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Capillary condensation in one-dimensional irregular confinement
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A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized
one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution
of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the
amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption
for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support
analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building
block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media

from adsorption-desorption data.
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I. INTRODUCTION

Physical systems which consist of networks of pores, such
as Vycor [1], Silica aerogels [2], porous rocks [3], soil [4],
and others, have a wide spectrum of applications, ranging
from molecular filters and catalysts [5] to fuel storage [6].
Capillary condensation is an important and peculiar physical
phenomenon occurring in many such systems. Depending on
the pore structure and the materials involved, the adsorbed
fluid density can exhibit both hysteresis and avalanches
(abrupt changes in density) as the pressure varies. In recent
years, a lot of experimental and theoretical work has been
undertaken in order to understand this dependence [2,7,8].
However, the understanding is not fully complete [8] and,
for example, routinely used classical theories fail to explain
the appearance and shape of hysteresis in sorption curves
of capillary condensation even in simple one-dimensional
(1D) isolated pores [9-11]. Indeed, according to classical
theories, pores closed at one end should not have hysteresis.
In contrast, the adsorption of N, into MCM-41 mesoporous
silica consisting of pores closed at one end at the temperature
T =78 K reveals a hysteresis loop of the so-called H2-type
[12], i.e., involving a smooth increase in density for adsorp-
tion and sharp drop in density for desorption. An accurate
theory for capillary condensation in 1D pores is ultimately
necessary to ensure that, for instance, this phenomenon can
be used as a reliable technique to probe the structure of
generic porous media consisting of a network of interlinked
1D pores [2,13].

A number of techniques have been developed to study
capillary condensation theoretically, including microscopic
molecular dynamics [14], classical density functional theory
[15-18] and lattice-gas mean-field theory [1,19-21]. Such
studies have been conducted on a variety of different porous
media. For one-dimensional pores, mean-field theory [22] and
multiscale molecular dynamics studies [23,24] have previously
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been used to test the hypothesis that hysteresis is caused by
heterogeneity [11], which includes variations in pore diameter,
chemical heterogeneity in the pore walls [25], and roughness
of internal surfaces [26-29]. Additionally, these numerical
studies have revealed the occurrence of avalanches in the
amount of adsorbed fluid during condensation and evapo-
ration [30]. Such avalanches bare similarity to avalanches
in magnetisation found in the random-field Ising model
(RFIM) [1,19,31,32]. Employing this similarity, we map
RFIM to the lattice-gas model and demonstrate that (i) a
heterogeneous lattice-gas model is a minimally sufficient
model to reproduce experimental observations of variations of
fluid density with pressure in finite-sized pores; (ii) this model
can be solved exactly analytically at zero temperature (T = 0)
by a novel technique, with the solution being fully supported
by numerical simulations; and (iii) such an analytical solution
leads to simple physical explanations and interpretations of
experimental results for condensation in 1D pores that remain
qualitatively valid at sufficiently low finite temperatures.

More specifically, our findings are as follows. (i) The
effects of the closed and open ends of the pores, considered
important in the classical theories, are significantly reduced
for large disorder in strengths of the interactions of the fluid
with the pore walls. (ii) A positive-skewed distribution in
strengths of such interactions can lead to sorption curves
of the same form as those found experimentally [10,11].
(iii) It is predicted that the mechanism for adsorption depends
crucially on the length of pores and their geometry. For short
pores, adsorption isotherms may depend on whether pores
are open or close at the ends. In contrast, the dependence
of adsorption on the characteristics at the pore ends is
lost for long enough pores. (iv) Sorption is shown to have
several different mechanisms, leading to different forms of
sorption curves. However, sorption in long pores, or pores
characterized by a large degree of heterogeneity, shows
universal features typical of a disorder-controlled regime.
(v) In cylindrical pores consisting of two parts of different
diameter, condensation and evaporation in one part can induce
condensation and evaporation in the rest of the pore for low
disorder, but for high disorder, the two parts of the pore behave
independently.
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The structure of this paper is as follows. The model for
condensation and pore geometries studied are introduced in
Sec. II. Section III presents the exact solution of the proposed
model at zero temperature. The results for adsorption and
desorption are presented in Secs. IV and V for 7 =0 and
T > 0, respectively. Finally, the conclusions are given in
Sec. VL.

II. MODEL AND PORE GEOMETRIES

A. Lattice-gas model with disorder in matrix-fluid interactions

The proposed model is based on a standard lattice-gas
model of capillary condensation [1,2,9,19,33]. In this model,
the 3D space is split into cells, and each cell can be filled by
matrix (the solid substrate), liquid, or vapor. If the cell i is
occupied by matrix (expressed by setting parameter 1; = 0),
then it cannot become occupied by fluid. It is assumed that the
variables n; are quenched for the whole system and thus the
matrix state cannot change during the condensation. If cell i
is not occupied by the matrix (; = 1), then it can be occupied
by either liquid (z; = 1) or vapor (t; = 0). The variables t; can
vary with the change in chemical potential, ;. The Hamiltonian
which describes the lattice gas model is given by [1,19,20]

H= —MZTﬂ?z -—w Zfzfjmﬂ,

(ij)

= [mwl =) + mwind —n)]. (1)
(ij)

where the summations run over all the cells in the system
in the first term and over all nearest-neighbor pairs (ij)
in the other terms. The fluid-fluid interaction parameter,
wi > 0, is assumed to be the same for all pairs of cells.
The matrix-fluid interaction strength between the matrix at
cell j and fluid at the neighboring cell i is described by
the parameter w;;‘f. The values of w?}f are considered to be
independently distributed quenched random variables with
the probability density function, p,-(u){;‘f), which can be cell
dependent. The random distribution of this parameter has been
studied previously in the context of chemical heterogeneity of
the pore walls [34], but below it is assumed to characterize
all types of heterogeneity. For concreteness, we focus on
two forms of disorder in w™ ", representing heterogeneity on
different scales ranging from local fluctuations at a single point
on the pore wall to a variable diameter of the pore. More
specifically, we consider (i) a normal distribution,

pi(wif') = N ((w™):. A7), )

and (ii) an exponential distribution with correlations ensuring
that all w“}‘f are the same for the same cell i (i.e., wmf is

independent of j) and distributed according to !
pi (W) = ©)A;  exp (—A; ' x), (3)

where x = (wg.lf — (w™);) + A; and O(x) is the Heaviside
step function. In Egs. (2) and (3), (w™); and A? refer to
the mean and variance, respectively, of the corresponding
distributions. Gaussian uncorrelated heterogeneity describes
local fluctuations of the matrix-fluid interaction. In contrast,
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correlations in the exponential heterogeneity are introduced to
describe heterogeneity in pore diameter.

B. Mapping to the random-field Ising model

The lattice gas model can be mapped to the RFIM [1,19],
which gives an intuitively simpler representation and is
technically more convenient for the calculations presented
below. In the RFIM representation, the Hamiltonian described

by Eq. (1) is given by
HZ—JZSiSj—ZhiSi_HZSi» 4)
(ij) i i
(2t; — D)n; (s; = £1) represents a spin

where the variable s; =
state, H = u/2 refers to an external magnetic field, and J =
w'/4 describes the spin-spin interaction. The fields &; at cell
i are given by

mf wff
h,:Z[(l—n,)—m, 4} )
Jli

with the sum running over all nearest neighbors of i. Since w'}lf
are randomly distributed, the fields %; defined by (5) are also
random variables, with distribution p;,(4;) which depends on
the pore geometry chosen. More explicitly, p,(h;) depends
on the qumbers n = = 77]‘? and n} = Zj/i'nj, of
neighboring cells which are occupied and unoccupied by
matrix, respectively. When w}}?f is normally distributed, the
random field at cell i is distributed according to pj, (h;) =
N (i, M) with (h); = (P /2)(w™); + (n? /4w and
Aﬁ = (n}"/ 2)A2 When w“/1t follows a correlated exponential
distribution, the random field at cell i is distributed according
to pi, (hi) = O()A;, " exp(—A;"y) (Where y = h; — (h;); +
Ap,), with the mean (h;); being the same as for the normal
distribution and standard deviation A, =n"A;/2. In both
cases, the values of (h;); and Ah,z can differ between
the cells.

