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We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator
for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines.
Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the
role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions.
In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one
bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant
ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique
for computing corrections to the steady state results arising from finite operation time and use it to arrive at the
thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies
of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented
here are interesting in their own right and could find useful applications in other contexts as well.
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I. INTRODUCTION

In recent years there has been an upsurge of interest in the
interface between thermodynamics and quantum mechanics
[1], macro and nano or micro [2], leading to a thorough
reexamination of the basic concepts and principles of ther-
modynamics with ramifications in biological processes and
soft condensed matter systems. New paradigms for notions of
work, thermal machines, etc., have emerged that provide deep
insights into thermodynamics, which in turn help enlarge its
scope far beyond that envisaged originally and open up new
possibilities [3]. These developments force one to formulate
questions concerning the efficiencies of various heat engines
using appropriate microscopic considerations [4]. Indeed, one
has even started considering quantum heat engines, which in
principle have efficiency larger than Carnot efficiency, though
such cases require nonequilibrium steady states. Such steady
states can be reached via the use of the coherent laser fields or
via quantum interference effects [5,6]. In a recent experiment
[7] Blickle and Bechinger realized a microscopic Brownian
heat engine [8–10]. The most important ingredient both in
the work of Blickle and Bechinger [7] and in the proposals
of Scully et al. [5] is the possibility that all the relevant
parameters can be controlled very well experimentally; thus
the heat engine cycle can be precisely realized and it becomes
desirable to have exactly soluble models of microscopic heat
engines.

In view of the way the experiments are carried out we need
a fully dynamical model that should account for the way the
system parameters such as potentials or the external parameters
such as temperature are changed. Further, the behavior of the
engine should depend on various time scales, for example, the
time taken to reach an equilibrium state. Such a time would
depend on the scales of the damping in the system. Motivated
by these requirements, we develop in the present work an
exactly soluble model of a microscopic Brownian heat engine.
The model that we present is fully quantum mechanical.

Our model enables us to examine many different possible
experimental scenarios: (a) low-temperature behavior where
quantum effects are likely to dominate, (b) behavior under dif-
ferent relaxation conditions, for example, the system could be
underdamped or overdamped, (c) possibilities for the system
to pass through nonequilibrium stages depending on the rate
of change of the external parameters, and (d) nonequilibrium
conditions because the experimental time scales are smaller
than the time it takes for the system to reach steady state.
Our formulation is based on the Wigner function and quantum
Langevin equations for a harmonic oscillator whose frequency
is modulated in time. We also assume that the temperature
of the environment is time dependent as well. These time
dependences are needed to implement the heat engine cycle
realistically. We calculate the time-dependent Wigner function,
all the fluctuation parameters, and the entropy. These enable
us to calculate thermodynamic quantities such as work, heat,
and internal energy.

A brief outline of the work is as follows. In Sec. II, for
later reference, we briefly recapitulate the expressions for
the efficiencies, both classical and quantum, for the three
engines based on standard thermodynamic considerations
with the usual assumptions regarding the speed with which
the various steps are carried out. In Sec. III we present a
quantum thermodynamic framework based on the Wigner
phase-space description for quantum systems that contains
the classical framework as a limiting case. In Sec. IV we
develop a general setup for computing various quantities of
interest and give two models of frequency modulation where
the relevant equations are amenable to exact analytical results.
In Sec. V we consider the situation when the diffusion constant
is varied linearly and in Sec. VI analyze its ramifications on the
efficiencies of Brownian heat engines. In Sec. VII we develop
a systematic scheme for computing finite-time corrections to
the efficiencies of classical and quantum Brownian motors
and then use these results in Sec. VII to examine the role they
play in determining the efficiency of the Stirling engine at
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maximum power. Section IX contains our concluding remarks
and further outlook. Motivated by the work of Blickle and
Bechinger [7], we focus in this paper on the high-temperature
regime h̄ω/KBT � 1 (in Ref. [7], h̄ω/KBT ∼ 10−6). We note
that in the other extreme h̄ω/KBT � 1, strong deviations
from the standard thermodynamic behavior becomes very
prominent [11]. For example, using the exact Langevin
equations, Nieuwenhuizen and Allahverdyan [11] found that
the Clausius inequality can be violated at low temperatures
(h̄ω/KBT � 1).

As noted above, our working model for a heat engine is
based on a quantum harmonic oscillator with a frequency ω

interacting with a thermal bath at temperature T . Three typical
engines that have been discussed extensively in the literature
based on varying ω and T appropriately are the Stirling,
Carnot, and Otto engines. Their cycles adapted to the harmonic
oscillator model are schematically given as follows: For the
Stirling engine [7],

ω1,Tc isothermal ω2,Tc

3 −→ 4

τc

isochoric ↑ ↓ isochoric

τh

2 ←− 1

ω1,Th isothermal ω2,Th

(1)

with ω2 > ω1 and Th > Tc; for the Carnot engine [9,12],

ω1,Th isothermal ω2,Th

1 −→ 2

τh

isentropic ↑ ↓ isentropic

τc

4 ←− 3

ω4,Tc isothermal ω3,Tc

(2)

with ω1 > ω2 > ω3 > ω4, Th > Tc, βhω2 = βcω3, and
βhω1 = βcω4; and for the Otto engine [13],

ωc,T2 isentropic ωh,Th

4 ←− 3

τ1

isochoric ↓ ↑ isochoric

τ2

1 −→ 2

ωc,Tc isentropic ωh,T1

(3)

for ωh > ωc >, Th > Tc, βcωc = β1ωh, and βhωh = β2ωc.
Here the τ indicate the time taken to carry out the indicated
step and β stands for 1/KBT . The calculations that we give in
subsequent sections can be applied to any of these engines.

The three prototypical engines above thus involve suitable
combinations of the following three steps: (a) isothermal, i.e.,
ω changing with T fixed or (b) isochoric, i.e., ω held fixed
with T changing, or (c) isentropic, i.e., both ω and T changing
with ω/T fixed, and one needs an appropriate formalism to

compute the efficiencies under specific physical circumstances
in which these steps are actually executed in an experiment.
The present work has this as its major objective. Our principal
results include (i) development of a self-contained formalism
for computing efficiencies of Brownian engines in both the
classical and quantum contexts, (ii) an exact analysis of the
role of damping in the process of coupling the system to a bath
at a higher temperature and its influence on the performance
of the Stirling engine, (iii) computation of the irreversible heat
in isothermal processes and the derivation of complementarity
relations, and (iv) a detailed analysis of the role of damping as
well as finite-time corrections on the efficiency of the Stirling
engine at maximum power.

