagnetic phase
is smaller than the paramagnetic one throughout interval
0 < T < Tms , i.e., now the ferromagnetic phase is stable and
the paramagnetic phase is metastable. However, the most
interesting is the third possibility, namely, when temperature
Tt (0 < Tt < Tms) exists for which the free energies for the
paramagnetic and ferromagnetic phases are equal to each
other. In this case, for temperatures T < Tt , depending on
the behavior of the corresponding free energies, one of the
two phases is thermodynamically stable and the second one is
metastable, and for T > Tt the situation is the opposite.
Directly at transition temperature Tt the first order phase
transition occurs. As we shall see, the existence of the first
order phase transitions in the framework of the present model
strongly depends on the form of the pure Husimi lattice, i.e.,
it depends on the values of parameters p and q.

B. Behavior of function f (x) and stable fixed points
of recursion relation

As was already mentioned, the main role in the analysis of
the first order phase transitions of the model is played by the
behavior of function f (x) defined in Eq. (33) together with
properties of the free energy given in Eq. (23). First, let us
look at function f (x). Detailed analysis of f (x) as a function
of x as well as of reduced temperature K−1 = kBT /|J | shows
that its behavior is different for models with odd and even
numbers of sites in the polygons (p � 3), as well as for models
with positive and negative values of J . In Figs. 2–5, a typical
behavior of f (x) for x > 0 is shown for odd p, J > 0, and
q � 3 (Fig. 2); for odd p, J < 0, and q � 3 (Fig. 3); for even
p, J > 0, and q � 3 (Fig. 4); and for even p, J < 0, and
q � 2 (Fig. 5). As for all cases with q = 2, independently of
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E. JURČIŠINOVÁ AND M. JURČIŠIN PHYSICAL REVIEW E 88, 012140 (2013)
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f(x) T=T
ms

x(3)=1
10 x

f(x) T>T
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FIG. 2. The typical behavior of function f (x) in Eq. (33) for odd values of p, J > 0, and q � 3 below temperature Tms (a), at Tms (b), and
above Tms (c).

the value of p as well as of the sign of J , the typical behavior
of f (x) is similar with the behavior shown in Fig. 5 for even
p and J < 0.

First, as is shown in Fig. 2, below temperature Tms three real
positive solutions of equation f (x) = 0 for odd p, positive J ,
and q � 3 exist. However, only two of them are also stable
fixed points of recursion relation (8) with nonsingular regions
of attractiveness, namely, x(1) and x(3) = 1. The region of
attractiveness of x(1) is interval 0 � x0 < x(2) and of x(3) = 1
it is interval x(2) < x0 < ∞. The third real positive solution
x(2) is an unstable fixed point of recursion relation (8) with
a singular region of attractiveness that consists of only one
point, namely, x0 = x(2). The fixed point x(1) corresponds to
the nonzero positive value of the spontaneous magnetization
m (the ferromagnetic phase), and the fixed point x(3) = 1
corresponds to m = 0 (the paramagnetic phase). Depending
on the initial conditions for recursion relation (8) both
regimes can be achieved; however, only one of them can be
thermodynamically stable for given value of the temperature
(see below).

When the temperature increases, but is still below Tms ,
solutions x(1) and x(2) get near each other, and directly at
temperature Tms they merge [see Fig. 2(b)], the ferromagnetic
phase ceases to exist, and if the ferromagnetic phase for
temperatures slightly below Tms is thermodynamically stable,
then the finite jump of the spontaneous magnetization into
the paramagnetic phase with zero spontaneous magnetization
occurs. Above Tms the only solution of equation f (x) = 0
exists, namely, x(3) = 1 [see Fig. 2(c)], which is also the
only stable fixed point of recursion relation (8) with region
of attractiveness 0 � x0 < ∞.