C. Pore geometries

Three types of 1D pore geometries consisting of N cells
embedded in a simple cubic lattice are analyzed below. They
are linear pores of (i) type I with both ends closed by matrix
[see Fig. 1(a)], (ii) type II with both ends open and bounded
by vapor [see Fig. 1(b)], and (iii) type III with one open end
and one closed end. In the first two cases, we consider w™ to
be identically and independently distributed random variables
with (w™); = (w™) and A; = A.Inthe last case, we consider
two distinct sections of lengths Ny and N — N, characterized
by different values of mean matrix-fluid interaction (w'f‘f) and
(wg‘f), but the same variance A, respectively [see Fig. 1(c)].
Pores of type III are intended to model ink-bottle and
funnel pore geometries, with weaker matrix-fluid interaction
representing a larger diameter.

D. Dynamics

We study adsorption and desorption isotherms obtained by
sweeping the chemical potential at a rate r from = —o0o to co
and back again. The state of the system is described in terms of
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(a) Typel

(b) Typell

(¢) Type III

FIG. 1. Diagrams showing 2D sections of linear pores of N =5
cells unoccupied by matrix, labeled i = 1,...,5 (white squares),
and different configurations of matrix cells (gray squares) in the 3D
system. (a) Pore of type I completely surrounded by matrix. (b) Pore
of type II with open ends. (c) Pore of type III with one open and
one closed end consisting of two sections with statistically different
matrix-fluid interaction represented by light- and dark-gray cells. The
interaction of the fluidincells1 <i < Ny =3andincells4 <i < N
with the matrix represented by light-gray and dark-gray squares is
described by (w), and (w), respectively. For clarity, two relevant
matrix cells per unoccupied cell, on top of and underneath the white
cells, are not shown in this 2D diagram.

the mean volume of the absorbed liquid, (V) = (N~ Do Ti)s
and the variance of this quantity, Var[V] = (N~' Y, 1,)?) —
(V)2. When the system is driven in this way, it evolves
through a rugged free-energy landscape corresponding to the
Hamiltonian H which, due to the presence of random fields,
consists of an exponentially large number of local minima
for given u and (V) [1,35-37]. The evolution of the system
(i.e., changes of the occupation numbers, {t;}) is caused either
by changes in the energy landscape due to variations of u
or by thermal effects. Below the critical temperature, T,
where condensation occurs in a discontinuous manner [2],
random fields introduce glasslike behavior to the system and
thermally activated transitions are unlikely on the time scale
of real experiments [1]. That is why the results of mean-field
lattice-gas models [1,20], which ignore thermal fluctuations,
and experiments [2] are in good agreement. Temperature is
known to affect hysteresis [2] but this has been properly
accounted for by mean-field theories in terms of entropic con-
tributions that represent a quenched modification to the energy
landscape [1,20].

Motivated by these results, we first obtain the exact
analytical solution to the proposed model at zero temperature
and then study the effects of nonzero temperature by means of
Monte Carlo numerical simulations. These simulations include
thermally activated events but their effect is expected to play
a secondary role on hysteresis at low temperatures and are not
analyzed in detail.

At T =0, we employ a single-spin flip metastable dy-
namics that has been widely used within the context of the
zero-temperature RFIM (zt-RFIM) [31]. According to this dy-
namics, for adsorption (desorption) each cell is initially empty
(occupied), s; = —1 (s; = +1), and can become occupied by
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liquid (gas), s; = +1 (s; = —1), once its local field,

fi=H+h+71) s
ili
f ff
® wi  wh
=5+ (U—n)—-+—nl, (6)

il

is positive, f; > 0 (negative, f; < 0). Here, nlf = Zj/i n;T;
is the number of fluid cells neighboring cell i. According to
the above rule, a configuration of phases is stable if all the
fluid cells satisfy the condition s; f; > 0. The system is driven
quasistatically under the assumption that the rate of relaxation
of spins is much larger than the rate r of variation of u [31,32].
In practice, this is achieved by sweeping w until at least one
spin becomes unstable. At this point, an avalanche starts and
1 1s kept constant until a new stable configuration is reached.
After that, activity can only resume if p is varied and a new
avalanche is induced by this variation.

Adsorption and desorption processes at T > 0 are simu-
lated numerically using Metropolis dynamics implemented as
follows [38]. For given w, a cell is chosen at random and
a change of its state, 7; (or s;), is proposed. The change is
accepted with probability p = min{l, exp(—B8AH)}, where
B = (kgT)~' and AH = f;s; is the change in energy of the
proposed change of state. This process is referred to as a single
Monte Carlo step, with the unit of time in the simulation
being Monte Carlo steps per spin (MCSS). As the simulation
progresses, the value of p is incremented at a fixed rate
r measured in MCSS™! so the increment at each step is
8 =r/N. This dynamics reduces to the T = 0 dynamics
in the limit of » — 0 and 8 — o0.

III. EXACT SOLUTION OF THE MODEL AT T =0

In this section, we obtain exact analytical solutions for
sorption curves for a 1D pore. In order to do that, we develop
a novel method based on the use of the generating function
formalism [39,40]. Within this formalism, the volume of fluid
in the finite pore is a random value and can be expressed by a
generating function,

N
G(x)=)_ Pmnu", (7)
n=0

where P(n) is the probability that n = Z,N: , T cells in the
finite pore are occupied by fluid. The mean volume of fluid is
given by

(V) = Vo(n) = 9,G(1), )]
with volume of a cell set to Vi = 1, and the variance is
Var[V] = 9., G(1) + 3, G(1) — [3, G(D)]?, 9

where 0,G(1) and 9,,G(1) refer to the first and second
derivatives of G(x) with respect to x evaluated at x = 1. We
derive a form for these expression by establishing a recursion
relation for G(x) in the following way.

We assume particular sequences for occupancy of cells that
are convenient from a mathematical viewpoint. This is possible
due to the Abelian property of the zt-RFIM which ensures that
the final state of the system is independent of the order in which
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the cells are occupied by fluid (the order spins flip) as long as
the system ends up in a stable or metastable state [31,41].
The sequence we chose assumes that the relaxation of the
system into a metastable state takes place in a series of N time
steps, f, 1 <t < N. Initially, during time step t = 1, all the
cells withi > 2 are artificially prevented from being occupied,
while the first cell i = 1 is allowed to change its state. Cell
i = 1 can either change state from unoccupied to occupied if
the local field given by Eq. (6) is positive, f| > 0, or remain
unoccupied if the local field is negative. This process with two
possible outcomes is called relaxation of cell 1. Next, during
time step r = 2, we allow cell i = 2 to relax, while cellsi > 3
are still held in the unoccupied state, and cell i = 2 can become
occupied if f, > 0. If cell i = 2 does become occupied, then
the local field f; atcell i = 1 will increase. This can cause cell
i = 1 to become occupied if it was not occupied already, i.e.,
an avalanche can pass fromcelli = 2tocelli = 1 during time
step ¢t = 2. Similarly, we allow the next cell in the pore, i.e.,
i = 3, to relax and, if it becomes occupied, an avalanche can
pass back along the pore towards cell i = 1 if those cells with
i < 3 were not occupied. This method is recursively applied
N times until all the cells in the system are relaxed.

Let us consider the cell i = N at the end of the pore, which
is the last cell to be allowed to relax in the above procedure.
At the start of time step + = N, the neighboring pore cell
i = N — 1 can be occupied or unoccupied, i.e., sy_; = £1.
If the neighboring cell i = N — 1 is occupied (sy—; = +1),
and the random field atcelli = N is hy > —J — H, then the
local field fy > O and cell i = N will become occupied. This
occurs with cell-dependent probability p); |, where

00
/
pi,m = /
h=—H—-J(2m—1)

with m being the number of occupied neighbors of cell i =
N, i.e., m = 1 in this case. If, however, the neighboring cell
i = N — 1l is unoccupied (sy_; = —1), then the local random
field must be above a higher threshold for cell N to become
occupied, hy > J — H, which occurs with probability, p§\,,0,
given by Eq. (10) with m = 0. In this case, the field at cell
i = N — 1 will increase, and an avalanche can propagate back
along the pore.