II. STEADY STATE EFFICIENCIES
FROM THERMODYNAMICS

To set the notation and for later reference we assemble
here the standard thermodynamic considerations that enable
us to compute the efficiencies for the three engines listed
above in both classical and quantum contexts. These are
(i) the thermodynamic conservation law or the energy balance
relation �U = Q − W, where �U is the change in the internal
energy U , Q is the heat absorbed by the system, and W is the
work done by the system; (ii) Q in a reversible isentropic
process a → b = 0; (iii) work done in an isochoric process
a → b = 0 provided the only kind of work is via a change
of volume (in the present context ω); (iv) work done in
an isothermal process a → b = −[F (b) − F (a)], where F

denotes the free energy of the system; (v) the expressions
for U and F for the harmonic oscillator,

U =
{

1/β, β ≡ 1
KBT

(classical)

h̄ω[n(ω,T ) + 1/2], n(ω,T ) ≡ 1
eβh̄ω−1 (quantum),

(4)

F (ω,T ) =
{

l 1
β

ln(βh̄ω) (classical)

1
β

ln[2 sinh(βh̄ω/2)] (quantum);
(5)

and (vi) the expression for the entropy of a classical harmonic
oscillator in equilibrium at a temperature T ,

S = KB

[
1 + ln

(
1

βh̄ω

)]
. (6)

In the quantum case, for the thermal state ρth,

ρth = e−βĤ

Tr[e−βĤ ]
, (7)

where Ĥ denotes the Hamiltonian operator for a quantum
harmonic oscillator, one has for the von Neumann entropy

S = KB{[n(ω,T ) + 1] ln[n(ω,T ) + 1]

− n(ω,T ) ln n(ω,T )}. (8)

From expressions (6) and (8) for S above it follows that in
both classical and quantum cases S depends only on ω/T and
further that the following relation, referred to as the entropy
balance equation, holds:

dU = T dS + U
dω

ω
(9)
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for isothermal reversible processes. It must, however, be borne
in mind that its validity is restricted to thermodynamic changes
such that the thermal state remains a thermal state all along.
In a recent work, based entirely on the energy balance and the
entropy balance relations, Beretta [14] examined the question
of efficiencies of quantum thermodynamic Carnot- and Otto-
like cycles modeled after a two-level system. The present work,
though similar in spirit, largely addresses situations involving
evolution of an initial thermal state into nonthermal states and
its eventual relaxation to a different thermal state and this
renders use of the entropy balance equation untenable.

With this preparation we now proceed to compute the
efficiencies of the three engines mentioned earlier in both the
classical and quantum cases. These would then be compared
with the results obtained from the microscopic theory devel-
oped later.

(a) Stirling engine. The efficiency ηS of the Stirling engine
is defined as

ηS = W

QTh

,

where W denotes work done by the system and QTh
denotes

heat flow into the system at Th. In the classical case the work
done by the engine is given by

W1→2 + W3→4 = −[F (ω1,Th) − F (ω2,Th)]

− [F (ω2,Tc) − F (ω1,Tc)]

= KB(Th − Tc) ln

(
ω2

ω1

)
(10)

and the heat absorbed at Th by

W1→2 + �U 1→2 + �U 4→1

= −[F (ω1,Th) − F (ω2,Th)] + 0 + 1

2

(
1

βh

− 1

βc

)

= KBTh ln

(
ω2

ω1

)
+ 1

2
KB(Th − Tc). (11)

[Note the factor of 1
2 in the second term on the right-hand side

(rhs) of Eq. (11). We will return to this later.] Hence

ηcl
S = ηC

1 + ηC

/[
ln
(ω2

2

ω2
1

)] , ηC = 1 − Tc

Th

. (12)

Proceeding as before and using the expressions for U and
F appropriate to the quantum case, we have for the work done

W1→2 + W3→4

= −[F (ω1,Th) − F (ω2,Th)] − [F (ω2,Tc) − F (ω1,Tc)]

= KBTh ln

(
sinh(βhh̄ω2/2)

sinh(βhh̄ω1/2)

)

−KBTc ln

(
sinh(βch̄ω2/2)

sinh(βch̄ω1/2)

)
(13)

and for the heat absorbed at Th

W1→2 + �U 1→2 + �U 4→1

= −[F (ω1,Th) − F (ω2,Th)] + {h̄ω1
[
n(ω1,Th) + 1

2

]
− h̄ω2

[
n(ω2,Th) + 1

2

]}+ 1
2

({
h̄ω2
[
n(ω2,Th) + 1

2

]]
− [h̄ω2

[
n(ω2,Tc) + 1

2

]})
, (14)

hence

η
q

S = 1 − Y/X

1 + Z/X
,

X = ln

(
sinh(βhh̄ω2/2)

sinh(βhh̄ω1/2)

)
, Y = βh

βc

ln

(
sinh(βch̄ω2/2)

sinh(βch̄ω1/2)

)
,

Z = βh

2

[
h̄ω1 coth (βhh̄ω1/2) − h̄ω2

2
{coth (βhh̄ω2/2)

+ coth (βch̄ω2/2)}
]
. (15)

In the limit βω � 1, ηq
S goes over to the classical efficiency ηcl

S

as expected.
(b) Carnot engine. For the Carnot engine the efficiency

defined as before

ηC = W

QTh

turns out to be the same in both the classical and quantum
cases and is given by

ηcl
C = η

q

C = ηC =
(

1 − Tc

Th

)
. (16)

(c) Otto engine. Here again the efficiency defined as

ηO = W

Q2→3

turns out to be the same in both the quantum and classical
cases and is given by

ηcl
O = η

q

O = 1 − U (4) − U (1)

U (3) − U (2)
=
(

1 − ωc

ωh

)
. (17)

The expressions for efficiencies for the three engines, realized
here through a harmonic oscillator by appropriate changes of
its frequency (or equivalently its spring constant) and the am-
bient temperature, hold for idealized operating conditions as
stipulated in equilibrium thermodynamics. These, for instance,
demand that the isothermal changes of frequency involved in
the Stirling or the Carnot cycles be carried out quasistatically,
i.e., so slowly that at each instance the oscillator remains in the
state of equilibrium at that temperature and frequency. Such
conditions are hardly ever met in practice and particularly in
the light of the experimental work reported in [7] there is
an obvious need for developing a framework that brings into
play aspects of the approach to equilibrium, in both classical
and quantum contexts, and is capable of furnishing a self-
contained scheme for computing the efficiencies under realistic
conditions. We develop such a scheme in the next section.

