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If the rates, K (x,y), at which particles of size x coalesce with particles of size y is known, then the mean-field
evolution of the particle size distribution of an ensemble of irreversibly coalescing particles is described by the
Smoluchowski equation. We study the corresponding inverse problem which aims to determine the coalescence
rates K (x,y) from measurements of the particle size distribution. We assume that K (x,y) is a homogeneous
function of its arguments, a case which occurs commonly in practice. The problem of determining K (x,y), a
function to two variables, then reduces to the simpler problem of determining a function of a single variable plus
two exponents, u and v, which characterize the scaling properties of K (x,y). The price of this simplification is
that the resulting least-squares problem is nonlinear in the exponents © and v. We demonstrate the effectiveness
of the method on a selection of coalescence problems arising in polymer physics, cloud science, and astrophysics.
The applications include examples in which the particle size distribution is stationary owing to the presence of
sources and sinks of particles and examples in which the particle size distribution is undergoing self-similar

relaxation in time.
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I. INTRODUCTION

Coagulation processes abound in nature and span all
scales, ranging from the microscopic scales of atmospheric
aerosol formation [1] to the cosmological scales of the
clustering of matter within the universe [2]. A particular
example which played a considerable role in motivating this
work is droplet coalescence in clouds. The role of droplet
coalescence in the formation and internal dynamics of clouds
is of considerable contemporary interest. This is because
an improved understanding of the evolution of the droplet
size distribution in clouds would increase the precision of
climate evolution projections [3]. Much current research in this
area focuses on determining the rate of coalescence between
droplets of different sizes. Turbulence in the cloud air mass
complicates this task significantly. It plays a nontrivial role
in determining the collision rate of water droplets [4-6].
Direct numerical simulation of the dynamics of droplets in
turbulent flows [7,8] is possible. It is not clear, however, that
these simulations can yet span the range of scales required
to obtain a full understanding of the role of turbulence in
facilitating droplet collisions in a cloud [9]. For these reasons
an a priori understanding of droplet collision rates in clouds
remains elusive. Recent technological advances, however,
have improved both the quality and the quantity of empirical
data on droplet size distributions at various stages of cloud
evolution [10]. It is therefore timely to address the possibility
of using these observations to solve the inverse problem of
determining collision rates from measurements of the droplet
size distribution. This is the topic of this article. We aim to
develop a data-driven approach to determining collision rates
which can complement the insights emerging from current
theoretical and numerical work on this problem. While our
work has been motivated by droplet coagulation in clouds, the
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methods which we develop are quite general and provide a
quantitative means of constraining the choice of model in any
coagulation problem in which the microphysics is unknown or
controversial.

Throughout this article, we characterize the size of droplets
by their mass m and use N(m,t) to denote the droplet size
distribution at time . We denote as K (m,m,) the rate of
coalescence between droplets of size m| and those of size m,.
This function is often referred to as the “collision kernel.” We
assume throughout that the solution of the forward problem of
determining N (m,t) when K (m,m;) is known is obtained by
solving the Smoluchowski coagulation equation (SCE) [11]:

1 m
atlvm(t) = 5/ dml K(mlvm - ml)le(t)Nm—ml(t)
0

M
- m(t)f dml K(maml)Nnu([)
0
+ L st — mo), (1)
mo

with the initial condition N,,(0) = Ny(m). The final term
describes a source of particles which injects “monomers”
having mass m at rate J. Depending on the application, J
could be 0. We take the smallest droplet size in the system to
be mo = 1. We have also explicitly introduced a cutoff mass,
M. Droplets larger than M are removed from the system.
Depending on the application, M could be infinite. The forward
problem is nonlinear in the unknown, N(m,t). The inverse
problem, which forms the topic of this article, is to determine
K (m,m,) from measurements N (m,t). Note that the inverse
problem is linear in the unknown, K (m,m;). The nontriviality
of the inverse problem comes from the fact that, since we seek
to determine a function of two variables from a function of
one variable, we would generally expect it to be ill posed.
Notable previous work on this problem includes the work
of Onishi and coworkers in the atmospheric science context
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[12] and the work of Ramkrishna and coworkers in the
chemical engineering context [13—15]. Onishi et al. [12]
address the problem of ill posedness by using significant
prior knowledge about droplet coalescence under turbulent
conditions to put strong constraints on the functional form of
the kernel. Specifically it was assumed that the collision rate
could be modeled as a linear superposition of the gravitational
sedimentation and Saffmann-Turner kernels. This simplified
the inverse problem to a parameter estimation problem at the
expense of a loss of generality. On the other hand, the methods
pioneered by Ramkrishna et al. [15] do not strongly constrain
the functional form of K(m1,m;). These authors address the
problem of ill posedness using a procedure known as Tikhonov
regularization. In a previous paper [16] we explored the ability
of the method in [15] to solve the inverse problem for kernels
of the form, K(m,m;) = %(m? +m5), with 0 <A< 1 It
was found that the method performed relatively poorly when
the exponent A was fractional. This stems from the fact that
K (m,m;) was represented using Laguerre polynomials which
contain only integer powers.