The probability that there are n occupied cells in the lattice
at the end of the relaxation process can therefore be written as

pi (Wydh, (10)

P(n) = P,(N — 1,n — I)p}v’1
+ Pa(N — 1,n)(1 = pyy )+ Ps(N — 1,n — Dpy o
+ Pc(N — Ln)(1 = py o) (11)

in terms of the probabilities, P4(i,n’), Pg(i,n"), and Pc(i,n’),
which can be recursively determined. The quantity

Ps(i,n)) =Probn;(t =i)=n'Ns;(t =i)=+1], (12)

is the probability that at the end of time step ¢ = i, there are
ni(t=i)=n' occupied cells with index j in the range 1 <
j<ilie,n; = Z’i:,(sj + 1)/2] and that cell i is occupied,
s;(t = i) = +1. The value
Pg(i,n’) = Prob[s;(t = i) = —1
it = N) = n'lsi1(t = N) = +1] (13)
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is the probability that cell i is unoccupied at end of time
step t =i, s;(t =i) = —1, and at the end of the relaxation
process (end of time step t = N) there are n; = n’ occupied
cells in the range 1 < j < i, given that cell i + 1 becomes
occupied, s;+1(t = N) = +1, during some time step ¢, i <
t < N (which causes avalanches to pass back along the pore
towards cell 1, changing the occupation number 7;). The third
quantity,

Pc(i,n') =Prob[n;(t =i)=n'Ns;(t =i)=—1], (14)

is the probability that at the end of time step + = i there are
n;(t = i) = n’ occupied cells in the range 1 < j < i and that
cell i is unoccupied at this time step, s;(t = i) = —1.

Using Eqgs. (7) and (11), the generating function G(x) for
the total number of occupied cells in the pore can be written in
terms of the generating functions A;(x), B;(x), and C;(x) for
the corresponding probabilities defined by Eqgs. (12)—(14) as

G(x) = [xpy; + 1 — py DIAN_1(x)
+ xpy oBn-1(x) + (1 = py ))Cn—1(x). (15)

where the generating function A;(x) is defined as A;(x) =
Zil:() PA(i,n)x", while B;(x) and C;(x) are defined according
to the same relation with A replaced by B and C, respectively.

Expressions for the generating functions A;(x), B;(x), and
Ci(x) fori > 1 can be found recursively in the following way.
If cell i — 1 is occupied at the start of time step ¢+ = i and the
local field at cell i is positive, i.e., f; = h; + H > 0, then cell
i will become occupied during time step ¢t = i. This occurs
with probability p; 1, where

o0
Dim = / o (). (16)
h=—H—J(2m—2)

If cell i — 1 is unoccupied then the random field has to be
at a higher threshold, #; > —H + 2J, in order for cell i to
become occupied during time step i. The random field will
be above this higher threshold with probability p; ¢, given by
Eq. (16). If cell i does become occupied during time step t = i
and s;_; = —1 at this time, then an avalanche might pass back
along the pore towards cell i = 1. This gives the expressions
for PA(i,n’) and Pc(i,n’) defined in Egs. (12) and (14),

Pa(i,n') = Pa(i — 1,0 — Dp;1 + Pg(i — 1,n" — D)pio,
Pe(i,n') = Pa(i — 1,n)(1 — pi)) + Pe(i — 1,n')(1 — pj).
(17

If cell i does not become occupied at time step ¢ = i, but cell
i + 1 becomes occupied at some later time step?’ (i < t' < N),
then cell i can also become occupied during time step t’,
i.e., an avalanche can propagate back down the pore. The
probability of cell i becoming occupied in this way at time
step ¢’ depends on whether cell i — 1 is occupied. In fact, if
cell i — 1 is occupied and cell i + 1 becomes occupied on
time step ¢’ then cell i will also become occupied at time step
¢’ only if the random field at cell i is in the range —H < h; <
—H + 2J, which occurs with probability p; » — p; ;. On the
other hand, if cell i — 1 is unoccupied then the random field
must be in the range —H — 2J < h; < —H in order for cell
i to become occupied at time step # when cell i 4+ 1 becomes
occupied, which occurs with probability p;; — p;o. In the
case thatcelli — 1is unoccupied, an avalanche of spin flips can
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propagate back down the pore from cell i towards cell 1 during
time step #’. This gives the expression for Pg(i,n’) defined
in Eq. (13),
Pp(i,n') = Ps(i — 1,n")(1 — pi2)
+ Pa(i — 1,n" — 1)(pia — pi1)
+ Pc(i — 1,n")(1 = pip)
+ Pgi — 1,n" — D)(pix — pio).  (18)

Equations (17) and (18) lead to the following recursive
relations for the generating functions, A;(x), B;(x), and C;(x),

Ai(x) = x[Ai—1 (X)) pix + Bi1(x)pi o],
Bi(x) = x(pia — pi)Ai—1(x) + (1 = pi2)A;—1(x)

+ x(pi1 — pio)Bi—1(x) + (1 — pi1)Ci—1(x),
Ci(x) = — piDAi—1(x) + (1 — pio)Ci—1(x), (19)

valid fori > 1.
The boundary values of P4(1,n") and Pc(1,n") can be found
using the following relations:

Py(1,n') =8y 1pig,  Pc(ln') =38y 0(1 = piy),  (20)

PHYSICAL REVIEW E 88, 012139 (2013)

where pj , is the probability that cell 1 has a positive field (and
thus becomes occupied) at the first time step (when all other
cells are unoccupied). The value of Pg(1,n’) is given by the
relation

Pp(l,n') = (1 = p} 8o+ (Phy = Po)dwts (2D
where pj | — pj , is the probability that cell 1 has a negative
local field during time step t = 1, but the field becomes positive
when cell 2 becomes occupied, and 1 — p| | is the probability
that cell 1 still has a negative local field after cell 2 becomes
occupied. Equations (20) and (21) result in the following
expression for the boundary generating functions:

A(x) = xpﬂ,o,
Bi(x) = x(py; — pro)+1 - P (22)
Ci(x) =1 —pi,.
The generating function given by Eqgs. (15), (19), and (22)
can be written as a matrix equation,

G(x) = [AW]"™My_1 ()M y 5(x) ... Ma(x)[B(x)], (23)

where

[A)]" = [xpy 1 + (1= ply ). xPly o L — Pyl

XPil
M;(x) =
1= pi1

x(pi2— pi) + A = pi2)

XPio 0
x(pi,1 — Pio) I1—pi1 |, 24
0 1= pio

[BO)I" = [xp] g x(P} — Plo)+1— P 1—piol

Equation (23) is the main analytical result of our analysis
allowing exact evaluation of 9,G(1) and 9,,G(1). The mean
and variance of the volume of fluid in the pore can be found
for both adsorption and desorption regimes using Egs. (8)
and (9) along with the derivatives of G(x). Technically, the
derivatives of G(x) can be calculated by numerical iteration,
i.e., the derivatives of M;(x)M;_i(x)... M,(x)B(x) can be
found in terms of the derivatives of M;_;(x)... M,(x)B(x).

IV. RESULTSFORT =0

The results presented in this section correspond to the
numerical solution for G(x) given by Eq. (23). In order to
test the validity of the exact solution, we performed Monte
Carlo simulations of condensation within the framework of
the lattice-gas model. During each simulation, the value of
w was fixed, and hysteresis plots were obtained by running
separate simulations for each value of w. The fluid occupation
number of the matrix-free cells was changed following single
spin-flip zero-temperature Metropolis dynamics [31,42]. The
mean and variance of V were calculated by averaging over
10* realizations of the disorder in random fields for a fixed
matrix structure and values of the parameters. Figures 2, 3, 7,
and 8 show that the analytical calculations (lines) agree with
the numerical simulations (symbols).

The shape of the hysteresis loop and the distribution of p for
a given value of u depends on the pore type and are governed
by several parameters. These parameters are the degree of
disorder in matrix-fluid interactions, A, the system size, N,
the relative strengths of matrix-fluid, (w™, and fluid-fluid,
w', interactions and the value of the chemical potential, .
The values of the parameters influence the dynamics of the
avalanche, i.e., they control the location of the avalanche
nucleation points, being either at end points or internal points
of the pore, and the number of points at which the avalanches
are pinned. As a result, there are several distinct regimes for
sorption in linear pores of all types.