III. EFFICIENCIES BEYOND THE STEADY STATE:
A DYNAMICAL MODEL

To go beyond the standard thermodynamic assumptions
regarding the rate at which various steps in a heat engine
are carried out so that one can evaluate the performance
of an engine under actual laboratory conditions, we need a
framework that treats the system modeling the engine as an
open system and permits proper inclusion of dissipative effects
and the possibility of varying the system potential and the
ambient temperature. In the present context, such a framework
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is provided by the dynamics of a quantum Brownian oscillator
of frequency ω in contact with a heat bath at temperature T

and is described by the master equation [15]

∂

∂t
ρ = − i

h̄

[
p̂2/2m + 1

2
mω2q̂2,ρ

]

− 2κmω

h̄
[n(ω,T ) + 1/2]([q̂,[q̂,ρ]])

− iκ

h̄
([q̂,{p̂,ρ}]), (18)

where q̂ and p̂ denote the position and momentum operators
obeying the commutation relations [q̂,p̂] = ih̄.

For reasons given later it proves expedient to transcribe
the quantum dynamics described by the master equation using
the Wigner phase space description of quantum systems [16,
17], which associates with a density operator ρ a phase space
function W (q,p) of classical variables q,p as follows:

ρ̂ 
→ Wρ̂(q,p) = Tr{ρ̂Ŵ (q,p)},
Ŵ (q,p) = 1

(2πh̄)

∫ ∞

−∞
dq ′∣∣q + 1

2q ′〉〈q − 1
2q ′∣∣eipq ′/h̄.

(19)

We note here that we prefer to use the Wigner phase space
description over other phase space descriptions for three
reasons: (a) It associates a real phase space function with
every Hermitian operator, (b) it maps the quantum mechanical
average of a product of two operators to the phase space
average of the corresponding Wigner functions, and (c) its
moments 〈qmpn〉 correspond to quantum averages of the sym-
metrized operator (q̂mp̂n)S . For example, 〈q2p〉 corresponds to
the expectation value of the operator (q̂2p̂ + q̂p̂q̂ + p̂q̂2)/3.
Although we prefer to work with real phase space functions,
Beretta [18] has pointed out the usefulness of complex phase
space functions based on the Blokhintzev map for a phase
space description of quantum kinematics.

Use of the Wigner description turns the master equation
into a Fokker-Planck equation (FPE) for W (q,p) [17],

∂

∂t
W (q,p,t) =

{
− ∂

∂q

(
p

m

)
+ ∂

∂p

[
2κp +

(
∂V (q,a)

∂q

)]

+D
∂2

∂p2

}
W (q,p,t),

where

V (q,a) = 1
2aq2, a ≡ mω2 (20)

and

D = 2mh̄ωκ
[
n(ω,T ) + 1

2

]
, n(ω,T ) = (eβh̄ω − 1)−1. (21)

In the following the parameter a, the spring constant, will be
taken to be controlled externally.

The Langevin equations equivalent to the above FPE read

q̇ = p

m
, (22)

ṗ = −2κp − ∂

∂q
V (q,a) + f (t), (23)

〈f (t)f (t ′)〉 = 2Dδ(t − t ′). (24)

The Langevin equations (22)–(24) lend themselves to a nice
thermodynamic interpretation [8]: Rewriting (23) as

− [−2κp + f (t)] + ṗ + ∂

∂q
V (q,a) = 0, (25)

multiplying it by dq, and using

dV = ∂V (q,a)

∂q
dq + ∂V (q,a)

∂a
da, (26)

one obtains

−[−2κp + f (t)]dq + d[p2/2m + V (q,a)] − ∂V (q,a)

∂a
da.

(27)

The three terms in Eq. (27) may now be identified in an
intuitively plausible manner as

Q = [−2κp + f (t)]dq,

dU = d(p2/2m + V ), (28)

W = −∂V (q,a)

∂a
da,

leading to the energy balance equation

− Q + dU + W = 0, (29)

with Q (−Q) understood as the heat flow into (out of) the
system and W (−W) as the work done by (on) the system.
The stochastic averages of these quantities denote by Q,
dU , and W , respectively, relate directly to the corresponding
thermodynamic quantities and capture the thermodynamic
conservation laws. This self-contained approach is clearly
more microscopic than thermodynamics as it provides a
framework for computing not only the averages of these
quantities but their probability distributions as well.

We note here that while it is certainly possible to transcribe
the master equation dynamics directly into equivalent quantum
Langevin equations for the operators q̂ and p̂, owing to their
noncommutativity, the crucial step (27) needed to obtain a clear
thermodynamic interpretation of such Langevin equations
would now involve terms such as p̂dq̂ and would therefore
be fraught with ordering ambiguities.

The scheme described above for computing Q, dU , and W

together with the expression for von Neumann entropy

S = KB[(σ + 1) ln(σ + 1) − σ ln σ ], σ =
√

Det[V] − 1
2

(30)

for Gaussian states [19] (which is what we would exclusively
deal with), i.e., states ρ for which the Wigner distribution is a
Gaussian:

W (q,p) = 1√
(2π )2Det[V]

exp

[
− xT Vx

2 Det[V]

]
, x ≡

(
q

p

)
,

(31)

provides all that we need for the considerations below. Here
V stands for the variance matrix

V =
( 〈q2〉 〈qp〉

〈qp〉 〈p2〉
)

(32)

and angular brackets denote the average with respect to the
Wigner distribution. The uncertainty relations require that σ
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be positive. Note that the set of Gaussian states contains the
set of harmonic oscillator thermal states ρth as a special case.