Now, let us briefly discuss the model with odd p but J < 0
for q � 3. A typical behavior of function f (x) is shown in
Fig. 3. The behavior is quite similar to the case with positive
values of J discussed above. However, now all possible real
positive solutions of equation f (x) = 0 are larger or equal
to one. As it can be seen in Fig. 3, below temperature Tms ,
there again exist three real positive solutions of equation
f (x) = 0, and, at the same time, two of them are also stable
fixed points of recursion relation (8) with nonsingular regions
of attractiveness, namely, x(3) = 1 and x(5). The region of
attractiveness for x(3) = 1 is interval 0 � x0 < x(4), and for x(5)

it is interval x(4) < x0 < ∞. The role of the border between
the regions of attractiveness of these two stable fixed points
is now played by the third real positive solution x(4), which
is the unstable fixed point of recursion relation (8) with a
singular region of attractiveness that consists of only one
point, namely, x0 = x(4). The fixed point x(5) corresponds to
the nonzero negative spontaneous magnetization m = −|m|
(the ferromagnetic phase), and its absolute value (for the same
value of the temperature) is the same as the corresponding
spontaneous magnetization related to the fixed point x(2) in the
case with positive value of J . It means that

m(x(5),−|J |,p,q) = −m(x(1),|J |,p,q), (39)

where p is odd and q � 3. On the other hand, as in the case with
J > 0, the second stable fixed point x(3) = 1 corresponds to
the paramagnetic phase (m = 0); and depending on the initial
conditions both regimes can be achieved; however, again only
one of them can be thermodynamically stable for given value of
the temperature (depending on the values of the free energies).

x(5)x(4)x(3)=1

T<T
ms

f(x)

000
x1 x(4)=x(5)

x(3)=1

T=T
ms

f(x)

x1

(c)(b)(a)

x(3)=1

T>T
ms

f(x)

x1

FIG. 3. The typical behavior of function f (x) in Eq. (33) for odd values of p, J < 0, and q � 3 below temperature Tms (a), at Tms (b), and
above Tms (c).
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T>T
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f(x)

x

FIG. 4. The typical behavior of function f (x) in Eq. (33) for even values of p, J > 0, and q � 3 below temperature Tms (a), at Tms (b),
and above Tms (c).

At temperature Tms solutions x(4) and x(5) merge [see
Fig. 3(b)] and the ferromagnetic phase disappears, and, again,
if the ferromagnetic phase for temperatures slightly below Tms

is thermodynamically stable, then the finite jump of the spon-
taneous magnetization into the paramagnetic phase with zero
spontaneous magnetization occurs. For temperatures T > Tms

the value x(3) = 1 becomes the only solution of equation
f (x) = 0 [see Fig. 3(c)] which is also the only stable fixed
point of recursion relation (8) with region of attractiveness
0 � x0 < ∞. It is also important to notice that for given values
of parameters p and q, as well as for given absolute value of
interaction parameter J , the values of temperature Tms are
the same for the models with positive and negative values of
J , i.e.,

Tms(−|J |,p,q) = Tms(|J |,p,q). (40)

Thus, the properties of the model for odd values of p and
q � 3 are completely the same for positive and negative values
of the interaction parameter J . On the other hand, this is
not true for the model with even values of p. Let us start
the corresponding analysis with the positive values of J . In
this case, the typical behavior of function f (x) is shown in
Fig. 4. As is evident from Fig. 4, below temperature Tms five
real positive solutions of equation f (x) = 0 exist for even
p, positive J , and q � 3, and three of them are also stable
fixed points of recursion relation (8) with nonsingular regions
of attractiveness, namely, x(1), x(3) = 1, and x(5). The region
of attractiveness of fixed point x(1) is interval 0 � x0 < x(2),

0 x
x(3)=1

T>0f(x)

1

FIG. 5. The typical behavior of function f (x) in Eq. (33) for even
values of p, J < 0, and q � 2 for arbitrary value of the temperature
T > 0, as well as for q = 2 independently of the value of p and of
the sign of J .

of fixed point x(3) = 1 it is interval x(2) < x0 < x(4), and
of fixed point x(5) it is interval x(2) < x0 < ∞. Two other
solutions, namely, x(2) and x(4), are unstable fixed points of
recursion relation (8) with singular regions of attractiveness
which consist of only one point x0 = x(2) and x0 = x(4),
respectively. Stable fixed points x(1) and x(5) correspond to
the nonzero positive (fixed point x(1)) and negative (fixed
point x(5)) values of the spontaneous magnetization which
has the same absolute value |m|; i.e., they correspond to the
two equivalent ferromagnetic phases. On the other hand, fixed
point x(3) = 1 corresponds to m = 0 (the paramagnetic phase).
As was already mentioned, all three fixed points (x(1), x(3), and
x(5)) have their own regions of attractiveness and depending
on the chosen initial condition x0 in recursion relation (8) all
corresponding regimes can be reached; however, again, for
given value of the temperature, either the paramagnetic phase
or the ferromagnetic one is thermodynamically stable (depend-
ing on the values of the corresponding free energies). Further,
when temperature (T <Tms) increases, then the solutions x(1)