We start our analysis with a detailed description of the
different regimes in pores of types I and II. First, the different
possible forms for the sorption curves in the case of a normal
distribution in w;}‘f are described. Second, we analyze the
new features which an exponential distribution brings to the
sorption curves. Finally, a description of the sorption curves
in pores of type III is presented.

A. Nucleation and pinning

When the increasing value of u reaches a certain value
one of the cells in the system can be filled with liquid, i.e.,
an avalanche can be nucleated. This avalanche can propagate
either through the whole system or stop at some cell, which
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FIG. 2. (Color online) Condensation in pores of types I and II
[cf. Figs. 1(a) and 1(b)]. The mean (V') (upper panel) and variance
Var[ V] (lower panel) of occupied volume of pores of length N = 100
are plotted vs w. The bold arrows show the direction in which u
changes for adsorption and desorption curves. The solid (dashed)
curves correspond to pores of type I (II). Different columns refer
to different degrees of normal disorder in w{_‘}f with the same mean
value (w™) = 1.0 and the same w'f = 1.0: (a) p(w™) has a width
A = 0.05 and (b) a width A = 0.25. Symbols refer to the numerical
results.

becomes a pinning point. When the avalanche is pinned,
a further increase in u is required for depinning, i.e., for
adsorption to continue. There exist several typical values of
1, corresponding to nucleation and depinning. For pores of
type I, nucleation of adsorption can occur either at the cells at
the ends of the pore, when p >~ %%, or at a cell in the inner
part of the pore, when p >~ "™ so overall nucleation can
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FIG. 3. (Color online) Condensation in pores of types I and II. As
in Fig. 2, mean (V') (upper panel) and variance Var[V] (lower panel)
of occupied volume of pores of length N = 100 are plotted vs pu.
Columns show different values of normal disorder A with constant,
(w™) = 1.0 and w' = 4.0. The degree of disorder is A = 0.1 in
column (a) and A = 0.4 in column (b).
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occur when p >~ uf. = min[ufn“i?f,ug‘l{‘rfr]. For pores of type
II, nucleation occurs at i = fup, = iy - For pores of both

types I and II, depinning of adsorption occurs at thayx. The
expressions for the typical mean values of all these chemical
potentials are derived in Appendix.

It follows from the analysis of the expressions for chemical
potentials describing nucleation and depinning that the longer
the pore and/or the greater the degree of disorder, the
lower the value of w at which adsorption is nucleated, the
greater the chance that adsorption is nucleated in the inner
part of the pore and the greater the value of w at which
depinning occurs. Additionally, larger strengths of interaction
between cells, w, lead to a reduction of the value of u at
which depinning occurs but have no effect upon the value of
u at which nucleation occurs. Due to these effects, several
regimes for adsorption exist and can be accessed by changing
the interaction strengths, the degree of disorder and the pore
length.

B. Regimes for avalanches

First, we analyze the different adsorption regimes of
adsorption for pores of type I. The relative values of fthay,
{150 and () (with {8;,) < (7)) depend on w', A,
and N, and four different regimes of adsorption exist. The first
regime is defined by the following sequence of characteristic
chemical potentials:

(iin) < Pt < {paamin) (25
An example of adsorption in this regime is shown by the
vertical dashed line marked with (1) in Fig. 4(a), which, first,
crosses the solid line, then the dot-dashed line, and, finally,
the dashed line. This regime can exist for small-enough w
[e.g., w™ = 1.0 in Fig. 4(a)] such that the crossing point
between the dot-dashed line [see Eq. (AS5)] and the dashed
line [see Eq. (A2)] occurs at A < A*, and for a certain
range of A, e.g., at A =0.05 in Fig. 4(a). The adsorption
in this regime [see solid line in Fig. 2(a) upper panel] begins
for >~ (uS..) < (i) implying that nucleation typically

(@) (®)
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A A
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FIG. 4. (Color online) Characteristic values of u relevant to
adsorption for a range of strengths A of normal disorder. Shown
are the values of {(uy ;) (solid line), {up;.) = (u‘m“{‘:f} (dashed line),
and hax (dot-dashed line). In both panels (w™) = 1.0 and N = 100.
The fluid-fluid interaction is w = 1.0 in panel (a) and w' = 4.0 in
panel (b). The vertical lines with upward arrows indicate values of A
corresponding to the four different regimes, (1)—(4), for adsorption
described in the text.
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occurs at the end of the pore. The variance takes a relatively
small value as compared to its maximum possible value of
Var[V]max = 0.25 corresponding to a bimodal distribution of
V with equally probable values V =0 and V =1 [43] [see
solid line in Fig. 2(a) lower panel], meaning that the avalanches
nucleated at the ends of the pore progress gradually along
the pore between several pinning points with no large sudden
jumps in density. This is in contrast to cases when the variance
takes its maximum value, which correspond to a single large
avalanche [see regimes (3) and (4) below].

In the regime of large disorder in w;’}f [regime (2)], pinning
dominates over nucleation, and adsorption takes place in the
form of many small avalanches nucleated mainly in the inner
cells. An example of adsorption in regime (2) is shown in
Fig. 4(a) by a vertical dashed line, with the following sequence
of crossing points:

(kinin) < (Hmin') < M-

In this example, adsorption can be nucleated, first, at the closed
ends, when u 2~ (ug,;,). The avalanche that occurs as a result
of such a nucleation is small because of the large number
of pinning points which exist for g < phax. At a higher
@ > (™€), many more small avalanches are nucleated in
the middle of the pore, in contrast to regime (1). The resulting
filling process is gradual, occurring mainly over the range of u,
(uimery < i < uhiax [see solid line in upper panel of Fig. 2(b)],
and characterized by a low variance (see the solid line in the
lower panel). In fact, if the dot-dashed line is above the others,
ie.,

(smin) < M (26)
then the dominant effect for adsorption is pinning, meaning
that adsorption is in regime (2). Such a regime thus occurs for
large enough A or N for any value of wf, i.e., when the value
of A is to the right of the crossing point between the dashed
and dot-dashed lines in Fig. 4(a) or 4(b).

The third and fourth regimes [see Fig. 4(b)] can be achieved
by increasing the value of w, corresponding to a downward
shift of the dot-dashed line so the intersection point of the dot-
dashed and dashed line occurs at A > A*. In regimes (3) and
(4), pinning is not important, i.e., (hay is the smallest relevant
value of 1, and adsorption occurs in a single avalanche. This
is demonstrated by the large peak in Var[V] (=~ 0.25) for both
regimes; see the right-hand solid peak-shaped curves in the
lower panels of Figs. 3(a) and 3(b) corresponding to regimes
(3) and (4), respectively. The boundary between these two
regimes occurs at A = A*. For regime (3), A < A*, meaning
that

Mhax < {Himin) < (Pnin' ) 27
In this case, adsorption occurs in a single avalanche nucleated
at one of the end cells at p > (us; ) [see right-hand solid
curve in Fig. 3(a) upper panel]. For regime (4), A > A* and

Phas < (Hin) = {ptmin’); (28)
so adsorption occurs in a single avalanche nucleated at one of
the inner cells at p >~ (,uig{‘rfr) [see the right-hand solid curve
in Fig. 3(b), upper panel].

In the analysis above, the length of the pore was fixed at the
representative value N = 100. The forms of Eqs. (A2)—-(AS)
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(b)
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FIG. 5. (Color online) Four regimes for (a) adsorption and
(b) desorption are shown in the parameter space of (w™) and w for
pores of type I of length N = 100 and A = 0.1. The characteristic
points A((w™)_,w™) and D((w™),,w ) are located at (w™), =
A[V8erfc ' (2/N) + /5/7] and w™ = 2+/8Aerfc="'(2/N). Adsorp-
tion in pores of type II exhibits two regimes, (2) and (4). Regime (2)
corresponds to the region (2) in panel (a) and regime (4) spans over the
regions (1), (3), and (4) in (a). Similarly, desorption in pores of type
II occurs only in two regimes, (1) and (2). Regime (2) corresponds to
the region (2) in panel (b) and regime (1) spans over the regions (1),
(3), and (4) in (b).

suggest that the value of N influences the configuration of
the boundaries shown in Fig. 4 by changing the slope of the
dashed and dot-dashed lines. The solid line is independent
of N for A < A*. When N increases, the magnitude of both
slopes increases proportionally to +/In N. As such, for very
large N, only regime (2) can be observed, with nucleation first
occurring at very small values of x and adsorption taking place
as a series of small avalanches until w is very large. In fact, the
effect of increasing the pore length is qualitatively the same
as the effect of increasing disorder, which is analyzed in detail
above.