Before proceeding further it is instructive to check that the
Wigner description above together with the thermodynamic
interpretation implied by (28) in the steady state does indeed
reproduce the results given earlier for the efficiencies of the
three engines using standard thermodynamic considerations.
Thus, for instance, calculation of the efficiency of the Stir-
ling engine involves computing W1→2, W3→4, �U 1→2, and
�U 4→1, which in the present framework are given by

W1→2 =
∫ 2

1
W = −

∫ ω1

ω2

mω〈q2〉T =Tc
dω, (33)

W3→4 =
∫ 4

3
W = −

∫ ω2

ω1

mω〈q2〉T =Th
dω, (34)

�U1→2 =
∫ 2

1
dU =

( 〈p2〉
2m

+ 1

2
mω2〈q2〉

)
2

−
( 〈p2〉

2m
+ 1

2
mω2〈q2〉

)
1

, (35)

�U4→1 =
∫ 1

4
dU =

( 〈p2〉1

2m
− 〈p2〉4

2m

)
. (36)

Further, from the FPE or the Langevin equations it follows that
in the steady state

〈p2〉 = D/2κ, mω2〈q2〉 = D/2mκ. (37)

On using D = 2mκω[n(ω,T ) + 1
2 ] these equations then give

W1→2 = −
∫ ω1

ω2

[
n(ω,Th) + 1

2

]
dω

= KBTh ln

(
sinh(βhω2/2)

sinh(βhω1/2)

)
= F (1) − F (2), (38)

W3→4 = −
∫ ω2

ω1

[
n(ω,Tc) + 1

2

]
dω

= −KBTc ln

(
sinh(βcω2/2)

sinh(βcω1/2)

)
= [F (3) − F (4)], (39)

�U1→2 = {ω1
[
n(ω1,Th) + 1

2

}− {ω2
[
n(ω2,Th) + 1

2

]}
, (40)

�U4→1 = 1
2

({
ω2
[
n(ω2,Th) + 1

2

]}− {ω2
[
n(ω2,Tc) + 1

2

]})
,

(41)

which are the same expressions as before and therefore
one recovers the expression for efficiency given in Sec. II.
(Note here that in computing �U4→1 we considered only the
contribution from 〈p2〉 and not from 〈q2〉, a question that will
be examined in greater detail later.)

IV. QUANTUM DYNAMICS UNDER TIME-DEPENDENT
CHANGES OF TEMPERATURE AND POTENTIAL

We have seen in the preceding section that the Langevin
equations equivalent to the Fokker-Planck equation obeyed
by the Wigner distribution lend themselves to a direct
and transparent thermodynamic interpretation and that this
interpretation in the steady state limit reproduces the standard
thermodynamic results. To prepare the groundwork for going
beyond the steady state limit we now analyze the structure of
the solutions of the Langevin equations at hand, allowing for

an arbitrary time dependence in the potential and the diffusion
coefficients and apply this framework to arrive at the exact
solutions of the Langevin equations for three fairly realistic
models.

The Langevin equations, which in the present case are linear
stochastic equations with additive noise, may be solved to yield(

q(t)

p(t)

)
= M(t)

(
q(0)

p(0)

)

+
∫ t

0
dt ′M(t)M(t ′)−1

(
0√

2D(t ′)f (t ′)

)
, (42)

where

M(t) ≡
(

u(t) v(t)

mu̇(t) mv̇(t)

)
(43)

solves the homogeneous equations

d

dt

(
q(t)

p(t)

)
=
(

1/m 0

−mω2 −2κ

)(
q(t)

p(t)

)
. (44)

From (22) for the variance matrix

V(t) ≡
( 〈q2(t)〉 〈q(t)(p(t)〉

〈q(t)p(t)〉 〈p2(t)〉
)

(45)

one has

V(t) = M(t)

[
V(0) +

∫ t

0
dt ′M−1(t ′)

×
(

0 0

0 2D(t ′)

)
MT −1(t ′)

]
MT (t). (46)

It is therefore clear that finding explicit solutions for the
variances in situations where both ω and T depend on time
depends on our ability to solve for M(t). We list below three
physically meaningful cases for which this is indeed possible.

Case I: ω independent of time. For this familiar case the
functions U (t) and V (t), which determine the matrix M(t),
are explicitly given by

u(t) = λ+e−λ−t − λ−e−λ+t

λ+ − λ−
, v(t) = e−λ−t − e−λ+t

m(λ+ − λ−)
,

(47)
λ± = κ ±

√
κ2 − ω2.

Further, owing to the time translation available in this case, we
have M−1(t) = M(−t) and M(t)M(t ′) = M(t + t ′) and (45)
simplifies to

V(t) = M(t)V(0)MT (t)

+
∫ t

0
dt ′M(t ′)

(
0 0

0 2D(t − t ′)

)
MT (t ′). (48)

Case II: ω2(t) = ω2
0(1 + μt

T
), 0 � t � T . In this case in-

vestigated in [20], the functions u(t) and v(t) in the range
0 � t � T are given by

u(t) =
[

f+(t)ḟ−(0) − f−(t)ḟ+(0)

f+(0)ḟ−(0) − f−(0)ḟ+(0)

]
,

(49)

v(t) = m

[
f+(t)f−(0) − f−(t)f+(0)

ḟ+(0)f−(0) − ḟ−(0)f+(0)

]
;
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f±(t) = e−κt (t + a)1/2J±1/3
[

2
3b1/2(t + a)3/2

]
,

(50)

a =
(

1 − κ2

ω2
0

)
T

μ
, b = ω2

0μ

T
.

Case III: ω2(t) = ω2
0e

μt/T , 0 � t � T . In this case the
functions f+(t) and f−(t) in (50) are again given in terms
of Bessel functions as

f±(t) = e−κtJ±α(aeμt/2T ), a = 2T ω0

μ
, α = 2T κ

μ
. (51)

Having dealt with some exactly solvable cases where the
frequency is changed in a specific way but the temperature
may be varied arbitrarily, we now illustrate how the formalism
developed above lends itself to useful exact or approximate
calculations leading to finite-time corrections.

V. LINEAR VARIATION OF THE DIFFUSION CONSTANT

We first consider the case in which the harmonic oscillator
with frequency ω is in equilibrium with a bath at temperature T0

characterized by a diffusion constant D0. With ω held fixed,
the diffusion coefficient is changed linearly from its initial
value D0 appropriate to temperature T0 to its final value D1

appropriate to temperature T1 in a time τ and then kept at that
value thereafter. For ω held fixed,

D(t) =
{

D0 + (D1 − D0) t
τ
, 0 � t � τ

D1, t > τ.
(52)

This situation pertains to the isochoric step in the Brownian
engines and is relevant for discussions on aspects of decoupling
the system from a heat bath at one temperature and recoupling
it to another heat bath at a different temperature.