In this paper, motivated by the fact that many practical
collision kernels contain fractional powers, we present a
refined inverse method which deals with the problem of
fractional exponents up front. Our method splits the problem
into two stages. In the first stage we solve a (nonlinear)
parameter estimation problem to determine a pair of exponents
which best describes how K (m,m,) behaves for large and
small masses. In the second stage we solve a (linear) inverse
problem which uses the observations of N(m,t) to correct
the detailed form of K (m,m,) without changing the scaling
exponents determined in the first stage. In order to simplify our
task, we restrict ourselves to cases in which the collision kernel
is a homogeneous function of its arguments. While this is
common in practice, it is a weakness of our approach compared
with that of [12], which does not require this restriction.

We test our method on two broad classes of inverse
problems. The first class consists of stationary problems. These
occur when a source of particles is present, J > 0 in Eq. (1),
and the sink at M > my is important. For sufficiently large
times, the droplet size distribution becomes independent of
time [17] and describes a flux of mass through the space
of droplet sizes from the injection scale, mg, to the sink
scale, M [18]. The second class consists of time-evolving
problems without a source of particles in which the droplet
size distribution relaxes from a prescribed initial condition
which we take to be monodisperse. For such problems,
homogeneous collision kernels usually result in the droplet
size distribution becoming self-similar for large times provided
the characteristic size remains smaller than M.

The remainder of the article is laid out as follows. In Sec. II
we introduce some properties of collision kernels we expect
to find in applications and discuss ways of representing such
kernels mathematically. Next we discuss various aspects of
the forward problem relevant to our subsequent discussion
of the inverse problem. The stationary forward problem is
outlined in Sec. III A, and the time-dependent forward problem
in Sec. III B. Our main results on the inverse problems are
presented in Sec. IV and Sec. V for the stationary and time-
dependent inverse problems, respectively. Finally, Sec. VI
presents our conclusions and suggestions for further work.
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II. REPRESENTATIONS OF HOMOGENEOUS
COLLISION KERNELS

In this paper we focus on scale-invariant problems for
which the kernel, K(m,m,) is a homogeneous symmetric
function of its arguments. We denote the overall degree of
homogeneity A:

K (amy,amy) = a* K (m;,m3). )

Such kernels are important because many physical aggregation
processes exhibit homogeneity for some range of scales
[19]. Of course, not all physically interesting kernels are
homogeneous, for example, exponential kernels, which can
arise when particles are electrically charged as commonly
occurs for colloidal particles [20,21]. The following model
kernel, primarily used in the analysis of scaling solutions of
the SCE [22,23], is of particular importance to us:

8
Ko(my,my) = > (mim} 4+ mhmY), 3)
where g sets the overall amplitude. Clearly we must have A =
1+ v. For convenience, we adopt the convention throughout
that v > u. The exponents i and v then capture the behavior
of the kernel, Eq. (3), when one mass is much larger than the
other:

KO(ml,mZ) ~ m"]"m;a with my K my. (4)

Most kernels occurring in practice are not of the form of (3).
One can, however, usually' assign a value to the exponents x
and v by analogy with Eq. (3) by considering the behavior in
the limit m| < m,. We can then write any kernel as a product
of (3) and another function, F(m,m,):

K(myi,my) = Ko(my,my) F(myi,ms). (5)

Since A = w + v, F must be homogeneous of degree 0. It can
therefore be expressed as a function, f, of a single variable,
X =mi/my:

mi

F(my,my) = f <—) . (6)
my

Since K(my,m;) and F(mj,m;) are symmetric functions of

their arguments, f must have the symmetry,

fx)y=f&xh. (7

We refer to f(x) as the shape function of the kernel. Since
it is a homogeneous function of degree 0, it is “almost” a
constant and by construction must asymptote to a constant
value as x — 0 and x — oo. We have selected the following
kernels from the literature to use as concrete test problems in
this paper:

1 1 1 1
Kpclmmo) = (m] +m3 ) (i +m30),  ®)

1 1\2 1
Ksr(my,mz) = <mf +m§> (mfl +m51)2’ ©

'One could imagine a kernel involving, for example, logarithmic
mass dependences for which this is not true, but we are not aware of
such functional forms arising in practice.
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3

1 152 2
Kos(myma) = (mj +m;) |mi —m3|, (10

7/3
Ksniv(my,my) = (m:/3 + m;/3> . (11)

Equation (8) is the kernel for Brownian coagulation of spheri-
cal droplets [11]. Ithas v = 1/3 and u = —1/3. Equation (9)
is the kernel describing aggregation of ice clusters due to
differential orbital speed in planetary rings [24,25]. Ithas v =
2/3 and u = —1/2. Equation (10) is the kernel most relevant
for the cloud problems since it describes the coalescence of
spherical droplets undergoing differential sedimentation in the
Stokes regime in still air [26]. It has v =4/3 and u = 0.
Equation (11) is the so-called nonlinear velocity kernel de-
scribing shear-driven coagulation [25,27]. It has v = 7/9 and
@ = 0. The choice of these examples is for illustrative purposes
only. There may be other processes playing an important role
in these physical examples such as collisional fragmentation
in the case of Eq. (9) and growth by condensation in Eq. (10).
We do not consider these complications here. The respective
shape functions for each of these kernels are shown in Fig. 1.
Note how these shape functions are all asymptotically constant
and, despite the seeming functional complexity of the original
kernels, have a rather simple form.