The four regimes for adsorption in type I pores described
above can be accessed at constant values of A and N by varying
the values of (w™) and w™. A diagram showing the boundaries
between the regimes (1)—(4) in the parameter space of (w™f)
and w' is shown in Fig. 5(a). As seen from this diagram, all of
these boundaries meet at point A. For values of w' lower than
its value at point A the adsorption is in regime (2), i.e., for such
values of w' there will be many small avalanches nucleated
at inner cells. For larger values of wf the regime depends
on the value of (w™). Regimes (1) and (3), corresponding to
avalanches nucleated only at the end cells of the pore, appear at
higher values of both w' and (w™) than the point A [the region
bounded by the dashed line in Fig. 5(a)]. Regimes (3) and (4),
corresponding to avalanches that are not affected by pinning
and occur in a single jump, appear at values of w'" which are
higher than both the value at point A, and the value on a line
w’ = (w™) + A[V8erfc '(2/N) + /5/7] which passes
through A with gradient 1 [the shaded region in Fig. 5(a)]. To
summarize, the regimes are described as follows: regime (1):
small avalanches nucleated at the end cells only; regime (2):
small avalanches nucleated mainly in the inner cells; regime
(3): single large avalanche nucleated at an end cell; regime (4):
single large avalanche nucleated in an inner cell.

For pores of type II, a similar analysis can be performed,
by replacing (uq;,) with (ug..) in Egs. (25)—(28). It can be
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shown that only two regimes exist, (2) and (4). The boundary
between these two regimes in the parameter space ((w™),w™)
is a line of constant w' passing through the same point A
as in Fig. 5(a). This means that pores of both types are in
regime (2) for the same range of parameters. Conversely, when
type I pores are in regimes (1), (3), or (4), type II pores are in
regime (4).

The shapes of the adsorption curves in different regimes
reveal the similarities and differences between the pores of
types I and I1. For the same set of parameters, adsorption can be
inregime (1) for a type I pore while it is in regime (4) for a type
II pore. In this case, adsorption in the type I pore is nucleated
at the end cells and progresses slowly between many pinning
points along the pore while adsorption in the type II pore is
nucleated in an inner cell and happens in a single avalanche
because there are no pinning points. The difference between
the two pore types is due to the additional interactions between
the fluid and the end-cap matrix cell of the type I pores, which
are absent in pores of type II and ensure that the value of u at
which adsorption starts in the type I pores is lower than in the
type Il pores [{us ) =~ —5.1 < (ud;,) = —4.2, compare solid
and dashed lines in Fig. 2(a), upper panel]. At the low values
of u when adsorption starts in the pore of type I, there are
many pinning points, which prevent the occurrence of a single
avalanche. This is supported by the fact that the maximum
value of the variance, Var[ V], is smaller than 0.25 for the type
I pore but is approximately equal to 0.25 for a type II pore [see
the lower panel of Fig. 2(a)].

Adsorption in regime (2) is governed by disorder for both
types of pore and their adsorption curves practically coincide
[see Fig. 2(b), both panels]. The relatively small values of
variance [see Fig. 2(b), lower panels] confirm the presence of
many pinning points leading to many small avalanches.

When the adsorption is in regime (3) for the pores of type
I, it is in regime (4) for the pores of type II. This means that
both pores exhibit a large avalanche, but it is nucleated at the
end cells in a type I pore and at an inner cell in a type II pore.
Adsorption in the type I pore therefore occurs at a lower value
of u than in a pore of type II [see Fig. 3(a), upper panel].
The variance reaches a peak of 0.25 for both [see Fig. 3(a),
lower panel], confirming that adsorption occurs in a single
avalanche. At lower values of (w™), adsorption is in regime
(4) for both types of pore, so it is nucleated in an inner cell in
both cases and occurs in a single avalanche. This causes the
adsorption curves to practically coincide for both pore types
[see Fig. 3(b)].

For desorption, a similar analysis can be undertaken, and
the results of this analysis are presented by the set of lines
to the left of the adsorption curves in Figs. 2 and 3. Four
regions, similar to those for adsorption, exist for desorption
in pores of type I [see Fig. 5(b)]. These are separated by
several boundaries, which cross at point D. For values of w't
lower than that at point D [regime (2)], desorption exhibits
many small avalanches nucleated in the inner cells, as in
regime (2) for adsorption. For w' higher than that at point
D, there are several regimes. Regimes (3) and (4) correspond
to desorption taking place in a single avalanche, which occurs
when both w'T and (w™") are greater than their values at point D
[shaded region in Fig. 5(b)]. Regimes (1) and (3) correspond
to desorption which is nucleated at the end of the cell and
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occur for values of w' greater than that at D and greater
than a line w = (w™) + A[v/8erfc™'(2/N) — \/5/7] which
passes through point D with gradient 1 [the region bounded by
the dashed line in Fig. 5(b)]. Note that the boundaries between
the regimes, in general, differ from those for adsorption.
Larger values of (w™) encourage (discourage) nucleation of
adsorption (desorption) at the end cells and also encourage
(discourage) pinning to occur by making the adsorption
(desorption) process start at a lower value of w.

For pores of type II, the desorption can be either in regime
(1) or (2) only. These two regimes are separated in parameter
space ((w™),w™) by the line at constant w passing through
points A and D. As such, when the parameters are chosen in
such a way that desorption in type II pores is in regime (2), a
type I pore with the same parameters will exhibit desorption
in regime (2) also. In this case, the desorption curves and
variances coincide for the two pore types [see Fig. 2(b)]. For
parameters such that desorption in a pore of type Il is in regime
(1), a type I pore can be in types (1), (3), or (4) and the
desorption curves, in general, do not coincide.

C. Exponential disorder in matrix-fluid interaction strength

The above analysis has been done for the case of a normal
distribution in wfj?f. The overall picture is qualitatively the

same for a correlated exponential distribution of wl‘.‘;f given by
Eq. (3). However, the presence of a well-defined lower bound

for w™f associated with the sharp cutoff in the distribution at

ij
wm = (w™) — A leads to two important differences between
the two types of disorder. Indeed, the sorption curves for
correlated exponential disorder display a number of cusp
singularities (discontinuities in the derivative of (V) with
respect to u) that contrast with the smooth curves for normal
disorder in wg?f (see Fig. 7). The second difference is that, for
large system size, the limiting behavior of the sorption is not
the same for both types of heterogeneity, i.e., the hysteresis
curves for the exponential disorder are asymmetric and of the
H type [12], in contrast to the parallel-sided H1 type seen for
a normal distribution of wi“j?f.

There are several regimes for desorption in the case of
exponential disorder depending on relative values of the
characteristic chemical potentials, (1S ), (uinner), (pinnery
and phin (see Appendix), shown in Fig. 6(b). If the point
where (u;,.,) (solid line) merges with (uiggfgr ) (dotted line)
is at higher values of A than the crossing point of fthin
(dot-dashed line) and (uim“;,fr), three distinct regimes can be
accessed, marked by downward vertical arrows in Fig. 6(b).
In fact, similarly to the case of normally distributed disorder
in w{?f, the parameter space, ((w™),w'), for fixed values of
A and N, can be split into four regions corresponding to four
regimes for either adsorption or desorption. The boundaries
between the different regimes have the same configuration as in
Fig. 5 for normal distribution but are characterized by different
locations of the points A((w™)_, w') and D((w™) ., w), with
(WL = A[4(1 = N1 £ %] and w' = 4A Zflv;f nl.