and x(2), as well as x(4) and x(5), get near each other, and
directly at temperature Tms they merge, i.e., x(1) = x(2) and
x(4) = x(5) [see Fig. 4(b)], and both ferromagnetic phases with
positive and negative spontaneous magnetization [m(x(1)) =
−m(x(5))] disappear, and if the ferromagnetic phases for
temperatures slightly below Tms are thermodynamically stable,
then the finite jump of the spontaneous magnetization into the
paramagnetic phase with zero spontaneous magnetization will
appear. Above Tms the only solution of equation f (x) = 0
exists, namely, x(3) = 1 [see Fig. 4(c), which becomes also the
only stable fixed point of recursion relation (8) with region of
attractiveness 0 � x0 < ∞

Now, let us consider J < 0 for even value of p and arbitrary
q � 2. In this case a typical behavior of function f (x) is
shown in Fig. 5. It means that regardless of the value of
temperature T > 0, the equation f (x) = 0 has only one real
positive solution x(3) = 1, which is also the only stable fixed
point of recursion relation (8) and corresponds to the zero
spontaneous magnetization m = 0. Thus, in this case only the
paramagnetic phase exists for all T > 0.

The same behavior as shown in Fig. 5 also holds for all
models with q = 2, regardless of the value of p, as well as
regardless of the sign of J , i.e., the equation f (x) = 0 has
only one real positive solution x(3) = 1 with m = 0. Therefore,
in all these cases only the paramagnetic phase exists. In the
next subsection, this fact will be proven exactly. In addition,
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we shall also find an implicit equation for exactly determining
the temperatures Tms for all specific cases discussed in this
subsection.

C. Exact determination of temperature Tms

As discussed above, the necessary and sufficient condition
for the existence of temperature Tms , below which the
thermodynamically stable and metastable phases coexist, is
the existence of point x > 0 (x 	= 1) for which the following
conditions are satisfied:

f (x)|x>0∧x 	=1 = 0, (41)(
∂f (x)

∂x

)
x>0∧x 	=1

= 0, (42)

where f (x) is defined in Eq. (33). Using the effective
representation of functions Y0(x) and Y1(x) given in Eqs. (28)
and (29) it is possible to find a single implicit equation
for exactly determining positions of these temperatures, as
well as to give an exact proof for the nonexistence of these
temperatures in situations when the metastable phases cannot
exist at all.

Conditions (41) and (42) have the explicit form
p−1∑
j=0

Cjx
zj [σj (x − y) + (1 − σj )(xy − 1)] = 0, (43)

p−1∑
j=0

Cjx
zj −1{zj [σj (x − y) + (1 − σj )(xy − 1)]

+ x[σj + (1 − σj )y]} = 0, (44)

where σj , zj , and Cj are given in Eqs. (11), (12), and (14),
respectively, and y is defined in Eq. (36). A solution of these
equations for given values of p and q determines temperature
Tms if x > 0 and x 	= 1.

However, using straightforward algebraic manipulations
with Eqs. (43) and (44), the following explicit expression for
reduced temperature kBTms/J can be obtained, namely,:

kBTms

J
= 1

2p−1 ln
(

V
W

) , (45)

where

V =
p−1∑
j=0

Cjx
zj [1 − σj (x + 1)], (46)

W =
p−1∑
j=0

Cjx
zj [x − σj (x + 1)], (47)

and where x is given by the solution of the following simple
implicit polynomial equation:

x2q − x2 + (p − 1)(q − 1)(1 − x2)xq = 0. (48)

Thus, it is evident that the necessary and sufficient condition
for the very existence of the metastable phases in the present
model on the corresponding pure Husimi lattice defined by
the concrete values of parameters p and q is reduced to
the existence of real positive solutions (x > 0 ∧ x 	= 1) of
Eq. (48). If such a solution exists, then the value of the
corresponding reduced temperature K−1

ms = kBTms/J is given

by Eq. (45). It is important also to point out that Eqs. (45)
and (48) determine values of temperatures Tms for J > 0 as
well as for J < 0. If for the given positive solution of Eq. (48)
one has a positive value of K−1

ms in Eq. (45), then this solution
corresponds to a positive value of parameter J . On the other
hand, if one obtains a negative value of reduced temperature
K−1

ms , then it corresponds to the model with negative value
of J .