Our approach to solving the inverse problem described in
the introduction is to first estimate the exponents @ and v and
then correct the result by an appropriate shape function, f(x).
Since the shape function is a function of one variable, this
should be a considerably easier problem. This is very much in
the spirit of the original work of Ramkrishna and coworkers
[13,14], who also exploited the fact that a homogeneous
function of two variables is determined by its degree and
an auxiliary function of a single variable. Our approach is
an improvement in the sense that the function f(x), which
we need to determine, is asymptotically constant at large and
small values, making it much easier to deal with.

8 T T T T T T T T
Brownian coagulation, Eq.(8) —>—
Saturn’s rings, Eq.(9)
7 | Differential sedimentation, Eq.(10) —e— 1
Nonlinear shear, Eq.(11) —&—

Shape function, f(x)

© | | |
10* 10° 102 10" 10° 10" 10% 10% 10*
X

FIG. 1. (Color online) Shape functions, as defined by Egs. (5)
and (6), for the Brownian coagulation kernel, Eq. (8); the astrophysi-
cal coalescence kernel, Eq. (9); the differential sedimentation kernel,
Eq. (10); and the nonlinear shear velocity kernel, Eq. (11).
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To proceed we need a way of representing functions in
the interval [M~!, M] (remember that we have taken my=1)
which have the symmetry f(x) = f(x~!). As is evident in
Fig. 1, any symmetric function of logx has the required
property. That is, we take

_ 7 log(x)
().

where A(y) is any symmetric function in the interval [—m,7].
We enforce symmetry indirectly by taking 4(y) to be a Fourier
cosine series truncated after n + 1 terms:

h(y) = %0 +3 " ay cos(k y). (13)
k=1

One could envisage using other representations, but with the
possible exception of the differential sedimentation kernel,
this simple approach will suffice for our purposes. Once the
exponents 1 and v have been determined, the inverse problem
reduces to using the observed size distributions to determine
the coefficients of this Fourier series.

III. THE FORWARD PROBLEM

In this section we describe a few features of the solution
of the forward problem which are relevant to our subsequent
discussion of the inverse problem in the sense that we use
numerical solutions of Eq. (1) as input. We discuss both the
stationary and the time-dependent cases.

A. Stationary case

A stationary cluster size distribution is obtained in the limit
of large times when a source and sink of particles are present.
One might imagine that such a stationary state could provide
a conceptual model of droplet dynamics in a cloud where
small droplets formed by an ongoing condensation process are
driven by air movements to collide and coalesce to form larger
droplets that eventually become heavy enough to overcome
updrafts and fall out of the cloud as rain. The stationary SCE
in the presence of a source of monomers is

1 m
O=§/. dmi K(mi,m —mi) Ny, Ny,
0

M
J

—Nm/ dmy K(m,my) Ny, + —06(m —myg). (14)
0 mo

We distinguish two types of stationary solutions, depending on
whether the kernel has |v — | < 1 or |[v — u| > 1. We refer
to the former as “local” kernels and the latter as “nonlocal” for
the reasons outlined in [18]. For kernels having |[v — u| < 1
(local), the stationary solution of Eq. (14) as M — oo takes
the power-law form

A43

Ny, = AV Im™ 7, (15)

where A is a constant which can be calculated explicitly
[17,18]. For kernels having [v — | > 1 (nonlocal) the solution
is of the approximate form [28]

Ny ~ BNIM™ Om?, (16)
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where B is a nonuniversal constant in the sense that it depends
on M andy = v — u — 1. Whether or not the kernel undergoes
gelation (see discussion of the time-dependent case below) is
irrelevant to the stationary state. Therefore when we consider
the stationary inverse problem, we do not need to restrict our
choice of kernel to the same extent that we do for the time-
dependent case. In particular, we can consider the differential
sedimentation kernel.

In order to generate stationary solutions of the SCE we can
integrate Eq. (1) forward in time until stationarity is achieved.
This can be quite slow. Indeed we have shown in [28] that for
nonlocal kernels the stationary state can become unstable for
large M. This curious result means that, for certain kernels,
the stationary state cannot be obtained by time integration. For
these reasons it is useful to be able to compute the stationary
state directly without needing to compute the time evolution
numerically. The following algorithm achieves this for the
model kernel, Eq. (3). The presentation follows the method
outlined in the Supplementary Material to [28] and is similar
to the work in [29]. It is included here for completeness. To
compress the notation it is helpful to introduce the moments,
M, of the size distribution:

M
M, =

m=1

mP N,,. (17)

Using the discrete form of Eq. (14) and a kernel of the form
in (3), we can then use the moments to decompose (14) as

G
Ny = S a8)
(mr M, +m>M,)
where
m—1
G =) Ko(mi,m—mp) Ny, Ny, (19)
my=1
2J
J = —8(m —my). (20)
mo
Setting my = 1 gives the stationary monomer density
2J
N = ———. 21
= L @1

Given the behavior of the equation for G this permits a
recursive definition of a stationary distribution, if the pair of
moments (M, M,) is known.

