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Self-similar evolution of the A-particle island–semi-infinite B-particle sea reaction-diffusion system
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We consider diffusion-controlled evolution of the A-particle island–semi-infinite B-particle sea system at
propagation of the sharp annihilation front A + B → 0. We show that at a large initial number of island particles
the system evolution is described by the universal scaling laws with nonmonotonous front trajectory and a
constant velocity of the island center motion. We demonstrate that asymptotically the island moves self-similarly
retaining its velocity, shape and width.
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The formation of the localized reaction front A + B → 0,
which propagates between domains of unlike diffusing species
A and B and occurs as a consequence of their effective
dynamical repulsion, is a crucial feature of a broad spectrum of
problems in physics, chemistry, biology, and materials science
[1,2]. The simplest model of a planar reaction front, introduced
by Galfi and Racz (GR) [3], is the quasi-one-dimensional
model

∂a/∂t = DA∇2a − R, ∂b/∂t = DB∇2b − R (1)

for two initially separated reactants which are uniformly
distributed on the left side (x < 0) and on the right side
(x > 0) of the initial boundary. Taking the reaction rate in the
mean-field form R(x,t) = ka(x,t)b(x,t) (k being the reaction
constant), GR discovered that in the long-time limit kt � 1
the reaction profile R(x,t) acquires a universal scaling form
with the width w ∝ (t/k2)1/6 so that on the diffusion length
scale LD ∝ t1/2 the relative width of the front asymptotically
contracts unlimitedly, w/LD ∼ (kt)−1/3 → 0 as kt → ∞.
Based on this fact, a general concept of the front dynamics,
the quasistatic approximation (QSA), was developed [4–8].
The key property of the QSA is that w(J ) depends on t

only through the time-dependent boundary current, JA =
|JB | = J , the calculation of which is reduced to solving
the external diffusion problem with the moving absorbing
boundary (Stefan problem) R = Jδ(x − xf ). Following this
approach, in most subsequent works the use of the QSA was
traditionally restricted by the GR sea-sea problem with an
unlimited number of A and B particles where the stage of
monotonous quasistatic front propagation is always reached
asymptotically.

Recently, a new line in the study of the A + B → 0
front dynamics has attracted significant attention under the
assumption that the particle number of one or both species is
finite (island-sea and island-island systems) and, therefore, in
the final state one or both islands disappear completely [9–14].
It has been established that in the sharp-front regime these
systems exhibit rich scaling behavior, and though in these
systems the QSA is always asymptotically violated, at large
initial particle numbers and a high-reaction constant the vast
majority of particles die in the sharp-front regime over a wide
parameter range.

In this paper, we focus on the regularities of the evolution
of the island-sea system, whose “symmetric” version was first
considered in Ref. [9], where it was established that the initial

expansion stage is followed by a self-accelerating collapse of
the island in a finite time (finite-time collapse). As principally
distinct from the “symmetric” island-sea problem [9], where
the island of A particles with an immobile center is surrounded
by a symmetric sea of particles B on both sides of the island,
in this paper we present the regularities of the “asymmetric”
island-sea problem, where the island of particles A with a
moving center is in contact with a semi-infinite sea of particles
B. We find that at a large initial number of island particles,
the system evolution is described by the universal scaling
laws with a nonmonotonous front trajectory and a constant
velocity of the island center motion, and we demonstrate that
asymptotically, on the exponential relaxation stage, the island
moves self-similarly, retaining its velocity, shape, and width.

Let in the infinite interval x ∈ (−∞,∞) particles B with
concentration b0 and particles A with concentration a0 be
initially uniformly distributed in the sea x ∈ (−∞,0) and in the
island x ∈ (0,L), respectively. We will assume, as usual, that
concentrations a(x,t) and b(x,t) change only in one dimension
(flat front). We will also assume for simplicity DB = DA = D.
Then, by measuring the length, time, and concentration in
units of L, L2/D, and b0, respectively, and defining the ratio
a0/b0 = r , we come from Eq. (1) to the simple diffusion
equation for the difference concentration s = a − b,

∂s/∂t = ∇2s, (2)

in the interval x ∈ (−∞,∞) with the initial conditions

s0[x ∈ (−∞,0)] = −1, s0[x ∈ (0,1)] = r,
(3)

s0[x ∈ (1,∞)] = 0,

and the boundary conditions s(−∞,t) = −1 and s(∞,t) = 0.
The solution to Eqs. (2) and (3) has the form

s = (r/2)