Below, we analyze two representative sets of parameters.
For the first set of parameters, (%) > (1) > (ftmax), the
types I and II pores are in regimes (3) and (4), respectively,
for adsorption, and in regimes (3) and (1), respectively, for
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FIG. 6. (Color online) Characteristic values of w for (a) adsorp-
tion and (b) desorption for exponential disorder as functions of the
degree of disorder, A, for a pore of length N = 100 with (w™) = 1.0
and wf =1.25. In panel (a), solid, dashed, and dot-dashed lines
indicate (<), (U%;,) = (") and phax, Tespectively. The vertical
lines with upward arrows give examples of adsorption in regimes (1),
(2), and (3). Panel (b) shows (ug, ..} (solid line), {up . ) (dashed line),
hin (dot-dashed line), and ("""} (dotted line). The dashed curve in
panel (b) merges with the dotted and solid curves for large A (off the
right-hand edge of the graph). Examples of desorption occurring in
regimes (1), (2), and (3) are indicated by vertical lines with downward
arrows in panel (b).

desorption. The sorption curves for this choice of parameters
are presented in Fig. 7(a). It is confirmed that the adsorption
in both pore types takes place in a single avalanche. Typically,
this avalanche takes place at a smaller value of w in type
I pores (u = (u$,;,)) than in type II pores (u = (u;,))- The
desorption also agrees with the prediction, in that it takes place
over a range of u for the type II pore around p >~ (uy .. ) and
in a single large avalanche for the type I pore at a lower value
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FIG. 7. (Color online) Condensation for linear pores of length
N = 100 with exponential disorder of strength A = 0.02 [panel (a)]
and A = 0.2 [panel (b)]. Same line styles are used as in Figs. 2
and 3. The interaction parameters are (w™) = 1.0 and w' = 1.25.
The locations of the cusps are marked by arrows and given by u; . =
—5.25, 8. = MP" = —4.45, and M = —5.7.
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For the second set of parameters, for which (u°) > (u°) ~
(u'"ery > (uPiny, both pore types are in the disorder-controlled
regime (2) for adsorption and desorption. For this set of
parameters, the adsorption curves are practically identical
[see Fig. 7(b)]. Several cusps are clearly seen on the sorption
curves at MM ;¢ and pO,.. given by Egs. (A9)—(A11)
and indicated by arrows in Fig. 7(b). These cusps are due
to the presence of a strict lower bound for the exponential
distribution given by Eq. (3). The value of MP" [given by
Eq. (A11)] corresponds to a cusp in the adsorption curves for
pores of both types, at which (V) rapidly approaches unity
and Var[V] displays a sharp decay to zero. This cusp occurs
because the number of pinning points rapidly approaches zero
as the increasing value ;. — MP™. For u > MP™, there are no
pinning points and pore will be fully occupied with probability
1 if any nucleation event has occurred. The mean occupied
volume is then close to 1 in this region.

For desorption, nucleation can only occur if pu <
max[ M9, M) [where M is given by Eq. (A9)], and,
as a consequence, the occupied volume remains equal to 1
on decreasing p until the above condition is satisfied. When p
passes from above to below M"Y, the probability of nucleation
at the ends of the pore begins to increase, giving rise to cusps
in the solid and dashed desorption curves at pu = u;,, and
= [ respectively [see Fig. 7(b)]. At these cusps the value
of (V) begins to decrease. The cusps are significant only if the
number of pinning points is small enough for the desorption
at the end of the cell to cause fluid to desorb in a large part
of the pore, meaning that the rate of decrease of (V') is large.
A similar effect occurs when p passes from above to below
M™e"_except that the probability of nucleation increases more
rapidly with reducing w, and the resulting cusp in the solid and
dashed desorption curves is much sharper, because there are
a greater number of inner cells than end cells. Typically, the
cusp at M™™" can be seen only when desorption is in regimes
(2) or (4), when nucleation occurs in the inner cells. Outside
of these regimes, desorption fully occurs at higher values of
w than M and the cusp is insignificant. For a type II pore
there can be two cusps visible in regime (2), corresponding to
nucleation at the end cells and at inner cells. The desorption
curve of a type I pore can also show two cusps in regime (2)
if pimmer < ¢ e, if w < (w™) — A, However, if this
condition is not satisfied, only one cusp will be visible for a
type I pore, because most desorption will occur as a result
of nucleation in the inner part of the pore, i.e., there is no
significant cusp at g, .

The sorption curves for large exponential correlated disor-
der in w™ are of the so-called H2 type [12] [see upper panel
of Fig. 7(b)]. Such a shape of sorption curves contrasts with
that for Gaussian disorder which are of the parallel-sided H1
type (see the upper panels of Figs. 2 and 3). It should be
noted that the asymmetry in the distribution of #; = > i wi’;‘f
for the case of exponential disorder is a consequence of
a correlated asymmetric distribution of w}}lf. Indeed, if the
values of wlf}‘f are uncorrelated for a given value of i then
the central limit theorem ensures that their sum, } , ; wiY', is
approximately distributed according to a normal distribution,
which is symmetric. Therefore, correlations in w;??f play a
significant role in achieving a skewed distribution of h;

mf
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(a) Normal, A= 0.1 (b) Exp, A=0.1 (c) Exp, A=0.25
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FIG. 8. (Color online) Condensation in pores of type III [cf.
Fig. 1(c)]. (V) (upper panel) and Var[V] (lower panel) plotted vs
p for pores of length N = 100. The curves of different styles refer
to different geometries, i.e., ink-bottle (solid lines), with N; = 50,
w; = 1.2, wy, = 1.0, and funnel (dashed lines), with Ny = 50, w; =
1.0, w, = 1.2. The light dotted lines in the upper panels of (a)—(c)
correspond to the mean occupied volume of two separate open-ended
pores [shape (b) in Fig. 1] of length N = 50, one of which has
(w[.’;?f) = 1.0 for all cells and the other (w{;?f) = 1.2 for all cells. In (¢),
the solid, dashed, and dotted lines coincide on the scale of the graph.
In all cases, w'™ = 1.0. Each column represents a different degree or
form of disorder: (a) normally distributed, A = 0.1; (b) correlated
exponentially distributed, A = 0.1; and (c) correlated exponentially
distributed, A = 0.25. Arrows show the direction of change of u for
adsorption and desorption and symbols refer to numerical data.

and H2-type hysteresis, the effect being maximal when they
are fully correlated, i.e., when all wg?f are equal to each
other for a given i. This implies that H2-type hysteresis in
heterogeneous pores might arise due to variations in pore
diameter (represented by correlated disorder in wi“}f) rather
than individual defects, in agreement with previous numerical
studies [22]. On the other hand, symmetric (normal) disorder
in local fields (i.e., uncorrelated disorder in w?}f) can cause
only a parallel sided HI1-type hysteresis (Figs. 2 and 3) and
may represent the effect of uncorrelated structural defects in
the pore surface on small length scales.

D. Pores of type I11

In this section, we present results on the effects of
interaction between the two parts of a pore, each of length
N = N, = 50, characterized by different mean matrix-fluid
interaction strengths (winf) and (w‘znf) [as shown in Fig. 1(c)].
The difference in the interaction strength of the fluid with the
matrix can represent variable pore diameter for a pore of either
a funnel or an ink-bottle shape. A major feature of sorption in
such pores is that, if the difference between (w‘lnf) and (w‘z“f)
is large enough, it occurs in the narrow part of the pore at a
lower value of w than it does in the wider part. This gives
rise to two steps in the sorption curves (see upper panels of
Fig. 8), in agreement with experimental observations [11,44]
for both pore shapes. In order to understand the form of the
sorption curves in such pores, it is helpful to compare it with
the mean of the sorption curves for two independent pores of
type II of length Ny = N, = N = 50, one with w™ = (w[)
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and the other with w™ = (wg‘f) (see dotted lines in upper
panel of Fig. 8). The sorption curves (solid and dashed lines)
differ from the dotted lines representing the behavior of two
independent type II pores. These differences are due to the
interaction between fluid in the two parts of the pore and of
fluid with the closed end-cap of the type III pore.

We analyze these differences, first, for a pore with normal
disorder in wg.lf [see dashed lines in Fig. 8(a)] and a funnel
shape, characterized by (w™) < (wf), i.e., the matrix-fluid
interaction is weaker in the part of the pore with the larger
diameter. Adsorption in each part of the pore is enhanced in
comparison with a type II pore (the dashed line corresponding
to adsorption is shifted to the left by around 0.25 with
respect to the dotted line for the two steps). The shift of the
lower step (at >~ —5.5) is due to the increased matrix-fluid
interaction between the narrow section and the closed end
and the shift of the upper step (at u >~ —4.75) is due to the
fluid-fluid interaction between the wide section and the narrow
section. Conversely, desorption in the funnel pore occurs later
than in two independent open-ended pores (the dashed line
corresponding to desorption is shifted to the left by around 0.1
with respect to the dotted line). This is because the funnel pore
has only one open end at which desorption can nucleate and,
thus, it occurs later than in a pore open at both ends.