If J, u, and v are known, then (18) can be used to infer the
rest of the stationary distribution by treating the problem as
one of parameter estimation. In this case we seek the correct
values of the pair of moments (M, M,), which will then
generate the correct stationary-state distribution. By treating
N, as a function of the pair of moments N,,(M,,, M, ) we can
create an objective function W(M,, M, ) to be minimized,

M 2
WM, M,) = (MM - Zm"Nm(M,L,MU))

m=1

M 2
+ (MV—Zm”Nm(M,“M») . @)

m=1

M, My%) = arg(Mril}/r\l/lv)‘lf(MM,MU), (23)
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where arg min, f(x) means “the value of x for which f(x)
attains its minimum value.” We remark that this method relies
on the special structure of the kernel, Eq. (3). In general, one
cannot avoid time integration of the SCE.

B. Time-dependent case

We now consider the evolution of the particle size distribu-
tion in the absence of a source of monomers. We must start
from a particular initial distribution, which we usually take
to be monodisperse: N,,(0) = §(m — myg). If L > 1, then the
typical particle size diverges in a finite time, #.. This divergence
leads to an apparent loss of mass from the system as material
is absorbed into an infinite cluster. This phenomenon is known
as gelation [30]. Furthermore, if v > 1, then gelation occurs
instantaneously in the absence of the cutoff, M [31]. In such
cases, to make sense of Eq. (1) requires careful consideration
of the regularizing role of the cutoff as discussed in [32]. In
order to avoid the complications of gelling systems, we restrict
ourselves here to kernels for which A < 1 and v < 1 so that
no gelation occurs.

For homogeneous collision kernels, the time evolution of
the cluster size distribution tends to become self-similar. That
is, N,,(t) tends to the scaling form,

-2 m
N(@m,t) ~s(t) "d(z), z=—, 24
s(t)
where
- Mz(l)
s(t) = MO (25)

is the typical particle size and “~” denotes the scaling limit,
m — o0 and s(¢) — oo with z finite. For a modern review of
the scaling theory of the Smoluchowski equation see [23]. The
scaling function ®(z) satisfies the following equation:

] z
0= 5/ dzi k(21,2 — 21)P(21)P(z — 1)
0

o0

— ®(2)

dd
dzi k(z,21) P(z1) + (2<I>(z) + z—) .
0

dz
(26)

Here, «(z1,22) = K(z1,22)/ W, where W is the separation
constant generated by the self-similarity ansatz [22,23]. An
illustrative example of the kind of data which we obtain from
anumerical integration of the time-dependent forward problem
is shown in Fig. 2.

IV. THE STATIONARY INVERSE PROBLEM

We now present results for the stationary inverse problem.
The stationary particle size distributions for different kernels
were obtained by numerically solving the forward problem
either by time integration of Eq. (1) or by use of the algorithm
outlined in Sec. IIT A. The objective is to use the stationary N,,
to reconstruct K (m,m;). We take the rate of mass input to be
J = 1. In principle, the value of J should be obtained from
the stationary size distribution. For simplicity, we assume that
the value of J is known a priori.
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FIG. 2. (Color online) An example of scaling for a time-
dependent solution of Eq. (1). The main panel shows the time
evolution of the particle size distribution for the kernel K (m,m,) =
J/mi + /m,. The inset panel shows the scaling function, ®(z),
obtained by rescaling the data according to Eq. (24).

A. Description of the method

We split the inverse problem into two stages.
(1) Fit the data to the model kernel,

§
Ko(my,mz) = = (mim} + mhm}),

to obtain approximate values for g, u, and v.
(2) Estimate the shape function keeping g, 1, and v fixed at
the values obtained in step 1.
To implement the first stage, we use the observed values of
N,, to define

m—1

1
Rl(m,g,/hv) = 5 Zl KO(mlvm - ml)le NmfmI
my=
M
— N Y Ko(m,m )Ny, + 8n1. (27)
mp=1

From these we construct the objective function:

1 M
Si(gpv) = o2 Y Ram,g, 1,07 (28)

m=1

We now estimate the values of g, i, and v by minimizing this
function:

(g".pu*,v") = arg min Si(g,u,v). (29)
(g.1,v)

This is a nonlinear least-squares problem since p and v
enter into the objective function as exponents. We solve it
numerically using the Nelder-Mead algorithm. We used the
implementation provided in MATHEMATICA in its NMinimize
function. For details of how this algorithm works see Sec. 10.4
of [33]. In order to be assured that the minimization is
robust to the presence of noise in the input data, as would
occur in practice, we added noise to the data and performed
ensembles of minimizations to quantify the error for different
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FIG. 3. (Color online) Robustness of the nonlinear minimization
problem, Eq. (29), to noise in the input data. Estimated exponents are
shown as a function of the noise level for the model kernel, Eq. (3),
with true exponents v = —u = 1/3 (solid lines) and M = 250.
Each data point was obtained from an ensemble of 25 independent
realizations of the noise. Error bars correspond to the 95% confidence
interval.

levels of noise. For each value of m, the noise was normally
distributed with mean 0 and a standard deviation given by some
percentage, ¢, of the value of N,,. Figure 3 shows the results
for the case of the model kernel, Eq. (3), withv = —u =1/3
and M = 250. We see that while an interval of robustness
certainly exists, it is quite narrow, with an order 1 error in the
values of i and v for only 5% added noise.

