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Modeling of thermal transport in practical nanostructures requires making tradeoffs between the size of the
system and the completeness of the model. We study quantum heat transfer in a self-consistent thermal bath setup
consisting of two lead regions connected by a center region. Atoms both in the leads and in the center region are
coupled to quantum Langevin heat baths that mimic the damping and dephasing of phonon waves by anharmonic
scattering. This approach treats the leads and the center region on the same footing and thereby allows for a
simple and physically transparent thermalization of the system, enabling also perfect acoustic matching between
the leads and the center region. Increasing the strength of the coupling reduces the mean-free path of phonons
and gradually shifts phonon transport from ballistic regime to diffusive regime. In the center region, the bath
temperatures are determined self-consistently from the requirement of zero net energy exchange between the
local heat bath and each atom. By solving the stochastic equations of motion in frequency space and averaging
over noise using the general fluctuation-dissipation relation derived by Dhar and Roy [J. Stat. Phys. 125, 801
(2006)], we derive the formula for thermal current, which contains the Caroli formula for phonon transmission
function and reduces to the Landauer-Büttiker formula in the limit of vanishing coupling to local heat baths. We
prove that the bath temperatures measure local kinetic energy and can, therefore, be interpreted as true atomic
temperatures. In a setup where phonon reflections are eliminated, the Boltzmann transport equation under gray
approximation with full phonon dispersion is shown to be equivalent to the self-consistent heat bath model. We
also study thermal transport through two-dimensional constrictions in square lattice and graphene and discuss
the differences between the exact solution and linear approximations.
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I. INTRODUCTION

Recent theoretical and experimental studies of thermal
properties of materials have demonstrated many exotic
phononic phenomena such as ballistic and anomalous transport
[1–3], conductance quantization [4,5], and phonon tunneling
[6,7]. These discoveries suggest that the ability to manipulate
heat flow at microscopic level and to better understand phonon
transfer in nanoscale may lead to important technological
breakthroughs ranging from new materials for thermoelectric
conversion [8,9] to improved thermal management in future
electronics [10], and even information processing by phonons
[11–13].

Modeling of thermal transport in practical nanostructures
typically requires making tradeoffs between the size of the sys-
tem and the completeness of the the model. Consequently, the
commonly used models such as Boltzmann transport equation
(BTE) [14], molecular dynamics (MD), Landauer-Büttiker
(LB) formalism [15,16] for phonon transfer [4,17], and full
nonequilibrium Green’s function (NEGF) method [18,19] each
have distinct strengths and weaknesses. For instance, BTE
for phonons is a powerful method that is applicable even for
macroscopic systems, but it does not apply well to microscopic
systems where wave effects such as diffraction are important.
MD can be applied to phonon transport in microscopic systems
and accounts, e.g., for wave effects and phonon-phonon
scattering due to anharmonicity of the interatomic potential,
but it becomes computationally heavy for large systems and
cannot strictly account for quantum statistics. The LB and
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NEGF models can fully account for the quantum statistics,
but LB assumes ballistic phonon transfer and NEGF is
computationally extremely demanding and therefore limited
so far to very small systems [20].

As a consequence of the above limitations, none of the
above models are well suited for modeling phonon transfer in
typical nanostructures consisting of a relatively large number
of atoms. A very interesting compromise between system size
and model completeness is provided by the self-consistent
thermal bath (SCTB) model suggested by Bolsterli, Rich, and
Visscher [21]. In the SCTB model, the phonon scattering
is mimicked by coupling the atoms to local heat reservoirs
whose temperatures are determined from the condition that,
in the steady state, there is no net energy transfer between
an atom and the corresponding local heat reservoir. The
concept was first used to show that for a classical system
with bath temperatures equal to the local kinetic temperatures
the thermal conductivity of a harmonic one-dimensional chain
was rendered finite by the bath couplings. Later it was shown
rigorously that in an infinite one-dimensional chain in a
nonequilibrium steady state, the system is at local thermal
equilibrium [22] and that local heat current is proportional to
the thermal gradient, i.e., heat transfer is diffusive [22–25].
The SCTB model has also been applied to investigating
quantum effects in nonballistic heat transfer [24–27], effects
of additional anharmonicity [23,28–30] and unequal masses
[31–33] on heat conduction, and the necessary ingredients of
thermal rectification [27,34–38].