For the case at hand, with V(0) chosen to be the variance
matrix corresponding to the oscillator being at equilibrium
with the bath at temperature appropriate to D0,

V(0) =
(

D0
2κm

0

0 D0
2κm2ω2

)
, (53)

we have from (48)

〈q2(t)〉 = D0

2κ

(
u2(t)

m2ω2
+ v2(t)

)
+ 2

∫ t

0
dt ′v2(t − t ′)D(t ′),

(54)

〈q(t)p(t)〉 = 2
∫ t

0
dt ′v(t − t ′)v̇(t − t ′)D(t ′), (55)

〈p2(t)〉 = mD0

2κ

(
u(t)u̇(t)

m2ω2
+ v(t)v̇(t)

)

+ 2m2
∫ t

0
dt ′v̇2(t − t ′)D(t ′). (56)

Using the relations

v2 = − 1

2κ

1

2

d

dt

(
u2

m2ω2
+ v2

)
, (57)

vv̇ = − 1

2κ

d

dt

(
uu̇

m2ω2
+ vv̇

)
, (58)

v̇2 = − 1

2κ

1

2

d

dt

(
u̇2

m2ω2
+ v̇2

)
, (59)

which follow from

v̇ = −2κv + u

m
, u̇ = −mω2v, (60)

we obtain for t > τ

〈q2(t)〉 = α(t)〈q2〉0 + (1 − α(t))〈q2〉1, (61)

〈p2(t)〉 = β(t)〈p2〉0 + (1 − β(t))〈p2〉1, (62)

where

α(t) = 1

τ

∫ t

t−τ

dt ′[m2ω2v2(t ′) + u2(t ′)], (63)

β((t) = 1

τ

∫ t

t−τ

dt ′
[
m2v̇2(t ′) + u̇2(t ′)

ω2

]
. (64)

In the limit t → ∞ both α(t) and β(t) go to zero and hence
〈q2〉 and 〈p2〉 assume their respective equilibrium values.
The parameters α(t) and β(t) thus interpolate between the
initial and the final equilibrium values of 〈q2〉 and 〈p2〉
and quantify the approach to equilibrium. In the following
we consider the case when t = τ , i.e., the situation that is
obtained immediately after the bath has reached the state
characterized by the final value of the diffusion coefficient.
Evidently, as far as the system is concerned, we are dealing
here with a nonequilibrium state as the system has not yet had
time to equilibrate with the final bath.

By setting t = τ in (63) and (64) and denoting α(τ ) and
β(τ ) simply as α and β we obtain on substituting for u and v

from (47) and carrying out the relevant integrals

α = 1

(x − y)2

[
(x + y)

(
x

2y
(1 − e−2y) + y

2x
(1 − e−2x)

)

− 4xy

x + y
(1 − e−(x+y))

]
, (65)

β = 1

(x − y)2

[
(x + y)

(
1 − e−2y + e−2x

2

)

− 4xy

x + y
(1 − e−(x+y))

]
, (66)

where x = [κ + √
κ2 − ω2]τ and y = [κ − √

κ2 − ω2]τ . We
now examine the behavior of α and β in the overdamped and
weak dissipation regimes, respectively.

In the overdamped regime, i.e., κ � ω, x ≈ 2κτ �
1, and y ≈ ω2τ

2κ
� 1 one finds that

α ≈ 1 − e−2y

2y
→ 1 as y → 0, (67)

β ≈ 1 − e−2x

2x
→ 0 for x � 1. (68)

In contrast, in the weak dissipation regime κ � ω, x ≈ κ +
iω, and y ≈ κ − iω, we have in the limit κτ → 0

α ≈
[

1 − e−2κτ

2κτ
+ κτ

(
sin ωτ

ωτ

)2
]

(69)

≈ 1 − κτ

[
1 −

(
sin ωτ

ωτ

)2
]

, (70)
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β ≈
[

1 − e−2κτ

2κτ
− κτ

(
sin ωτ

ωτ

)2
]

(71)

≈ 1 − κτ

[
1 +

(
sin ωτ

ωτ

)2
]

. (72)

Note that α > β in both cases. In fact, this is always
true: It can easily be shown that with x,y defined as
before

α − β = x + y

x − y

∫ 1

0
dt[e−2xt − e−2yt ] (73)

and hence α > β by virtue of the fact that the integrand is
always positive.

We conclude this section with a general remark to put
the contents of this section in a larger perspective. Standard
thermodynamic considerations assume that the external pa-
rameters such as frequency and temperature are changed so
slowly that the system goes continuously from one equilibrium
state to another. The situation is different if at any stage
the system goes out of thermodynamic equilibrium and the
one discussed here is a case in point. Here the system does
go through out-of-equilibrium states [see (61) and (62)] and
our analysis shows that the damping parameter is crucial
in determining the out-of-equilibrium states, although the
state in thermodynamic equilibrium does not depend on
the damping parameter. In situations where the intermediate
state depends on damping, the changes considered are not
reversible.

VI. EFFECT OF TIME SCALES ON EFFICIENCIES
OF BROWNIAN MOTORS

We recall that in the calculation of the efficiency of the
Stirling engine from standard thermodynamic considerations
presented in Sec. II we had drawn attention to the factor of 1

2 in
the expression for �U4→1. Likewise, in the computation of the
Stirling engine using the quantum stochastic thermodynamics
in the steady state we had noted that in computing �U4→1

only 〈p2〉/2m contributes to �U4→1 and not mω2〈q2〉/2. This
seemingly ad hoc prescription can now be understood at a
deeper level in the light of the analysis in Sec. V leading
to Eqs. (61)–(64). It is clear from the discussion therein
that, in general, the expression for �U4→1 should be taken

to be

�U4→1 = (1 − β)

( 〈p2〉1

2m
− 〈p2〉4

2m

)

+ (1 − α)mω2

( 〈q2〉1

2
− 〈q2〉4

2

)
, (74)

where α and β depend on various time scales involved.
Indeed, in the overdamped regime α → 1 and β → 0 and
one recovers the earlier results. The mystery behind the
factor of 1