In addition, Eq. (48) immediately confirms our conclusion
made in the previous subsection, namely, that the coexistence
of two phases (the paramagnetic one and the ferromagnetic
one) is not found in the present model on all pure Husimi
lattices with q = 2 (in a zero external magnetic field). For
q = 2, Eq. (48) is reduced to the following one:

(1 − x2)x2(p − 2) = 0, (49)

where it is evident that for p � 3 the only positive real solution
of Eq. (49) is x = 1, which, as was discussed above, is not
relevant here. Thus, for q = 2, regardless of the value of p and
of the sign of interaction parameter J , only the paramagnetic
phase exists, at least, when zero value of the external magnetic
field is supposed.

Alternatively, it can be also shown directly by analyzing
equation f (x) = 0 with f (x) defined in Eq. (33). For q = 2 it
can be written in the following form:

(x2 − 1)
p−2∑
j=0

(
p − 2

j

)
xjyσj = 0. (50)

It is evident again that, regardless of the value of p as well
as regardless of the sign of J , the only positive solution of
this equation exists, namely, x = 1, which, as was shown in
previous section, is always the solution of Eq. (33).

On the other hand, Eq. (48) can be also solved exactly
for other small values of parameter q, namely, for q = 3 and
q = 4. The corresponding two real positive solutions (x 	= 1)
for q = 3 are

x± = p − 1 ±
√

p(p − 2), (51)

and for q = 4 one has

x± =
√

3p − 4 ±
√

3(3p2 − 8p + 4)

2
. (52)

One of the two solutions for given q, namely, x− < 1,
corresponds to the positive value of the magnetization directly
at temperature Tms , i.e., x− ≡ x(1) = x(2) (see the previous
subsection for details), and the second one, namely, x+ > 1,
corresponds to the negative value of the corresponding
magnetization, i.e., x+ ≡ x(4) = x(5) (again see the previous
subsection). However, the absolute values of both magnetiza-
tions, i.e., for x− and x+, are the same. At the same time, it is
evident that the existence of the explicit expressions for x for
q = 3 and q = 4 and for arbitrary value of p [see Eqs. (51)
and (52)] means that in these cases the positions of reduced
temperatures kBTms/J given by Eq. (45) are known in fully
explicit form.

In Table I reduced temperatures kBTms/|J | of the model are
shown for various values of parameters p � 3 and q � 3. Let
us remind readers that, as discussed in detail in the previous
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TABLE I. Reduced temperatures kBTms/|J | of the spin 1/2 multisite (p-spin) model on pure Husimi lattices for various values of p � 3
and q � 3. For even values of p the temperatures Tms exist only for J > 0.

q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10

p = 3 0.122 57 0.203 75 0.280 41 0.355 47 0.429 76 0.503 62 0.577 22 0.650 64
p = 4 0.050 65 0.085 69 0.118 56 0.150 65 0.182 36 0.213 86 0.245 23 0.276 52
p = 5 0.022 62 0.038 69 0.053 72 0.068 37 0.082 83 0.097 18 0.111 48 0.125 72
p = 6 0.010 45 0.018 02 0.025 09 0.031 96 0.038 75 0.045 48 0.052 18 0.058 86
p = 7 0.004 92 0.008 54 0.011 91 0.015 19 0.018 42 0.021 63 0.024 82 0.028 00
p = 8 0.002 35 0.004 09 0.005 72 0.007 29 0.008 85 0.010 39 0.011 93 0.013 46
p = 9 0.001 13 0.001 97 0.002 76 0.003 53 0.004 28 0.005 03 0.005 77 0.006 51
p = 10 0.000 55 0.000 96 0.001 34 0.001 71 0.002 08 0.002 44 0.002 81 0.003 17
p = 11 0.000 26 0.000 47 0.000 65 0.000 84 0.001 02 0.001 19 0.001 37 0.001 55

subsection, for odd values of the parameter p, i.e., for odd
numbers of sites in the single polygons of the pure Husimi
lattices, temperatures Tms exist for models with positive as
well as negative values of interaction parameter J , and, at the
same time, the corresponding temperatures are the same for
the same absolute values of J . On the other hand, for even
values of p temperatures Tms exist only in the model with
positive values of J . It means that for negative values of J and
even values of p only the paramagnetic phase exists. From
Table I, it can be seen that temperature Tms for a given value of
p increases as a function of q, i.e., it is an increasing function of
the coordination number z = q/2 of the pure Husimi lattices.
On the other hand, this temperature for a given value of q is a
decreasing function of the number of sites in the polygons p

and for p → ∞ it tends to zero.