At the second stage, we fix u and v to the values obtained
in stage 1 and introduce a corrected kernel,

* * * * * m
K(my,my) = g?(m’f my +mh m)") f <—l) (30)
my

where the shape function, f(x),is given by Eq. (12). It depends
on n+1 Fourier coefficients, {ai};_,, through Eq. (13).
Choosing an appropriate value for n is important to get good
results. If n is too low, Eq. (13) has insufficient flexibility to
adequately represent the shape function. If n is too high, we
start finding implausibly oscillatory functions. The choice of
n represents our prior expectation of how rough or wiggling
a function we expect the collision kernel to be. An illustrative
example of the effect of choosing different values of n is
provided in the next section. In all results presented in this
paper, the value of n was chosen empirically to be equal to 3,
giving four Fourier coefficients in all. Investigating principled
methods of choosing n based solely on the data would be a
good direction for further research. We now proceed as before
and define

1 m—1
Ra(m,ag . ..a,) = 3 Z] K(mi,m —m) Ny, Ny,
mp=
M
— N Y K@m.m)Ny, +8u1. 31)

my=1
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From these we construct the objective function:

M
1
Saao ... an) = - ; Ro(m,ag . . . ay)°. (32)

The values of the coefficients, ay .. .a, are then obtained by
solving the linear least-squares problem:

(aj...ay) =arg min Sy(ap...ay). (33)
ap...dy

As suggested in [12], one could weight the objective function
by the values of N,,, on the basis of the heuristic that regions
with a higher density contain more information. We did not find
any considerable improvement from using such weighting so,
in the interest of simplicity, all results presented in this paper
are unweighted.

B. Results

We now show some results obtained by applying this
method to some stationary size distributions. In order to
compare the true kernel to the kernels constructed from our
inverse method we choose to plot slices through the kernels as
a function of m rather than to show two-dimensional surface
plots. This is simply to aid clarity. We compare a slice through
the diagonal, K(m,m), a slice through the edge, K(m,1),
and a transverse slice, K(M —m + 1,m). Taken together,
these one-dimensional slices give a good overall sense of
the quality of the fit. As a sanity check, we verified that this
algorithm recovers a reasonable approximation to the kernel
if the stationary N,, is generated using a kernel of the form
Eq. (3) for which the shape function is unity. Figure 4 shows the
results of this test for the case of Eq. (3) withv = —u = 1/3
and a maximum mass of M = 250. The various slices through
the kernel mentioned are shown. The points representing the

5 T T
K(m,m) o
K(1,m)

K(M-m+1,m) X
4t i
3 S 3
N4

2

1

0 Il Il Il Il

50 100 150 200 250
m

FIG. 4. (Color online) Numerical solution of the stationary
inverse problem for the model kernel, Eq. (3), havingv = —pu = 1/3.
The maximum mass was M = 250 andn + 1 = 4 Fourier coefficients
were used. Symbols denote the numerical solution of the inverse
problem and the solid line denotes the true values. Numerical values
of the parameters were v = 0.3333, u = —0.3332, g = 0.9933,
ap = 0.9933, a; = 0.0268, a, = —0.0153, and a3 = —0.0006.
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n+1=3
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8t n+1=7 o i
truth
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m

FIG. 5. (Color online) Illustrative example of how the numerical
solution of the stationary inverse problem degrades if the number
of Fourier coefficients, n + 1, is too high. Results are shown for the
model kernel, Eq. (3), having v = —pu = 1/3 and M = 250 with
n+1=1,3,5,and 7. Symbols denote the numerical solution of the
inverse problem and the solid line denotes the true values. For clarity,
only the transverse slice, K(M — m + 1,m), is shown.

reconstructed values closely follow the solid lines representing
the true curves.

We now consider the test kernels, Egs. (8)—(11), which have
nontrivial shape functions. The values of the exponents u and v
at the first stage are usually not particularly good. For example,
in the case of the Brownian coagulation kernel (v = 1/3 and
u = —1/3), weobtain v* & 0.24 and u* ~ —0.24. The reason
is clear from Fig. 1: with a cutoff of order 102, most of the
data are in the central region, where the shape function is
strongly varying. Indeed Fig. 1 suggests that one would need
data with a cutoff of order 10° in order to comfortably enter
the asymptotic regime of these kernels where the “true” values
of i and v should become apparent.

We then estimated the shape function taking n = 3 and
using Eq. (13) to represent the shape function (some indication
of how the solution depends on the choice of n is shown in
Fig. 5). The results were not particularly close to the true shape
function, although they seemed qualitatively similar. At this
point it is important to recognize that neither the estimated
exponents u* and v* nor the estimated shape function is
individually of any importance. What matters is the degree
to which the combination of the two, as written in Eq. (30),
approximates the true kernel over the range of scales for which
we have data on the stationary size distribution. It is possible
for the estimated exponents p* and v* and the estimated
shape function to be individually poor approximations to the
“truth” and yet provide a good approximation to the true
kernel when combined. Furthermore, it is acceptable if the
reconstructed kernel approximates the true kernel very poorly
when extrapolated beyond the range of scales, [1,M], since
we have no data outside of this range.