Second, we compare the sorption curves for an ink-bottle
pore with the sorption curves of two independent pores [cf.
solid and dotted lines in Fig. 8(a), respectively]. Both the
adsorption and desorption curves for the narrow part of the ink-
bottle pore closely match those for an open-ended pore of the
same diameter (the dotted and solid lines practically coincide
in the lower step until the shoulder develops). Qualitatively,
for this part of the adsorption and desorption curves, the wider
part of the pore is not occupied by the fluid, meaning that
the narrow part effectively has two open ends. The upper step
in the sorption curves, after the shoulder, represent adsorption
and desorption in the wide part of the ink-bottle pore and differ
from an open-ended pore [cf. the upper steps in the solid and
dotted lines in Fig. 8(a)]. This is because sorption in the wide
part occurs when the narrow part is fully occupied with fluid,
meaning that the wide part of the ink-bottle pore behaves like
a pore closed at both ends. As such, adsorption occurs for
smaller values of w (the upper step in the solid adsorption
curve is shifted to the left by around 0.25 compared to the
dotted line), since adsorption is nucleated either by the closed
end or by the fluid which has already condensed in the narrow
part. Similarly, desorption occurs at a lower value of u, since
it is not nucleated at either end (the upper step in the solid
desorption curve is also shifted by around 0.25 to the left
compared to the dotted line). It can be noted that the behavior
on desorption observed here for ink-bottle pore and funnel
pore topologies is similar to that experimentally observed in
Ref. [44]. The adsorption curves observed here differ from the
experimental results of Ref. [44] in that condensation in the
wider part of an ink-bottle pore is observed at higher values of
1 than in the wider part of a funnel pore. This might be related
to the fact that, in our model, condensation is allowed to occur
in the inner part of the ink-bottle pore regardless of the fact
that gas has no way to flow into the wider part of the pore (the
pore is blocked by fluid in the narrow part) [45].
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Results for exponential disorder in w;‘]‘.f are shown in

Fig. 8(b). The dotted line corresponds to a pore with two
open ends and the dashed line corresponds to a funnel pore,
which effectively has a single open end. The solid line shows
the isotherms for the ink-bottle pore where, effectively, the
wide part has two closed ends and the narrow part has
two open ends. As such, the main differences between the
different sorption curves are similar to the differences observed
between open- and closed-ended pores in Fig. 7(b), i.e., the
adsorption curves are broadly similar for both funnel and
ink-bottle pores. The main differences between the isotherms
for different pore geometries is observed in two intervals of p:
—5.6 <u < —4.6 and —6.5 < u < —6. In the first interval,
desorption can be nucleated at the open end of the wide part of
the funnel pore, but nucleation cannot occur in the wide part
of the ink-bottle pore because this part effectively has both
ends closed. This is why the dashed line is below the solid line
in this region. In the second interval, the wide parts of both
the funnel and ink-bottle pores are empty. This means that the
narrow part of the funnel-shaped pore effectively has one open
end while the narrow part of the ink-bottle pore effectively
has two open ends. Desorption is therefore more likely to be
nucleated in the narrow part of the ink-bottle-shaped pore than
in the narrow part of the funnel pore. Correspondingly, the
dashed line is above the solid line in this region.

In the disorder-controlled regime [see Fig. 8(c)], the
sorption curves for both funnel and ink-bottle pores are
identical to those found by adding together the sorption curves
for two independent open-ended pores of different diameters
obtained by cutting the funnel and ink-bottle pores in half, i.e.,
the effects of the ends of the pores are small for disorder on this
scale. This behavior appears to correspond to the experimental
observations in Ref. [11].

V. RESULTSFORT >0

The effect of finite temperature on sorption processes
is analyzed here for both a funnel and ink-bottle pore. In
particular, the conditions corresponding to Figs. 8(a) and 8(c)
were repeated for several values of temperature and with a
constant rate, r, of change of w. The results are shown in
Fig. 9.

For finite sufficiently low temperature, 8 = 50, and Gaus-
sian disorder of strength A = 0.1, it can be seen by comparing
Figs. 8(a) and 9(a) that the mean volume of condensed fluid
closely matches that at zero temperature for both ink-bottle and
funnel pores. The main difference from the zero temperature
and small r limit is that the meniscus propagates slowly
along the pore rather than the whole pore becoming occupied
simultaneously, reflected in a reduction in the maximum value
of Var[V]. For instance, the maximum value of the variance
for an ink-bottle shaped pore is Var[V] =~ 0.04 [see peak
of solid line in Fig. 9(a) middle panel] in comparison with
Var[V] =~ 0.06 at zero temperature [see solid line in Fig. 8(a),
lower panel]. For larger temperatures, 8 = 5, hysteresis loops
become narrower [cf. dot-dashed curve with solid curve in
Fig. 9(a)].

For exponential disorder of strength A = 0.25, the main
effect of the finite temperature is in the smoothing of the cusps
in the hysteresis loops [see Fig. 9(b), upper panel]. As the
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FIG. 9. (Color online) Adsorption and desorption in pores of
type III at nonzero temperature. Upper panel: Volume of adsorbed
fluid vs p for Metropolis dynamics simulations. In panel (a), the
system consists of N = 100 cells with an ink-bottle shape (solid and
dot-dashed lines) and funnel shape (dashed lines) with (w{“f) =wf =
1.0, (wPf) = 1.2 and Gaussian disorder of strength A = 0.1. Two
values of temperature are considered: B = 50.0 (solid and dashed
lines) and 8 = 5 (dot-dashed lines). In panel (b), the system has an
ink-bottle shape with (w™) = w = 1.0, (w) = 1.2 and correlated
exponential distribution of p(w™) with A = 0.25 and three values
of temperature: 8 = 50 (solid curves), 8 = 15 (double-dot dashed
curves), and B =5 (dot-dashed curves). Middle and lower panels:
The variance Var[V] vs u for the same systems as in the upper panels
(with the same line styles). For clarity, the curves for § = 50 have
been presented on the middle panel while curves corresponding to
B =15 and B =5 are on the lower panel. In all of the simulations,
the rate of change of u was r = 0.004 MCSS~!.

temperature is increased, first to 8 = 15 (double-dot dashed
curves) and then to 8 =5 (dot-dashed curve), the area of
the hysteresis loop reduces gradually. This observation with
increasing temperature agrees with the behavior observed for
1D pores [44] and is similar to the decreasing width of sorption
hysteresis loops in 3D porous media [2]. Although the behavior
in 1D and 3D systems is similar, the proposed model and its
mapping to the RFIM suggests that the origin of hysteresis is
not identical in both cases. Indeed, the disorder-temperature
phase diagram of a 3D lattice gas (or the 3D RFIM) consists
of a phase at low temperature and disorder with ferromagnetic
order and a paramagnetic phase at high temperature and
disorder [46]. In the ferromagnetic phase, the free energy
consists of two global minima such that gas and liquid (or
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states with positive and negative magnetization in the RFIM)
could in principle coexist in the thermodynamic limit [1].
Hysteresis is associated in this case with both the global
minima of the free energy and the existence of many local
minima where the system can remain trapped for very long
times. The mapping of the proposed model to the 1D-RFIM
indicates that ferromagnetic order does not exist as a stable
macroscopic phase at any finite temperature and/or disorder
[46]. Instead, the free energy exhibits a single global minimum.
Therefore, hysteresis in linear pores at nonzero disorder and
temperature is expected to be only associated with the rugged
character of the energy landscape which consists of many local
minima.

VI. CONCLUSIONS

To conclude, a heterogeneous lattice-gas model has been
proposed to describe fluid condensation in 1D pores of
different shapes and rough surfaces. Heterogeneity, missed in
classical theories, is the key and sufficient feature of the model
which allows it to reproduce the main experimental findings.
We demonstrate that a simple coarse-grained representation
of pores consisting of 1D chains of cells is a minimal model
sufficient to account for the effects of heterogeneity. Within a
single cell, liquid interacts with the elements of the surface.
These interactions can be either identical or variable (random)
within the cell and also can vary for different cells. Accounting
for such different types of heterogeneity in the model, results
in the different shapes of hysteresis loop found experimentally
[12], including both the H2-type [11] and the H1-type [47]
hysteresis loops.