D. Exact determination of temperature Tt

By using the explicit expression for the free energy given
in Eq. (23), it is easy to check that for temperatures slightly
below Tms the free energy of the paramagnetic phase is
always lower than the free energy of the ferromagnetic
phase (of course, if the ferromagnetic phase exists at all),
i.e., F (x(3) = 1) < F (x(1)) as well as F (x(3) = 1) < F (x(5)),
regardless of the possible values of the parameters of the
model. It means that directly below Tms the paramagnetic
phase is thermodynamically stable and the ferromagnetic
phase is metastable. Using this fact, by further decreasing
the temperature, at least, two basic scenarios can occur. One
of them is trivial, namely, the free energy of the paramagnetic
phase remains lower than the corresponding free energy of
the ferromagnetic phase for all temperatures 0 < T � Tms .
In this case, although the ferromagnetic phase exists for 0 �
T � Tms , it is thermodynamically metastable for 0 < T � Tms

and only the paramagnetic phase is globally realized. Let
us also note that for the specific limit case with T = 0
the corresponding free energies of the paramagnetic and
ferromagnetic phases are equal one to another, i.e., directly
at T = 0, no of these two phases is thermodynamically more
preferable. It is given by the fact that in the limit T → 0 the
free energy obtains the following simple form:

F0 ≡ lim
T →0

F = −|J | q
2p p

, (53)

which is independent of x. It means that in the present model,
regardless of the form of the pure Husimi lattice, all possible
phases are thermodynamically equally probable at T = 0.

More interesting is the second possible basic scenario. By
decreasing the temperature towards T = 0, a temperature Tt

(0 < Tt < Tms) can appear at which the free energy of the
paramagnetic phase becomes equal to the free energy of
the ferromagnetic phase, i.e., F (x(3) = 1) = F (x(1)) and/or
F (x(3) = 1) = F (x(5)). Thus, below Tt (0 < T < Tt ), the free
energy of the ferromagnetic phase becomes smaller than the
free energy of the paramagnetic phase, i.e., the ferromagnetic
phase is thermodynamically stable and the paramagnetic phase
becomes metastable. In this case, directly at Tt the first
order phase transition occurs accompanied by a jump of the
spontaneous magnetization. However, for T = 0, even in this
scenario, due to the fact that the free energy of the paramagnetic
phase is equal to the free energy of the ferromagnetic phase,
again none of these two phases is thermodynamically more
preferable.

Moreover, the existence of effective representation (8)–(10)
of recursion relations (6) allows one to determine exactly the
position of the first order phase transitions of the present
model on all pure Husimi lattices. As discussed above,
the necessary and sufficient condition for the existence of
transition temperature Tt is the existence of a point x > 0
(x 	= 1) for which the following conditions are satisfied:

f (x)|x>0∧x 	=1 = 0, (54)

F (x)|x>0∧x 	=1 = F (1), (55)

where f (x) is defined in Eq. (33) and free energy F (x) is given
in Eq. (23).

The explicit form of condition (54) is given in Eq. (43). On
the other hand, condition (55) reads

[(p − 1)(q − 1) − 1] ln(1 + xq) + q ln(1 + y) + (p − q) ln 2

− q ln
p−1∑
j=0

Cjx
zj [σj + (1 − σj )y] = 0, (56)

where zj and Cj are given in Eqs. (12) and (14), respectively,
σj is defined in Eq. (11), and y is given in Eq. (36).
Solution of Eqs. (43) and (56) for given values of p and q

determines transition temperature Tt of the first order phase
transition if x > 0 and x 	= 1. Now, using straightforward
algebraic manipulations with the system of Eqs. (43) and (56)
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TABLE II. Reduced transition temperatures kBTt/|J | of the spin 1/2 multisite (p-spin) model on pure Husimi lattices for various values
of p � 3 and q � 3. For even values of p the transition temperatures of the first order phase transitions exist only for J > 0. For pure Husimi
lattices with q � p the first order phase transitions does not exist.