[
erfc

(
x − 1

2
√

t

)
− γ erfc

(
x

2
√

t

)]
, (4)

where γ = (r + 1)/r . According to the QSA, for large k →
∞ at times t ∝ k−1 → 0 there forms and quasistatically
propagates a sharp reaction front, which separates the domains
s < 0(b = |s|,a = 0) and s > 0(a = s,b = 0) so that the law
of the front center motion, xf (t), is defined by the condition
s(xf ,t) = 0. Substitution of this condition into Eq. (4) gives

erfc

(
xf − 1
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)
= γ erfc

(
xf
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)
. (5)
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Then integrating Eq. (4) for the number of island particles
per unit of the initial boundary N = ∫ ∞

xf
a dx = ∫ ∞

xf
s dx, we

self-consistently find

N/N0 = √
t

[
i erfc

(
xf − 1

2
√

t

)
− γ i erfc

(
xf

2
√

t

)]
, (6)

where i erfc(u) = ∫ ∞
u

erfc(z)dz = e−u2
/
√

π − u erfc(u) and
(in our units) N0 = r . At small |xf |,√t 
 1, when the
diffusion length remains much less than the island size (GR
sea-sea regime) from Eq. (5), in accordance with [3], we find
xf = cf

√
t + · · · , where erf(cf /2) = (1 − r)/(1 + r) and,

hence, at r < 1 the front moves toward the island (cf > 0),
whereas at r > 1 the front moves toward the sea (cf < 0). As
in Ref. [9], here we are mainly interested in the evolution of
the system at large times

√
t � 1, when the diffusion length

becomes much larger than the initial island size. Moreover, as
in Ref. [9], here we are mostly interested in the limit of large
r � 1, where, as is shown below, the system demonstrates a
universal scaling behavior. Due to the finite number of island
particles, it is clear that at r > 1 at a certain time tM the front
must change its direction of motion [turning point ẋf (tM ) = 0]
reaching its initial position xf (t�) = 0 at time t� (return point)
and moving further in the direction xf → ∞. From Eq. (5)
we find exactly erf(1/2

√
t�) = 1/r , from which at t,r � 1 it

follows that

t� = r2/π − 1/6 + · · · . (7)

It is interesting to note that to an accuracy of negligible
terms, this time coincides with the island collapse time in the
symmetric problem [9] t� ≈ tc ≈ r2/π . Before we proceed
to a detailed analysis of the front center motion xf (t), we
focus on the motion law of the island center xm(t), which,
in accordance with [12,13], can be naturally defined as the
point where the concentration a(x,t) reaches its maximum
am = sm = max s(x > xf ) and, as a result, the flux changes
its sign. From Eq. (4) we easily find

∂xs = (r/2
√

πt)e−x2/4t [γ − e(2x−1)/4t ],

from which, with regard to condition (∂xs)m = 0, we immedi-
ately obtain the remarkable result

xm = 2t ln γ + 1/2, (8)

from which it follows that at any t and r the island center
moves with a constant velocity vm = 2 ln γ , which, at large r ,
drops with increasing the initial number of island particles by
the law

vm = 2 ln γ ≈ 2/r.

From Eq. (5), it is easy to check that at t � t� the front velocity
increases monotonously, so, due to the condition xf < xm, it is
clear that vm defines the asymptotic limit of the front velocity
at t/r2 → ∞. Indeed, assuming that xf /

√
t � 1,t � r2 � 1,

from Eq. (5) we find xf = 2t ln γ + 1/2 − 2t/xf + 8t2/x3
f +

· · · , from which we obtain asymptotically

xf = 2t ln γ + 1/2 − 1/ ln γ + 1/2t ln3 γ + · · · ,

xm − xf = 1/ ln γ − 1/2t ln3 γ + · · · (9)

= r + 1/2 − r3/2t + · · · ,

and therefore

xm − xf ≈ r + 1/2, (vm − vf )/vm ≈ r4/4t2 → 0

as t/r2 → ∞. According to Eq. (8), at large r,t � 1, in the
vicinity of the island center the value x/t ∼ O(1/t,1/r) 
 1.
Since outward from the island center x � xm the concentration
drops exponentially fast, s/sm ∝ e(x2

m−x2)/4t , it is clear that in a
considerable region of change s the condition x/t 
 1 should
remain valid. Transforming Eq. (4) with consideration of this
fact, we find

s = (r/2
√

πt)e−x2/4t (1 + φ) − erfc(x/2
√

t)/2, (10)

where φ(x,t) = x/4t − 1/12t + · · · . Thus, neglecting the
term |φ(x,t)| 
 1 in Eq. (10) and introducing the scaling
variables ξ = x/r and τ = t/r2, we conclude that at large
t,r � 1 the evolution of the island-sea system is described by
the universal scaling law

s(ξ,τ ) = (1/2
√

πτ )e−ζ 2 − erfc(ζ )/2, (11)

where ζ = x/2
√

t = ξ/2
√

τ . From Eq. (11) there immedi-
ately follows (a) an equation describing the universal front
trajectory ξf (τ ),

e−ζ 2
f = √

πτ erfc(ζf ), (12)

and (b) the universal scaling law of island particle death,

N/N0 = G(τ ) = erfc(ζf )/2 − √
τ i erfc(ζf ). (13)