2 in (11) and that behind retaining the contribution
from 〈p2〉/2m in (36) alone is thus resolved. In contrast, in
the weak dissipation regime, where both α and β are close
to 1, the situation is very different and this has significant
consequences for the relative magnitude of classical and
quantum efficiencies under the same operating conditions
as discussed later. Further, since for a harmonic oscillator
〈p2〉/2m = mω2〈q2〉/2, we can rewrite Eq. (74) as

�U4→1 = 2μ

( 〈p2〉1

2m
− 〈p2〉4

2m

)
, μ = 1 − α + β

2
. (75)

Using this expression in the calculations of the classical and
quantum efficiencies for the Stirling engine given earlier, we

obtain

ηcl
S = ηC

1 + ηCμ
/

ln
(

ω2
ω1

) (76)

and

η
q

S = 1 − Y/X

1 + Z/X
,

X = ln

(
sinh(βhh̄ω2/2)

sinh(βhh̄ω1/2)

)
,

Y = βh

βc

ln

(
sinh(βch̄ω2/2)

sinh(βch̄ω1/2)

)
,

Z = βh

2
{h̄ω1 coth(βhh̄ω1/2) − h̄ω2[(1 − μ) coth(βhh̄ω2/2)

+μ coth(βch̄ω2/2)]}. (77)

The appearance of the parameter μ here may be viewed as
a phenomenological way of incorporating nonequilibrium
effects arising from decoupling of the system from one bath
and recoupling it to another.

In terms of dimensionless quantities a,b,c such as

βch̄ω1 = a,
ω2

ω1
= b,

βh

βc

= c, (78)

the expression above for the efficiencies η
q

S and ηcl
S in the classical and quantum read

ηcl
S (b,c) = 1 − c

1 + μ (1−c)
ln b

, (79)

η
q

S(a,b,c) =
ln
( sinh(abc/2)

sinh(ac/2)

)− c ln
( sinh(ab/2)

sinh(a/2)

)
ln
( sinh(abc/2)

sinh(ac/2)

)+ ac
2 coth(ac/2) − abc

2 [(1 − μ) coth(abc/2) + μ coth(ab/2)]
. (80)
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FIG. 1. Ratio R = η
q

S/η
cl
S plotted as a function of a = βch̄ω1 and c = βh/βc for ω2/ω1 = 2.05.

In the experiments of Blickle and Bechinger [7]

a = 9.500 65 × 10−7, b = 2.049 22, c = 0.845 272.

(81)

With b fixed at this value, we plot in Fig. 1 the ratio R = η
q

S/η
cl
S

as a function of a,c for two representative values of μ.

VII. FINITE-TIME CORRECTIONS:
COMPLEMENTARITY RELATIONS

We next consider the situation when the system starts out at
equilibrium with a bath at temperature T and the frequency is
changed from its initial value ω0 to its final value ω1 in a finite
time either isothermally (T held fixed) or isentropically (ω/T

held fixed) and focus on computing finite-time corrections
to the standard thermodynamic results. Referring to (1)–(3),
we recall that while Stirling and Carnot engines involve the
former operation, Carnot and Otto engines involve the latter.
The scheme for computing finite-time corrections developed
below is similar in spirit to the adiabatic approximation in
quantum mechanics and is a variant of the method formulated
in [21] in the context of the Fokker-Planck equation adapted
to the equations for the moments themselves.

The equations for the second moments that follow from the
Langevin or the Fokker-Planck equation may be written as

d

dt
X(t) = A(t)X(t) + Y (t), (82)

where

X(t) =

⎛
⎜⎝

〈q2〉
〈qp〉
〈p2〉

⎞
⎟⎠ , A(t) =

⎛
⎜⎝

0 2
m

0

−mω2(t) −2κ 1
m

0 −2mω2 −4κ

⎞
⎟⎠ ,

Y (t) =

⎛
⎜⎝

0

0

2D(t)

⎞
⎟⎠ . (83)

(At this stage, as indicated, we allow the frequency and the
diffusion coefficients to be independent functions of t ; later,
however, we would specialize to situations appropriate to
isothermal or isentropic variation of the frequency.) Setting

t = sτ and expanding X(t) as

X(t) = X(0)(s) + 1

τ
X(1)(s) + · · · , (84)

we obtain

A(s)X(0)(s) + Y (s) = 0 ⇒ X(0)(s) = −A−1(s)Y (s), (85)

X(1)(s) = A−1(s)
d

ds
X(0)(s). (86)

Equation (85) can be taken to describe the situation where the
system is in the steady state corresponding to the instantaneous
values of ω and D and Eq. (86) as describing deviations from
this steady state. These equations then give

〈q2(s)〉(0) = D(s)

2m2ω2(s)κ
, 〈q(s)p(s)〉(0) = 0,

(87)

〈p2(s)〉(0) = D(s)

2κ

and

〈q2(s)〉(1) = −
[

8κ2 + 2ω2(s)

8κω2(s)

d

ds
〈q2(s)〉(0)

+ 1

mω2(s)

d

ds
〈q(s)p(s)〉(0)

+ 1

4κm2ω2(s)

d

ds
〈p2(s)〉(0)

]
, (88)

〈q(s)p(s)〉(1) = m

2

d

ds
〈q2(s)〉(0), (89)

〈p2(s)〉(1) = −
[
m2ω2(s)

4κ

d

ds
〈q2(s)〉(0) + 1

4κ

d

ds
〈p2(s)〉(0)

]
.

(90)

These equations together with (87) give finite-time corrections
to the variances. As the diffusion coefficient is a function of
both ω and T , we now specialize to the situations where ω

is time dependent and T is held fixed (the isothermal case)
and ω and T both are time dependent but ω/T is held fixed
(the isentropic case). With this in mind, we may rewrite the
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expression for 〈q2(s)〉(1) (which we will need shortly) as

〈q2(s)〉(1) = h̄

4κmω2

[(
4κ2

ω2

)(
n(ω,T ) + 1

2

)
dω

ds

−
(

4κ2

ω2
+ 2

)
ω

d

ds

(
n(ω,T ) + 1

2

)]
. (91)

In the isothermal case both terms on the rhs contribute. In
contrast, in the isentropic case only the first term contributes as
during this process ω/T and hence n(ω,T ) are held constant.
In the following we confine ourselves to the isothermal case
and give the results for two physically interesting limiting
cases corresponding to the overdamped and weak dissipation
regimes: In the overdamped regime κ � ω,

〈q2(s)〉(1) = κ

mω5β

[(
βh̄ω

2

)
coth

(
βh̄ω

2

)

+
(

βh̄ω

2

)2

cosech2

(
βh̄ω

2

)](
dω

ds

)
(92)

and in the weak dissipation regime κ � ω,

〈q2(s)〉(1) = 1

2κmω3β

[(
βh̄ω

2

)
cosech

(
βh̄ω

2

)]2 (
dω

ds

)
.