Self-consistent heat baths are closely related to Büttiker’s
self-consistent voltage probes [39,40], which are em-
ployed in electron transport as models for dephasing and
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dissipation caused by inelastic scattering. To account for
the inelastic effects using a microscopic model for the
voltage probe, D’Amato and Pastawski modeled the probes
by one-dimensional tight-binding chains [41] and were
able to demonstrate a transition from coherent to diffusive
transport. Their work was recently extended by Roy and
Dhar [42] to cover simultaneous charge and heat transfer
in the presence of a chemical potential and temperature
gradient. Momentum-conserving scatterers have also been
proposed [43].

In this paper, we extend the SCTB models beyond one-
dimensional chains and study the heat transfer and the use
of SCTB models in describing quantum thermal transfer in
one-dimensional and two-dimensional structures that exhibit
geometric as well as phonon-phonon scattering. To describe
the dissipative effects in the whole infinite system consisting
of two leads and the center region, atoms both in the leads and
in the self-consistent center region are coupled to Langevin
heat baths. This makes our setup different from the situation
considered by Dhar and Shastry in Ref. [44] and Dhar and
Roy in Ref. [24], describing purely ballistic phonon transport
in the leads. We compare the predictions of SCTB with
Landauer-Büttiker (LB) formalism and Boltzmann transport
equation (BTE). In contrast to LB formalism, phonon transport
in the SCTB model is not purely ballistic due to the interaction
with the local heat baths, but we show that the SCTB model
reduces to the conventional LB model in the limit of vanishing
coupling to local heat baths. In a setup where wave effects
can be neglected, SCTB is shown to be equivalent to BTE
under gray approximation. We demonstrate how the local
bath temperatures are intuitively related to the local energy
densities. We compare the exact self-consistent temperature
profiles to linear and classical approximations and thereby
extend the work by Bandyopadhyay and Segal [27], who, in
contrast to the semi-infinite leads studied here, considered
purely Ohmic lead couplings. We also extend their work
on one-dimensional chains by comparing the quantum and
classical temperature profiles in higher-dimensional structures.

The paper is organized as follows. In Sec. II, we present the
computational setup and derive the formula for heat currents
flowing to the leads and to self-consistent heat baths. This is
achieved by first solving the Heisenberg-Langevin equations
of motion in Sec. II A and then specifying the statistical
properties of noise terms in Sec. II B. Sections II C and II D
are devoted to calculating the average heat flow to the baths
and presenting physical interpretation for the self-consistent
bath temperatures. For comparison purposes, we also solve
the Boltzmann transport equation under gray approximation
for the one-dimensional chain in Sec. II E.

In Sec. III, we discuss how to solve the self-consistent
equations either by iterative means or by linearization. We also
present a physically intuitive method of solving the equations,
which can be interpreted as describing the transient behavior
of the system. As an application of the formalism, we study in
Sec. IV A heat transfer in a one-dimensional chain coupled to
semi-infinite chains, in the so-called Rubin-Greer setup [45],
and highlight the connection to Boltzmann transport equation.
We then study thermal transport through two-dimensional
constrictions both for square lattice and the more practical
case of graphene in Secs. IV B and IV C. The methods for

solving the self-consistent nonlinear equations are compared
in Sec. IV D. We conclude in Sec. V.

II. THEORY

In the theory and results of this paper, we mainly focus
on a system that essentially consists of the left lead region,
center region, and right lead region as shown schematically
in Fig. 1. All atoms within the leads are coupled to local
Langevin heat baths set to prescribed values TL and TR . The
atoms in the center region are coupled to local heat baths
whose temperatures are determined self-consistently from the
requirement of local current conservation. The coupling to the
Langevin heat baths effectively mimics thermalizing events
such as phonon-phonon scattering. It is important to stress that
in contrast to the Landauer-Büttiker model, phonon transport
is not assumed to be ballistic either in the leads or in the center
region. Although our approach of integrating out the leads,
detailed below, is inspired by the work of Dhar and Shastry [44]
and Dhar and Roy [24], the thermalization in the leads in our
setup takes place through a coupling to heat baths instead
of thermalization by Ford-Kac-Mazur formalism [46]. This
method is physically transparent, since no difference is made
between the leads and the center region (except for the bath
temperatures). The method also allows us to include dissipative
effects in the leads, thereby enabling perfect acoustic matching
between the leads and the center region.

In the following, we first solve the equations of motion in
Sec. II A, then specify the statistical properties of the noise
in Sec. II B and finally derive the formula for heat currents in
Sec. II C.