q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q=10

p = 3 – 0.150 82 0.221 12 0.287 25 0.351 77 0.415 48 0.478 72 0.541 66
p = 4 – – 0.065 60 0.092 84 0.117 90 0.142 08 0.165 80 0.189 25
p = 5 – – – 0.029 76 0.041 16 0.051 47 0.061 32 0.070 93
p = 6 – – – – 0.013 81 0.018 77 0.023 19 0.027 39
p = 7 – – – – – 0.006 50 0.008 72 0.010 67
p = 8 – – – – – – 0.003 09 0.004 10
p = 9 – – – – – – – 0.001 48

one obtains an explicit expression for reduced transition
temperature kBTt/J in the form

kBTt

J
= 1

2p−1 ln
(

V
W

) , (57)

where V and W are given in Eqs. (46) and (47), respectively,
and x is given by the solution of the following implicit
polynomial-like equation:

2
p−q

q (V + W )(1 + xq)
(p−1)(q−1)−1

q

−
p−1∑
j=0

Cjx
zj [Wσj + (1 − σj )V ] = 0. (58)

It means that the necessary and sufficient condition for the
existence of the first order phase transition is reduced to
the existence of real positive solutions (x > 0 ∧ x 	= 1) of
Eq. (58). If such a solution exists, then the value of the
corresponding reduced transition temperature K−1

t ≡ kBTt/J

is given by Eq. (57). Note that temperatures Tms [see Eq. (45)]
and temperatures Tt [see Eq. (57)] are given by the same
expression as function of x. However, the corresponding values
of x are determined by different implicit equations, namely,
by Eq. (48) for temperature Tms and by Eq. (58) for transition
temperature Tt . It is also important to note that Eqs. (57)
and (58) determine transition temperatures Tt for J > 0 as
well as for J < 0. If for given positive solution of Eq. (58) one
has a positive value of reduced transition temperature K−1

t in
Eq. (57), then this solution corresponds to the positive value
of J . But if one obtains a negative value of reduced transition
temperature K−1

t , then it corresponds to the model with a
negative value of J .

In Table II, the values of reduced transition temperature
kBTt/|J | of the present model are shown for various values of
parameters p � 3 and q � 3. As is evident from the table, the
first order phase transitions from the ferromagnetic phase to
the paramagnetic phase do not exist for pure Husimi lattices
with q � p, at least, up to p = 9. Although, we are not able to
prove exactly the validity of this property for arbitrary value
of p, nevertheless, it seems that it is valid for all p (for a
given value of p it can be checked numerically). It means
that for such pure Husimi lattices, although the ferromagnetic
phase exists, nevertheless it is metastable for all temperatures
0 < T � Tms , regardless of the sign of J .

In Figs. 6 and 7, the existence of the first order phase
transitions as well as the existence of the metastable

ferromagnetic phases are demonstrated on the behavior of the
spontaneous magnetization for pure Husimi lattices with odd
values of p � 3 (namely, for p = 3) for J > 0 as well as for
J < 0 and with even values of p � 3 (namely, for p = 4)
for J > 0. In all cases, we consider q > p as a result of the
fact that for q � p the first order phase transitions do not
exist (the ferromagnetic phase is always thermodynamically
metastable). These numerical results are in full agreement with
our analytical results obtained in this section.

The fact that in a pure multisite model the first order phase
transitions exist only on pure Husimi lattices with q > p is
maybe the most nontrivial physical result of the present paper.
In this respect, let us note that, e.g., in Refs. [12,13] this
property was seen on pure Husimi lattices with p = 3, namely,
it was shown that the first order phase transition exists on a
pure Husimi lattice with p = 3 and q = 4; however, it does
not exist on pure Husimi lattice with p = 3 and q = 3. It is
evident that this property is the special case of the general rule
shown in the present paper, namely, that the first order phase
transitions do not exist on all pure Husimi lattices with q � p.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0
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0.2