The results for these kernels are shown in Figs. 6(a),
6(b), and 6(c) for the Brownian coagulation, Saturn’s rings,
and nonlinear shear kernels, respectively [see Egs. (8), (9),
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FIG. 6. (Color online) Panels (a), (b), and (c) show the numerical
solutions for the stationary inverse problems for the model kernels
given in Egs. (8), (9), and (11) respectively. Symbols denote the
numerical solution of the inverse problem and solid lines denote
the true values. In all cases, the maximum mass was M = 250 and
n + 1 = 4 Fourier coefficients were used.

and (11)]. It is clear that the method does an excellent job
of recovering an approximation to the truth in all cases. The
method is therefore quite robust.

C. The differential sedimentation kernel

While all seems well at this point, when we applied the
method to the differential sedimentation kernel, Eq. (10), most
relevant to the cloud physics problem, we found that it entirely
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FIG. 7. (Color online) Numerical solution for the stationary
inverse problem (symbols) for the differential sedimentation kernel,
Eq. (10). Solid lines denote the true values. The maximum mass was
M = 250 and a fully nonlinear estimation algorithm withn + 1 =4
Fourier coefficients was used as described in the text.

failed to reconstruct anything reasonable. In particular, we
obtained negative values for the shape function if more than
two Fourier coefficients were used. We can trace the problem
to the presence of the cusp in the shape function at 0 (see
Fig. 1). To adequately capture this cusp using a Fourier cosine
series would require the retention of a very large number of
terms, which, as we have already seen, is not a good idea
since it provides too much freedom to introduce extraneous
oscillations.

In order to get some reasonable results for this kernel,
after some experimentation, we combined steps 1 and 2 of the
previous method into one single optimization problem. This is
considerably more expensive numerically since one now has
to do a fully nonlinear minimization of the objective function
in the six-dimensional space (v,u,ag,da;,a3,as). In addition,
it was necessary to include explicit constraints to prevent
the shape function from becoming negative near 1, which
further slows down the calculation. The results are shown
in Fig. 7. While the algorithm recovers the correct qualitative
form of the kernel, we see that there are large quantitative
differences compared to the results for the other kernels shown
in Figs. 6(a)— 6(c). Further research will be required to improve
the performance and reliability of the method for such cases.

Had it not been for the fact that we already knew the form
of the solution, we probably would not have been able to
reconstruct the kernel even in the approximate way shown
in Fig. 7. This reinforces our belief, stated at the outset, that
the kind of data-driven approach demonstrated above can be
complementary to existing theoretical and numerical studies
of coagulation phenomena but clearly cannot replace them.
To conclude our discussion of the differential sedimentation
kernel, we remark that the problems we have encountered
due to the cusp in the shape function are unlikely to occur
if gravitational sedimentation is occurring in a turbulent
environment like a cloud. This is because spatial variations in
the turbulent velocity field provide an additional mechanism
for collisions between droplets of equal size as originally
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FIG. 8. (Color online) Input data for the time-dependent inverse
problem in the case of the Brownian coagulation kernel, Eq. (8): time
evolution of the size distribution. Inset: Data collapse obtained by
rescaling these data according to Eq. (24).

pointed out by Saffman and Turner [34]. This leads to a
smoothing of the cusp and a nonzero value for the collision
rates of equally sized droplets. In [12] it was shown that
a linear combination of the differential sedimentation and
Saffman-Turner kernels is a plausible model in the case of
gravitational settling in turbulent environments.

V. THE TIME-DEPENDENT INVERSE PROBLEM

In the case of the time-dependent inverse problem, some
modifications of the method described above permit the
reconstruction of the collision kernel from a succession of
snapshots of the particle size distribution provided that the data
span a sufficient range of mass and time scales to enter into the
scaling regime described in Sec. III B. The basic idea is to use
the scaling ansatz, Eq. (24), to collapse the different snapshots
of the particle size distribution onto a single scaling function,
®(z). This curve satisfies Eq. (26). Given that ®(z) is known,
the corresponding inverse problem for «(z;,z) is structurally
almost identical to the stationary inverse problem which we
have discussed in Sec.IV. After appropriate discretization of
Eq. (26), the methods described in Sec. IV can be applied with
some minor modifications of the objective functions S;(u,v)
and S>(ay . . . a,) to take into account the additional linear terms
in Eq. (26).

The steps in the procedure are as follows.