FIG. 1. (Color online) (a) A schematic illustration of the system
under study. The structure is divided into the left lead, the center
region, and the right lead. All atoms are coupled to spatially uncor-
related quantum Langevin heat baths, which are shown explicitly for
one cross section in (b). In the left and right lead, the temperatures of
the local heat baths have prescribed values TL and TR , respectively. In
the center region, on the other hand, temperature varies between TL

and TR and the bath temperatures are determined self-consistently
using the requirement that the average thermal current to each
bath vanishes. The leads can contain an infinite number of atoms,
but the center region is finite. Two-dimensional square lattice with
nearest-neighbor interactions is shown for illustrative purposes, but
the basic principle can be applied to any geometry.
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A. Equations of motion

The time evolution of atoms in the setup of Fig. 1 consists of
two parts. The first part is deterministic and is specified by the
system Hamiltonian H and Heisenberg equations of motion.
The second part consists of a stochastic force and friction due
to the interaction with the local heat bath and cannot be directly
derived from a Hamiltonian [47].

The Hamiltonian time evolution of the atomic displacement
uα

i of atom i along direction α ∈ {x,y,z} and corresponding
conjugate momentum pα

i is determined by the Hamiltonian
H and the Heisenberg equations of motion u̇α

i = (i/h̄)[H,uα
i ]

and ṗα
i = (i/h̄)[H,pα

i ]. Here [A,B] = AB − BA denotes the
commutator and the atomic displacement uα

i = qα
i − qα0

i is
defined as the variation of position qα

i from the equilibrium
position qα0

i . The Hamiltonian of the system is, in the harmonic
approximation,

H = 1

2

∑
I

[
p2

I

m
+ uT

I KI uI

]
+ 1

2

∑
I

∑
J �=I

uT
I VIJ uJ , (1)

where index I ∈ {C,L,R} labels the region: C stands for center
region, and L and R for the left and right leads, respectively.
The displacement and momentum vectors uI and pI contain
the displacements and momenta of all particles in region I

and we assume the masses m of all atoms to be equal for
notational simplicity. The spring constant matrix KI and the
coupling matrices VIJ are the block components of the full
spring constant matrix K divided into blocks as

K =

⎛
⎜⎝ KL VLC 0

VCL KC VCR

0 VRC KR

⎞
⎟⎠ , (2)

where we assumed that the leads do not interact, so VLR =
VT

RL = 0. The elements of K are obtained from the second
derivative of the interatomic interaction energy V as [48]

K
αβ

ij = ∂2V
∂qα

i ∂q
β

j

∣∣∣∣∣
q=q0

. (3)

The equilibrium positions are defined by the condition of zero
force

∂V
∂qα

i

∣∣∣∣
q=q0

= 0, (4)

which must be satisfied for all atoms i and components α.
The Heisenberg equations of motion that follow from

the quadratic Hamiltonian (1) coincide with the classical
equations of motion. Accompanied with the non-Hamiltonian
time evolution arising from the interaction with the heat bath,
the equations of motion become

müI = −KI uI −
∑
J �=I

VIJ uJ − mγI u̇I + ξI . (5)

The last two terms are Langevin friction and noise terms
that turn the Heisenberg equation of motion into a quantum
Langevin equation [24,47,49]. The stochastic force ξI is a
vector whose ith component is the fluctuating force at site i

due to the interaction with the local heat bath. The statistical

properties of the Langevin terms are discussed in the next
section.

Focusing on the steady-state behavior enables solving
Eq. (5) by Fourier transformation defined, as usual, by f̂ (ω) =∫

dteiωtf (t) with the corresponding inverse transformation
f (t) = ∫

(dω/2π )e−iωt f̂ (ω). Equation (5) transforms into

−mω2ûI = −KI ûI −
∑
J �=I

VIJ ûJ + imγIωûI + ξ̂I . (6)

Rearrangement of Eq. (6) gives

ûI (ω) = gI (ω)

⎡
⎣∑

J �=I

VIJ ûJ (ω) − ξ̂I (ω)

⎤
⎦ , (7)

where the uncoupled Green’s function is defined as

gI (ω) = [mω2 − KI + imγIω]−1. (8)

The uncoupled Green’s function includes damping self-energy
imγIω due to coupling to the heat baths.