In addition, the model is able to reproduce the shape of the
sorption curves for some more complex experimentally studied
systems, including ink-bottle- and funnel-shaped pores. The
physical phenomena inherent for this model include nucleation
of adsorption and desorption (cavitation) and propagation of
a meniscus through the pore, which are known [44] to be
two main effects observed in such systems. In this respect,
our model could be easily extended to account for the fluid
blocking effect that prevents flow of gas to the wider part of
the ink-bottle structure [44,45].

Besides reproducing experimental observations, our model
also suggests interesting predictions that motivate new exper-
iments. For instance, we have demonstrated that the sorption
mechanisms (i.e., whether it starts at the ends of pores or in
the interior part) might depend on the length and diameter of
the pores and the degree of heterogeneity. However, for large
heterogeneity, or long pores, the sorption tends to a limiting,
and apparently universal, disorder-controlled regime.

In physical systems exhibiting a more complex topology,
e.g., a 3D mazelike network of 1D channels, an analytical
solution may be nontrivial; however, numerical simulations
within our model can be performed straightforwardly for
porous media of arbitrary topology [8].
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APPENDIX: ESTIMATES OF CHEMICAL POTENTIALS
FOR NUCLEATION AND DEPINNING

In this appendix, we estimate the values of p at which
nucleation and depinning occur in pores of both types I and 11
for normal and correlated exponential distributions of w™.

Nucleation of an avalanche occurs at a particular cell i if it
is an energetically favorable process, i.e., when the local field
given by Eq. (6) at that cell is positive. This happens if the
value of chemical potential becomes greater than u;, a local
nucleation potential, given by

winh) = — | Y " wid —np) + nfw! (A1)
j=1

where n! and n! are defined in Secs. II B and II D, respectively.
In pores of type I, there are two kinds of cells, end cells
(i =1 and i = N) and interior cells (1 <i < N). For end
cells, number of surrounding matrix cells (n]' = nly =95) is
greater than for inner cells (n]" = 4) favoring nucleation at
the end cells of type I pores. In contrast, all cells in pores of
type II are equivalent for nucleation events because n}" = 4
for1 <i < N.

The values of p; are random as a consequence of the

disorder in matrix-fluid interaction strengths wg?f. First, we

analyze the case of a normal distribution of wg?f given
by Eq. (2). For a quenched configuration of matrix-fluid
interaction, there will be a cell with a minimal value of w;,
and the first nucleation event will occur at that cell. In a
pore of type II, this minimal value has a mean, (uy; ), which
can be estimated using the relation Prob[u; < (upi)]1 = 1/N,
for the mean minimum of N independently and identically
distributed random values of u; (see, e.g., Ref. [48]). For a
normal distribution of w™ [see Eq. (2)], the estimate is given
by the following equation,

(1o)== [ (w™) + Ay/2n"erfe™ 2/ N)],

where n" = 4 for all i. Here, erfc™!(x) is the inverse of the

(A2)

complimentary error function, erfc(x) = \/i; fxoo edr. As
follows from Eq. (A2), the value of (u;, ) linearly decreases
with increasing degree of disorder [see the dashed lines in
Figs. 4(a) and 4(b) for the dependence of (u;;,) on A] and
decreases with pore length N according to {ug;,) ~ vInN.

For a pore of type I, the values of u; are distributed
differently for end and inner cells. As a consequence there
are two expressions for the mean minimal value of w for end
and inner cells. The values of w; and uy are independently
and identically distributed and the mean of their minimum can
be found, in the case of normally distributed values of w™f
according to the exact formula

end\ _ _ _m/, mf —A ﬁ
<H“min>_ nl (w > H’

with n' = nly =5 [see the black lines in Figs. 4(a) and 4(b)
for A S A]. For inner cells, the expression for the mean value
of the minimum, (un?¢"), is given by Eq. (A2) with N replaced

by N — 2, i.e., for large values of N,

(A3)

( inner

Hmin ) = <I’L?nin) . (A4)
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If (udy < (uimery© which is true for A < A* =
(w™[v8erfc ' (2/N) — \/5/7]7", nucleation starts typi-
cally at the end points, and the mean of the minimal value of
i in type I pores, (u;,), coincides with (ufrﬁ‘i‘f]). Otherwise, if
A > A*, nucleation starts at any cell in the pore with approx-
imately equal probability and () = (Mg‘l‘ﬁfr) < (Mf];‘i‘fl) [see
the coinciding dashed and solid lines Figs. 4(a) and 4(b) for
A 2 A*]

Once an avalanche is nucleated, it starts propagating. This
propagation can be stopped by unfavourable variations in the
matrix-fluid interaction strength, i.e., it can be pinned at a
certain cell. Pinning will occur at an interior cell i if it is not
energetically favorable for cell i to become occupied, even
when the avalanche causes one of the cells neighboring cell
i to become occupied by liquid, i.e., pinning occurs at cell i
when the random value p;(4,1) > . Typically, pinning will
occur when j1 < phay, where phax is the mean maximal value
of w; for 1 <i < N, which can be found using arguments
similar to those for Eq. (A2) as

2
_[n;wwmf) + wihnf — A\/2n" erfc™! <—N)},
(A5)

pin
lumax -

with n™ = 4 and nf = 1. The value of hax does not depend
on the type of the pore and increases with disorder [see the
dot-dashed lines in Figs. 4(a) and 4(b)].

Similarly to the case of a normal distribution, certain values
of u can be found for the exponential distribution using
Eq. (A1) at which nucleation and depinning typically occur
for both adsorption and desorption. For adsorption, the values
of (U,), (1%)» and whay can be found in a similar way as
for a normal distribution and the resulting dependence of these
characteristic values of i on A is shown in Fig. 6(a).

For the case of desorption [see Fig. 6(b)], nucleation will

typically occur at the end cells for p >~ /“Lfr]:z?x)’

n m mf f ni'A
(i) = =T w™) = wh + ==, (A6)
where n{' = nly =5 for type I pores [see the solid line in
Fig. 6(b)] and n}' = n; = 4 for type II pores [see the dashed
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line in Fig. 6(b)]. For the inner cells, desorption will typically
first nucleate at p >~ (ui"™") [see dotted line in Fig. 6(b)],
where

4 1
inner m, mf ff m
= —n; -2 Al - ——), (A7
(e ) = —n(w™) = 2w" 4+ ] ( N_2> (A7)
with the additional factor 2 before w'™ corresponding to two
neighboring cells being occupied by fluid as opposed to 1 at the
ends and n" =4 for 1 <i < N. For long pores (N — 00),

inner

the gradient of (u;2°") tends to a limiting value of ni* = 4.

The values of (1) can be, depending on the values of w,

N and A, either greater than or less than (™) for pores
of both types I and II. This is in contrast to adsorption, when
(puinnery — (pend ) always for pores of type II.

Pinning during desorption can occur only for p approx-
imately greater than the mean minimal value of u;(4,1),
W2 fihin = (minj—_y_1 ui(4,1)), i.e., when there is some
inner cell which remains occupied when one of its neighbors is
unoccupied, thus impeding the propagation of the avalanche.

The value of hin can be calculated and it is equal to

N-2
b = —nw™) —w" —afAY n7l (A8
n=2

with n" = 4 [see the dot-dashed line in Fig. 6(b)].

In addition, to the above estimates of mean values of (),
(/Lim“‘;,fr), and (ubhay), there are several strict bounds on their
values, as a consequence of the existence of the lower bound for
matrix-fluid interaction, i.e., wg?f > wn = (w™) — A. These
lower bounds are given by

ped < Mo = —p(w™) — A)—wf, (A9)
Minl;g)e(r g Mirmer — _n;n(<wmf> _ A) _ zwff’ (Al())
pin < MR = —pm(w™) — A) —w', (A1)

which can be derived from Eq. (Al) by substituting wg?f =

wm = (w™) — A. The above limits are given for desorption

at the ends of pores of type I by u&, = M with n™ = 5 and
for desorption at the ends of pores of type Il by up,, = M end
with n}" = 4, implying that ), = MP™".
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