0.3

0.4

0.5

0.6
|m|

q=8

q=6

q=4

p=3

k
B
T/|J|

FIG. 6. The behavior of the absolute value of spontaneous
magnetization |m| for p = 3 and for q = 4, 6, and 8. For J > 0
the nonzero spontaneous magnetization is positive, i.e., m = |m|, and
for J < 0 the nonzero spontaneous magnetization is negative, i.e.,
m = −|m|. Dashed parts of the magnetization curves correspond to
the ferromagnetic metastable phases. Vertical dotted lines determine
transition temperatures Tt for q = 4, 6, and 8 (from left to right). On
the other hand, vertical dashed-dotted lines determine temperatures
Tms for q = 4,6, and 8 (from left to right).
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FIG. 7. The behavior of the absolute value of spontaneous
magnetization |m| for p = 4, J > 0, and for q = 5 and 8. The
nonzero positive spontaneous magnetization m = |m| corresponds
to the fixed point x(1). On the other hand, the nonzero negative
spontaneous magnetization m = −|m| corresponds to the fixed point
x(5). Dashed parts of the magnetization curves correspond to the
ferromagnetic metastable phases. Vertical dotted lines determine
transition temperatures Tt for q = 5 (left line) and 8 (right line). On
the other hand, vertical dashed-dotted lines determine temperatures
Tms for q = 5 (left line) and 8 (right line).

To end, let us also note that temperatures Tms and Tt

obtained in Ref. [13] on the Husimi lattice with p = 3 and
q = 4 are the same (up to normalization) as the corresponding
temperatures shown in Tables I and II, respectively (in
Ref. [13], temperature Tt is denoted as Tf m).

VI. CONCLUSION

In conclusion, in the present paper, we have investigated
the so-called p-spin model with spin 1/2, on arbitrary pure
Husimi lattices. A general formulation of the model is given
in the form of recursion relations. A compact and, at the same
time, very effective representation of the recursion relations
of the model is found that allows us to perform a complete
analysis of the phase transitions of the model. On one hand, it
is exactly proven that the second order phase transitions do not
exist in the model with pure multisite interaction regardless of
the values of the parameters that characterize the form of pure
Husimi lattices. On the other hand, the complete numerical
as well as analytical analysis of simultaneous coexistence
of the paramagnetic and ferromagnetic phases below the
corresponding temperatures Tms is performed in a zero external
magnetic field. The model exhibits a few independent regimes
depending on values of the parameters of the model. First,
it is proven exactly [see Eq. (48)] that in the present model
the ferromagnetic phase does not exist on all pure Husimi
lattices with the coordination number z = 2q = 4 regardless
of the values of the other parameters. It is also shown that

for pure Husimi lattices with q � p (p > 2), although the
ferromagnetic phase coexists with the paramagnetic phase
for T < Tms , nevertheless only the paramagnetic phase is
thermodynamically stable for all temperatures T > 0, i.e., the
first order phase transitions do not exist in all these cases.
On the other hand, for pure Husimi lattices with q > p > 2
the first order phase transitions from the paramagnetic phase
to the ferromagnetic phase occur at temperatures Tt (0 <

Tt < Tms), below which the ferromagnetic phase becomes
thermodynamically stable.

By using the effective representation of recursion relations
given in Eqs. (8)–(10), expressions for exact determining
temperatures Tms [see Eq. (45)] and Tt [see Eq. (57)] of
the model on all pure Husimi lattices are derived, where,
on one hand, the value of temperature Tms , below which the
paramagnetic and ferromagnetic phases coexist, is driven by a
simple implicit polynomial equation (48) and, on the other
hand, the value of temperature Tt of the first order phase
transition is driven by Eq. (58). At the same time, it is shown
that for the coordination numbers z = 2q = 6 and 8, Eq. (48)
has exact explicit solutions, i.e., in these cases temperatures
Tms are known in a fully explicit form for all values of p, as
well as for negative and positive values of J .

Thus, we can conclude that the structure of the phase
transitions of the spin 1/2 model with multisite interaction
in zero external magnetic field on all pure Husimi lattices is
now completely determined and known. The very existence
of Eqs. (45) and (48) as well as Eqs. (57) and (58) for
exact determining temperatures Tms and Tt , respectively,
demonstrates the existence of strong relations among the
properties of the model on all pure Husimi lattices. We suppose
that the corresponding relations among properties of the model
on various pure Husimi lattices also hold in models with
higher values of spin as well as with a different form of
the Hamiltonian (see, e.g., Ref. [47]). We intend to return
to these open questions in the near future. In addition, in the
present paper we have studied the properties of the first order
phase transitions only in a zero external magnetic field. In this
respect, another interesting question arises, namely, how the
general structure of the first order phase transitions obtained in
the present paper will be changed when the external magnetic
field is switched on. This problem is still open and requires a
separate analysis.
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