According to Eq. (12), in the front turning point (ξ̇f )M = 0 we
have ξM

f = τM − (τ 2
M + 2τM )1/2, from which, using Eqs. (11)–

(13), we find ξM
f = −0.294 528,τM = 0.061 481 5,NM/N0 =

0.455 18, and sM
m = 0.706 93. Correspondingly, in the front

return point ξ�
f = 0 we find τ� = 1/π,N�/N0 = 0.181 69, and

s�
m = 0.151 22. In the most interesting asymptotic limit of

large τ , where, in accordance with Eqs. (9) the front and
island centers move with the same constant velocity and,
as a consequence, the half-width of island ξm − ξf remains
constant, for the leading terms of ξm,f (τ ) from Eqs. (11) and
(12) we find

ξf = 2τ − 1 + · · · , ξm − ξf = 1 − 1/2τ + · · · , (14)

from which, following substitution of ξm,f into Eqs. (11) and
(13) for the leading terms of the universal long-time relaxation
of the reduced particle number in the island, N/N0, and its
amplitude, sm, we obtain

N/N0 ∼ c+e−τ /τ 3/2, sm ∼ (c+/e)e−τ /τ 3/2, (15)

where c+ = e/4
√

π . It should be emphasized, however, that,
in accordance with Eqs. (9), at any large but finite r � 1,
the deviation of the ξm,f (r,τ ) trajectories from the universal
ones increases with time by the law |δξm,f (r,τ )| ∼ τ/r(ξf =
2τ − 1 − τ/r + · · · ) and, therefore, although at any τ the ratio
|δξm,f (r,τ )|/ξm,f (τ ) ∼ 1/r 
 1, the ratio |δξm,f (r,t)|/(ξm −
ξf ) ∼ τ/r remains small only in the interval τ/r 
 1.
Moreover, from Eqs. (4) and (6) it is easy to check that
with growing τ , the corresponding deviations in the relaxation
laws of the particle number and amplitude of the island
|δN(r,τ )|/N (τ ) ∼ |δsm(r,τ )/sm(τ )| ∼ τ/r remain small only
at τ/r 
 1. Yet it is clear that at sufficiently large r , deviations
from the universality become noticeable only when the fraction
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FIG. 1. (Color online) (a) Trajectories of the front center xf (t)
calculated from Eq. (5) for r = 50 (circles), r = 100 (hexagons), and
r = 200 (squares). (b) Collapse of the presented trajectories to the
scaling law Eq. (12) (line) in the rescaled coordinates ξf = xf /r

vs τ = t/r2. Dashed line shows long-time asymptote ξf = 2τ − 1.
Circles denote turning (ξM

f = −0.294 528,τM = 0.061 481 5) and
return (ξ�

f = 0,τ� = 1/π ) front points.

of the remaining particles in the island becomes negligibly
small and, hence, within the limits of applicability of the sharp
front approximation (see below) the vast majority of particles
die in the universal regime. As an illustration, Fig. 1 shows
the xf (t) dependencies calculated from Eq. (5) at r = 50,
100, and 200 [Fig. 1(a)] and replotted in Fig. 1(b) in the
scaling coordinates ξf versus τ . It is seen that with growing
r , the dependencies presented converge fast to the universal
dependence ξf (τ ) calculated from Eq. (12). In addition, it
is seen that the asymptotics ξf = 2τ − 1 is reached with a
good accuracy even at τ ∼ 3. Figure 2 shows the dependencies
N (τ )/N0 calculated from Eqs. (5) and (6) at r = 100, 200, and
400. It is seen that with growing r , the dependencies presented
converge fast to the scaling function G(τ ) calculated from
Eqs. (12) and (13). Here the above-calculated front turning
and return points are marked and the exponential asymptotics
of Eq. (15) is shown. It is seen that although G(τ ) converges
to its long-time asymptotics slower than ξf (τ ), at τ > 10 the
deviation from the exponential asymptotics becomes less than

FIG. 2. (Color online) Collapse of the time dependencies calcu-
lated from Eqs. (5) and (6), N/N0 vs τ , to the universal scaling
function G(τ ) (line) with growing r: r = 100 (hexagons), r =
200 (squares), and r = 400 (stars). Dashed line shows long-time
exponential asymptotics Eq. (15). Circles denote turning (NM/N0 =
0.455 18,τM = 0.061 481 5) and return (N�/N0 = 0.181 69,τ� =
1/π ) front points.