(93)

We now compute expressions for the irreversible heat Qirr,

Qirr = F (i) − F (f ) − Wi→f , (94)

in an isothermal process at temperature T from i → f arising
from finite-time corrections. Recalling that

Wi→f = −
∫ ωf

ωi

mω〈q2〉dω

= −
∫ ωf

ωi

mω

(
〈q2〉(0) + 1

τ
〈q2〉(1)

)
dω (95)

and

−
∫ ωf

ωi

mω〈q2〉(0)dω = F (i) − F (f ), (96)

we have

Qirr = 1

τ

∫ ωf

ωi

mω〈q2〉(1)dω ≡ T
�

τ
. (97)

From the way the quantity � is defined above it is clear that it
would in general depend on both T and the manner in which
ω is varied from its initial value ωi to its final value ωf in
the time τ . We now turn to the question as to what would be
the minimum value of Qirr and hence that of � in the weak
dissipation and overdamped regimes.

Using (92) and (93) and parametrizing ω(s) such that
ω(0) = ωi and ω(1) = ωf we have

Qirr =
{

l 2κ
βτ

∫ 1
0 ds g(ω(s))

(
dω
ds

)2
(κ � ω)

1
2κβτ

∫ 1
0 ds g(ω(s))

(
dω
ds

)2
(κ � ω),

(98)

where

g(ω) =
{

1
2ω4

[(
βh̄ω

2

)
coth

(
βh̄ω

2

)+ ( βh̄ω

2

)2
cosech2

(
βh̄ω

2

)]
(κ � ω)

1
ω2

[(
βh̄ω

2

)
cosech

(
βh̄ω

2

)]2
(κ � ω).

(99)

The expression Qirr involves the functional

I [ω] =
∫ 1

0
ds g(ω(s))

(
dω

ds

)2

. (100)

If we define � = f (ω) and its inverse as ω = h(�) and choose
f (ω) to satisfy

df (ω)

dω
=
√

g(ω), (101)

then we find that the curve ω(s) (0 � s � 1), which minimizes
I [ω], is given by

ω(s) = h(f (ω(0))(1 − s) + f (ω(1))s) (102)

and its minimum value by

Imin[ω] = [f (ω(1)) − f (ω(0))]2. (103)

In the classical limit βh̄ω ≪ 1, in the strong damping
regime κ � ω we have

g(ω) = 1

ω2
⇒ f (ω) = − 1

ω
, h(�) = − 1

�
(104)

and hence

Qmin
irr = 2κKBT

τ

[
1

ω(1)
− 1

ω(0)

]2

, (105)

in agreement with the results of Sekimoto and Sasa [21]
(modulo an erroneous factor of 1

4 in the value of Qmin
irr as

quoted). This minimum value is realized along the curve

ω(s) =
[

s

ω(0)
+ 1 − s

ω(1)

]−1

, 0 � s � 1. (106)

Thus, in the classical limit, in the overdamped regime,
we obtain the following inequality for the product of the
irreversible heat and the time taken to execute the step:

τ × Qirr � 2κKBT

[
1

ω(1)
− 1

ω(0)

]2

. (107)

Such a relation is referred to in the literature as a thermo-
dynamic complementarity relation, an analog, in both spirit
and form, of the energy-time uncertainty relations in quantum
mechanics. It should, however, be noted that the rhs of the
above complementarity relation is independent of h̄.
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Again in the overdamped regime, but now in the low-
temperature limit, i.e., βh̄ω → 0, we find that g(ω) ≈ βh̄/4ω3

and the complementarity relation becomes

τ × Qirr � h̄(2κ)

[
1√
ω(1)

− 1√
ω(0)

]2

. (108)

One finds that h̄ now does appear on the rhs as one would
expect in the limit of low temperature where quantum effects
become significant.

Turning to the weak dissipation case, one finds that the
expression for g(ω) is such that the relevant integral in (101)
can be given in a closed form leading to the following
complementarity relation:

τ × Qirr � KBT

2κ

[
ln

(
tanh(βh̄ω(1)/4)

tanh(βh̄ω(0)/4)

)]2

, (109)

valid for all values of T . In particular, in the classical limit it
becomes

τ × Qirr � KBT

2κ

[
ln

(
ω(0)

ω(1)

)]2

(110)

and the curve ω(s) (0 � s � 1), which minimizes Qirr, now
turns out to be

ω(s) = ω(0)(1−s)/2ω(1)s/2. (111)

We emphasize here that though we have presented explicit
expressions for Qirr for the weak and strong damping regimes,
the results in (87) and (88) enable us to derive expressions for
Qirr for both classical and quantum cases without any specific
assumptions on the relative magnitudes of κ and ω. Further, in
the classical limit we find that for an isothermal process from
i → f carried out in a finite time τ , Qirr has the structure

Qirr = T
�

τ
, (112)

where � is independent of T . On using the fact that for an
isothermal process F (i) − F (f ) = T �Si→f , we may rewrite
(94) as

Wi→f = T

(
�Si→f − �i→f

τi→f

)
. (113)

This provides a convenient and physically useful way of
parametrizing deviations from quasistaticity in that in the limit
τi→f → ∞ one recovers the familiar results of equilibrium
thermodynamics.

VIII. EFFICIENCY OF THE STIRLING ENGINE
AT MAXIMUM POWER

In this section we use the results of the preceding section
to analyze the efficiency of the Stirling engine at maximum
power very much in the spirit of the earlier works in the context
the Carnot cycle. We closely follow the works of Schmiedl and
Seifert [9] and Esposito et al. [12], who analyzed the question
of the efficiency of the Carnot cycle at maximum power in the
limit of low dissipation from fairly general considerations. In
particular, in [12] it was shown that the Carnot efficiency at
maximum power η∗

C is bounded below by ηC/2 and above by
ηC/(2 − ηC) and that while the Curzon-Ahlborn efficiency
[22] is reached in the limit of symmetric dissipation, the

upper bound is realized in a completely asymmetric limit and
coincides with the universal upper bound derived in [23,24]
from somewhat different considerations.