(1) From the observed snapshots of the size distribution,
N,,(t), we calculate the characteristic particle size as given by
Eq. (25) and use these values to rescale the data according to
Eq. (24). Provided that our measured size distributions are in
the scaling regime, this should collapse the data onto a single
scaling curve, ®(z). This is done for the Brownian coagulation
kernel, Eq. (8), in Fig. 8, with the data collapse shown in the
nset.
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(2) To discretize Eq. (26), we need to calculate ®(z) and its
derivative on a regular grid. It is therefore convenient to fit the
collapsed data to a specific functional form. The fit was done
using regression in the logarithmic variables (1 = log @, v =
log z) by fitting the data to the model,

u = bo+ biv+ byv* + by’ + by exp(v),

and then recovering the required curve by exponentiation. The
result of this fit is superimposed on the data in the inset in
Fig. 8. The fitted curve can then be differentiated analytically
to compute the left-hand side of Eq. (26).

(3) We discretize Eq. (26) on Z uniformly spaced points,
{zi}~,, where

Zi = Zmin + (l - I)AZ
and

Az = (Zmax — Zmin)/(z -D.

Zmin 1S set by the maximum size reached by s(7). We choose
Zmax SO that it lies in the exponential tail of the scaling function
(see inset in Fig. 2) but not so large that the ®(z) is effectively
negligible. In the results presented below we typically took
Z = 250 as the number of discretization points.

(4) We now proceed as before by defining

i—1

, 1
RiG,g,1,v) = 3 Z Ko(zj,zi —2;) P(z;) P(zi — z;) (Az)
j=1

zZ
—®(z) Y Ko(zi,2))®(z)) (A2)
j=1

do®
+20(z;) + 2 —(2). (34)
dz

We again construct the objective function,

zZ
1
Si(g.mv) =~ ;nl(i,g,u,wz, (35)

and obtain the estimated values of g, i, and v:
(g".u",v") = arg min Si(g,u,v). (36)
(g, 1t,v)

(5) Finally, we correct this result with a shape function:

* * ok ok Z

k(21,22) = g—(z’f B+ ) f (—1> (37)
2 22

where the shape function, f(x),is again given by Eq. (12), with

the n + 1 Fourier coefficients, {ax};_,, entering via Eq. (13).

We now proceed as before and define

i—1

. 1
Ralioao...an) = 5 Y k(2 = 2)) D(z)) Dzi = 2,)(A2)
j=1

V4
— D) Y K(2i.2))®(z;) (A7)

Jj=1

dd
+20(z;) + zi —(20)- (38)
dz
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From these we construct the objective function,

Z
1
Sy(ap . ..ap) = ~ ZRz(i,ao an), (39)
i=1

and solve the least-squares problem to obtain the coefficients:

(aj...ay) =arg min Sy(ap...ay). (40)
ap...dy

This procedure gives the rescaled kernel, x(z;,z2). To return
to the original scale requires knowledge of the separation
constant, W, which enters when using the self-similarity ansatz
to split the time-dependent problem into an equation for s(z)
and a time-independent equation for ®(z). The presence of
this arbitrary constant reflects the fact that a rescaling of the
amplitude of the solution corresponds to a rescaling of time.
If we wish to fix a value of this constant, we need a way to
set the time scale. This can be done by fitting the data curve
obtained using (25) with the analytic solution for s(#):

s(t) =[(1 — Wt + X5, A<l (41)

Here X is a parameter replacing the initial condition term
s(0)'~*. Provided that (u,v) are retrieved sufficiently well
during the estimation of the kernel, then the homogeneity A =
@+ v is known and the fitting process to obtain W works
well. Multiplying the retrieved kernel estimate «(z1,22) by W
rescales the result to match the original unscaled input kernel
K(z1,22)-

In contrast to the stationary case, the fact that s(r) ~ ¢!/0—%
as t gets large means that, in principle, A = v+ u can
be independently estimated from the time dependence of
s(t), a readily measurable quantity experimentally. Such a
measurement would allow the minimization problem, Eq. (36),
to be simplified by writing, for example, v = A — . Such
dynamical measurements of A are shown in Fig. 9 in the case
of the generalized sum kernel, K (m,m») = m} + mj, for a
range of different values of A. The estimates of A thus obtained

100

10

0.1 1 100

FIG. 9. (Color online) Measurements of A = u + v from the
time dependence of the typical size, s(¢), for the model kernel, Eq. (3)
with v = A and p = 0, for several values of A. Values in parentheses
in the legend are the estimates of A obtained from the slopes of the
fitted solid lines.
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are indicated in parentheses in the legend to Fig. 9. While these
values are quite accurate for smaller values of A, they become
very poor as A gets large due to sensitivity to finite-size effects.
In particular, the estimated value of 0.62 obtained for the case
A = 1 is rather poor compared to the value of 1.003 obtained
using our method on the same input data (see Fig. 10). This
illustrates that before attempting to take advantage of such a
simplification, one should be confident that the system is in
the asymptotic regime.

For the time-evolving case, we have the benefit of a small
number of exact solutions of Eq. (1) for some special kernels.
In particular, a nontrivial test is provided by the sum kernel,
K(my,m») = m| + m,, for which the exact solution is known
in the case of monodisperse initial conditions (see [23] and
references therein):

m—2 ,—t

(m—1)!