20%. Figure 3 (main panel) shows the |s(ξ,r)| dependencies
calculated from Eq. (4) for r = 100, 200, and 400 at τ = 3.
It is seen that with growing r , the dependencies presented
converge fast to the corresponding universal distribution |s(ξ )|
calculated by Eq. (11).

One of the most remarkable consequences of Eqs. (15)
is the fact that at the long-time exponential relaxation stage,
the particle number and amplitude of the island decay

FIG. 3. (Color online) Main panel: Collapse of |s(ξ,r)| depen-
dencies calculated from Eq. (4) for r = 100, 200, and 400 (thin lines)
at τ = 3 to universal distribution |s(ξ )| (thick line) calculated from
Eq. (11). Areas under curves b(ξ ) = |s(ξ < ξf )| and a(ξ ) = s(ξ >

ξf ) are colored. Inset: Collapse of s/sm vs ξ − ξm dependencies
calculated in accordance with Eq. (11) for τ = 5, 10, and 20 (thin
lines) to the universal scaling function S(ξ − ξm) [Eq. (17)] (thick
line). Area under the scaling function S is colored.
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“synchronously,”

N (τ )/sm(τ ) = N0e = const. (16)

This fact indicates that at the exponential relaxation stage, the
island moves self-similarly retaining its velocity, shape, and
width. Let us show that these remarkable properties of long-
time relaxation actually occur. From Eqs. (11) at τ,ξm � 1, it
follows that [15]

s/sm = e(ξ 2
m−ξ 2)/2ξm (ξm/ξ )[ξ − ξm + (ξm/ξ )2 + · · · ],

from which, assuming |�ξ | = |ξ − ξm| 
 √
ξm and neglect-

ing the terms O[(�ξ )2/ξm], i.e., “cutting off” the distribution
at distances 1 
 �ξc 
 √

ξm, where the contribution into
the particle number becomes exponentially small, we find
asymptotically

s/sm = S(ξ − ξm) = e(ξm−ξ )(1 + ξ − ξm). (17)

Integration of Eq. (17) immediately leads to the result (16).
When fixing the right island “boundary” by the condi-
tion s(�ξc)/sm = ε 
 1, we find from Eq. (17) �ξc(ε) ∼
ln(�ξc/ε) and come to the announced conclusion about
self-similar evolution of the moving island with a constant
width and an exponentially decaying amplitude. In the inset
to Fig. 3 shown are the s/sm versus ξ − ξm dependencies
calculated from Eq. (11) for τ = 5, 10, and 20. It is seen
that with growing τ , the dependencies presented converge to
the scaling function S(ξ − ξm), reaching it rapidly on the left
side of the island (�ξ < 0) and relatively slower on the right
side (�ξ > 0). Summarizing, it should be noted that although
the regime of self-similar island evolution is reached only
asymptotically when the reduced particle number in the island
becomes exponentially small, the existence of such a regime

with a constant velocity of the island motion as a whole is
observed for the first time and is of principal significance [16].

To complete the picture outlined, we have to reveal
the applicability limits for the key condition of the sharp
annihilation front [10,12],

η = w/(xm − xf ) 
 1. (18)

According to the QSA, the width of the mean-field reaction
front (in our units) is defined by the expression w ∼ (kJ )−1/3

[9]. Calculation of the boundary current J = |∇s|x=xf
= −Ṅ

at large τ � 1 in accordance with Eqs. (11) and (15) yields
J ∼ e−τ /τ 3/2r . Substituting this result into Eq. (18) and
considering that xm − xf ∼ r , we find that at the exponential
evolution stage, the relative front width increases by the law
η ∼ (eτ τ 3/2/kr2)1/3. Thus, defining the time boundary of the
sharp front regime by the condition η ∼ 0.1 [10], we obtain
τ |η=0.1 ∼ ln(η3kr2/τ

3/2
η ). Following [10,12], we shall estimate

the applicability limit of the sharp front approximation for a
perfect 3D diffusion-controlled reaction with dimensionless
(in units of D/L2b0) constant k ∼ raL

2b0, where ra is the
reaction radius. Substituting here ra ∼ 10−8 cm,L ∼ 0.1 cm,
and b0 ∼ 1020 cm−3, we obtain k ∼ 1010 and find τ |η=0.1 ∼
ln(107r2/τ

3/2
η ), from which we conclude that at a sufficiently

large r the exponential relaxation stage is reached in the
sharp-front regime.

In conclusion, it should be emphasized that although the
evolutions of the “symmetric” and “asymmetric” planar island-
sea systems are radically different, in both systems the scaling
laws of island death have the form N = N0F (t/N2

0 ).
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