Consider the situation when the isothermal steps 1 → 2 and
3 → 4 are carried out in finite times τh and τc, respectively, as
indicated in (1). Power generated during the Stirling cycle is
then

P = W1→2 + W3→4

τc + τh

. (114)

Also, as we have seen in Sec. VI, the expression for the
efficiency for the Stirling engine can be written as

ηcl
S = W1→2 + W3→4

μKB(Th − Tc) + W1→2
, (115)

where μ ≈ 0 in the weak coupling regime and μ = 1
2 in the

overdamped regime.
Using (113) and setting �1→2 ≡ �h,�3→4 ≡

�c,�S1→2 = −�S3→4 = �S, (114) and (115) become

P = (Th − Tc)�S − Th�h/τh − Tc�c/τc

τc + τh

, (116)

ηcl
S = (Th − Tc)�S − Th�h/τh − Tc�c/τc

μKB(Th − Tc) + Th�S − Th�h/τh

. (117)

Maximizing P with respect to τh and τc, one finds that P

attains its maximum value for

τh = τ ∗
h = 2

Th�h

(Th − Tc)�S

(
1 +

√
Tc�c

Th�h

)
, (118)

τc = τ ∗
c = 2

Tc�c

(Th − Tc)�S

(
1 +

√
Th�h

Tc�c

)
. (119)

Substituting these values for τh and τc in (117), one finds that
the efficiency for the Stirling engine at maximum power is
given by

ηcl∗
S =

ηC

(
1 +

√
Tc�c

Th�h

)
(
1 +

√
Tc�c

Th�h

)2 + Tc

Th

(
1 − �c

�h

)+ 2μηC

ln( ω2
ω1

)

. (120)

We now consider two cases.
Case A: μ = 0. In the extremely weak dissipation regime,

i.e., μ = 0, one recovers results similar to those in [9,12] in
the context of the Carnot cycle: In the symmetric case, i.e.,
�c/�h = 1, ηcl∗

S equals the Curzon-Ahlborn efficiency ηCA =
1 − √

Tc/Th,

ηcl∗
S = ηCA, (121)

and for the case in which ηcl∗
S is bounded by ηC/2 and ηC/(2 −

ηC),

ηC/2 � ηcl∗
S � ηC/(2 − ηC). (122)

The upper and lower bounds correspond to �c/�h → 0 and
�c/�h → ∞, respectively.

Case B: μ �= 0. For small but nonzero μ < 1
2 ln(ω2/ω1)

these results get modified to the following: In the symmetric
case, i.e., �c/�h = 1, ηcl∗

S is less than the Curzon-Ahlborn

012130-10
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FIG. 2. Efficiency ηcl∗
S of the Stirling engine at maximum power

as a function of the Carnot efficiency ηC . The graph ηcl∗
S versus ηC , for

all values of �c/�h, lies in the shaded regions given for ω2/ω1 = 2.05
and (a) μ = 0.001, (b) μ = 0.1, (c) μ = 0.2, and (d) μ = 0.4. The
graphs of ηC , ηCA, and ηC/2 versus ηC are displayed for comparison.
While in (a)–(c) μ < 1

2 ln(ω2/ω1), (d) corresponds to the case for
μ > 1

2 ln(ω2/ω1) when there is no lower boundary. The unmarked
curve (b) and (c) within and (d) outside the shaded regions is ηcl∗

S for
�c/�h = 1 [Eq. (123)].

efficiency [22] ηCA = 1 − √
Tc/Th,

ηcl∗
S = ηCA

1 + ( μ

ln(ω2/ω1)

)( 2ηCA

2−ηCA

) < ηCA, (123)

and in the case in which ηcl∗
S is bounded by ηC/2 and ηS/(2 −

ηS),

ηC/2 � ηcl∗
S � ηC

2 − ηC

(
1 − 2μ

ln(ω2/ω1)

) . (124)

As before, the upper and lower bounds correspond to
�c/�h → 0 and �c/�h → ∞, respectively. In contrast, if
μ > 1

2 ln(ω2/ω1), one finds that

ηcl∗
S � ηC/2. (125)

In Fig. 2 we display the bounds on ηcl∗
S for μ =

0.001,0.1,0.2,0.4 with ω2/ω1 taken to be 2.05; we also give
the plots for ηC , ηCA, and ηc/2 for comparison.

IX. CONCLUSION

In this work we have developed a microscopic framework
for computing the efficiencies of quantum and classical Brow-
nian motors realized by a harmonic oscillator. Two exactly
solvable models for frequency modulation are presented. In
the context of the Stirling engine, we have analytically treated
the question of coupling the system at equilibrium with a bath
at low temperature to a bath at higher temperature and the role
that various time scales play in this process and have shown that
these have a strong influence on its efficiency. Further, we have
developed a procedure for computing finite-time corrections to
the quantities of interest needed for calculating the efficiency of
the three engines considered—Stirling, Carnot, and Otto—and
have derived the thermodynamic complementarity relations in
the overdamped and underdamped situations in both the high-
and low-temperature limits. In the spirit of the works reported
in [9,12] on the Carnot engine, we have analyzed in detail the
efficiency of the Stirling engine at maximum power and have
investigated the role of dissipation parameters thereon. Though
in this work we have exclusively considered interactions
between the system and a thermal bath, the formalism can
easily be extended to situations where the thermal bath is
replaced by a squeezed thermal bath bringing with it new
parameters and thereby ushering in new possibilities that have
no classical analogs.

In the present work we have modeled the three heat engines
after the quantum harmonic oscillator. It is of interest to carry
out a similar analysis for finite-state quantum systems. Indeed,
the entire perspective on heat pumps, refrigerators, and heat
engines developed in [3] is based on the simplest of quantum
systems: a qubit. Though in that context a convenient Fokker-
Planck framework would no longer be available, we expect
that the methodology developed here applied directly to the
master equation would be useful there as well. We hope to
return to this and related questions in the near future.
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