For this example, v = 1, u = 0, and f(x) = 1. The results of
applying our inverse method to data generated from Eq. (42)
are shown in Fig. 10. While the results do not seem as good as
those obtained previously for the stationary case, upon closer
examination we can see good reasons why we might not
expect to be able to do quite so well in the time-evolving case.
The numerical data used as input for the inverse problem were
taken only from the time interval in which the amount of the
initial mass contained in the interval of masses [1, M ] remains
greater than 99%. Looking at Fig. 9, we see that for the sum
kernel the typical mass, s(¢), has only grown to about 35 by
this time. With this in mind, the fact that we do not recover
accurate information from the inverse method about certain
regions of the kernel is not surprising since the input data do
not contain much information about these regions. In fact the

Ny (t) = (1 —e " Texpl—m(l —e™)]. (42)

250 KI ) IO T T
m,m (0]
K(1,m) o

K(M-m+1,m) o &°

200 - & 7

©

&
o O
150 | Ry 5

X RECo NN Ol :
100 :
50 | -

O 2‘:—" 1 1 1 1

50 100 150 200 250
m

FIG. 10. (Color online) Solution of the time-dependent problem
with the sum kernel, K(m;,m,) = m; + m,, using the scaling
function obtained from the exact solution, Eq. (42). Symbols denote
the numerical solution of the inverse problem and the solid line
denotes the true values. The number of discretisation points used
was Z =250 and n + 1 = 4 Fourier coefficients were used. The
numerical values of the parameters returned by the inverse algorithm
were v = 1.0841, pu = —0.0810, g = 0.8073, ap = 1.0032, a; =
—0.0133, a; = —0.0024 and a; = —0.036.
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FIG. 11. (Color online) Solution of the time-dependent problem
with Brownian coagulation kernel, Eq. (8), based on the data collapse
shown in Fig. 8. Symbols denote the numerical solution of the inverse
problem and the solid line denotes the true values. The number
of discretization points used was Z = 250, and n + 1 = 4 Fourier
coefficients were used. Numerical results have been rescaled by a
factor of 1.8 coming from the separation constant (see text).

method does very well in the regions where the input data are
informative. Perhaps coincidentally, it obtains the excellent
estimate of the value of the exponent A = v + u of 1.003.

Next we test the method on some time-dependent problems
for which only a numerical solution is available. Some
illustrative results from the application of this method to
some time-dependent inverse problems for the case of the
Brownian coagulation kernel, Eq. (8), are shown in Fig. 11.
These calculations were done with n = 3. Note that we get
excellent results in this case, compared to the sum kernel.
For this system, the typical size grew to about 80 before the
numerical cutoff began to be felt. Thus we expect more of
the kernel to be explored by the input data and we see that
in the results of the inverse problem. In general, however, the
results for the time-dependent case tend not to be as good as
those for the stationary case.

VI. CONCLUSIONS AND OUTLOOK

To conclude, we have presented an approach to solving the
inverse problem of reconstructing the collision kernel from
observations of the particle size distribution for an ensemble
of irreversibly coalescing particles whose statistical dynamics
is modeled by the SCE. Compared with previous work on
this problem, our approach provides a lot of flexibility in the
functional form of the collision kernel. In particular, it handles
the possibility of fractional powers of particle masses in the
kernel, a situation which occurs commonly in applications, in
an elegant way. We have applied our method to a selection of
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stationary and time-dependent inverse problems for which the
size distributions were obtained by numerically solving the
forward Smoluchowski problem with a variety of different
collision kernels taken from various branches of physics.
The results are of sufficiently high quality to demonstrate
the feasibility of using this kind of data-driven approach to
reconstruct collision kernels from data.

Since this problem is underdetermined, some prior expec-
tation of the kind of functional forms which are reasonable for
the collision kernel is required in order to obtain high-quality
results from our method. This prior expectation is encoded
in the choice of the number of Fourier coefficients, n, with
which to represent the shape function of the collision kernel.
The choice of n reflects the degree of wiggling which we
think is plausible. It is probably possible to come up with
cross-validation arguments to help to select the value of n but
it is not possible to remove this arbitrariness entirely. For this
reason, our approach complements rather than replaces exist-
ing direct theoretical and numerical approaches to coagulation
phenomena. It is likely to be most useful in situations for
which quality measurements of the particle size distribution
are available but for which the underlying microphysics is
unknown or controversial.

In terms of future research, it would be interesting to
apply these techniques to some real data. It will therefore
be necessary to quantify how well things work in the presence
of observational noise. It will also be necessary to quantify the
uncertainty in the collision kernels which are reconstructed
from the data. To do this, it may be best to reformulate the
problem in a probabilistic setting and apply some of the meth-
ods of Bayesian inverse problems which have been developed
recently (see, for example, [35]). Such a reformulation would
also allow us to be more explicit about the prior information
about the kernel which is incorporated into the model and
provide a means for observational data to overrule these prior
choices if they are inconsistent with the observations.

Finally, the central challenge in the inverse problem is that
the given information is a function of one variable, whereas the
kernel is a priori a function of two variables. We have shown
that constraining K to be homogeneous renders the inversion
tractable in representative simple cases. In doing so we find
ourselves using only the steady state and/or scaling forms of
the cluster size distribution. In principle, one could exploit
the full-time dependence of the cluster size distribution. This
could enable K to be inferred as a function of two masses
without assuming homogeneity. We hope to return to this in
future work.
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