Substituting Eq. (7) for I = L,R to (6) for I = C gives

−mω2ûC(ω)

= −KC ûC(ω) −
∑

I=L,R

VCI gI (ω)

× [VIC ûC(ω) − ξ̂I (ω)] + imγCωûC(ω) + ξ̂C(ω) (9)

= −KC ûC(ω) −
∑

I=L,R

[	I (ω)ûC(ω) − η̂I (ω)]

+ imγCωûC(ω) + ξ̂C(ω). (10)

In the second line, we defined the lead self-energies

	I (ω) = VCI gI (ω)VIC (11)

and the lead-coupled Langevin noise terms

η̂I (ω) = VCI gI (ω)ξ̂I (ω). (12)

The solution to Eq. (10) is

ûC(ω) = −G(ω)

[
ξ̂C(ω) +

∑
I=L,R

η̂I (ω)

]
, (13)

where the full Green’s function of the center region is

G(ω) =
[
mω2 − KC + imγCω −

∑
I=L,R

	I (ω)

]−1

. (14)

Equations (12) and (13) state that thermal fluctuations in
the leads can propagate to the center region as described
by the Green’s function gI (ω) and coupling matrix VCI and
thereby introduce additional noise terms η̂L and η̂R in the
center region. The self-energies 	L and 	R appearing in the
Green’s function (14) describe the energy shift and broadening
of the phonon energy levels in the center region due to
the leaking of phonons into the leads. The self-energies of
the semi-infinite leads can be determined by using, e.g., the
recursive decimation routine by Lopez and Sancho [50].

By integrating out the leads, we have effectively replaced
the lead coordinates by the noise terms ηI and the accom-
panying self-energies 	I . In the next section, we derive
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the fluctuation-dissipation relation connecting the statistical
properties of η̂I to Im[	I (ω)].

B. Noise power spectra

The Langevin noise operators ξI appearing in Eq. (5) act as
stochastic sources of thermal fluctuations due to coupling to the
local heat bath [24,47,49]. They are Gaussian random variables
with zero mean and covariance related to bath temperature. To
calculate the statistical averages of observables such as heat
current in the center region, we need the covariances of both
the bare Langevin noises ξ̂C and the lead noise contributions
η̂I = VCI gI ξ̂I . Since the bath temperatures in the center region
depend on position i, we handle the noise terms originating
from the center region and leads separately. In the following,
we assume for notational convenience that each atom only
has a single degree of freedom corresponding to displacement
along, say, x direction. In the general case, local bath at site
i will be coupled to displacements (ux

i ,u
y

i ,u
z
i ) in different

coordinate directions with a single temperature Ti , making
the notation a bit more cumbersome but analogous.

The covariance of the noises produced by the local heat
baths at sites i and j in the center region is, for h̄ = kB = 1,
[24,49]

〈ξ̂Ci(ω)ξ̂Cj (ω′)〉 = 2πδ(ω + ω′)�ij (ω)[fB(ω,Ti) + 1], (15)

where the coupling function for Ohmic friction is �ij (ω) =
2mγCωδij . This corresponds to the memoryless friction
assumed in Eq. (5), but more general couplings could be
straightforwardly included as well. The friction parameter γC

determines the strength of coupling to the heat baths and can
be interpreted as phonon decay rate [51]. The corresponding
scattering time is τC = γ −1

C , which is independent of frequency
for Ohmic baths.

The term in braces, where the bath temperature Ti appears
in the Bose-Einstein function fB(ω,Ti) = [exp(ω/Ti) − 1]−1,
can be written in the more transparent form fB(ω,Ti) + 1/2 +
1/2, where the first term is the thermal phonon occupation
number, the second term comes from zero-point fluctuations,
and the last term reflects the noncommutative quantum nature
of the Langevin operators [52]. One can write the term as
the sum of odd and even functions in ω as fB(ω,Ti) + 1 =
coth(ω/2Ti)/2 + 1/2, and it turns out that the additional factor
of 1/2 cancels in all integrals over frequency after proper
symmetrization.

For the noise operators in the leads, the temperatures of the
baths have prescribed values TL and TR , which do not depend
on position. Therefore, we can write the covariance directly in
matrix form as (I ∈ {L,R})

〈ξ̂I (ω)ξ̂I (ω′)T 〉 = 2πδ(ω + ω′)�̃I (ω)[fB(ω,TI ) + 1], (16)

which is useful in the following calculations. Here, the
coupling function matrix �̃I is a diagonal matrix with elements
�̃I

ij (ω) = 2mγIωδij .

Using 〈ξ̂I (ω)〉) = 0 and Eqs. (12) and (16), we see that the
noise terms η̂I originating from the leads satisfy 〈η̂I (ω)〉 = 0
and

〈η̂I (ω)η̂I (ω′)T 〉 = 2πδ(ω + ω′)II (ω), (17)

with the power spectrum

II (ω) = VCI gI (ω)�̃I (ω)gI (−ω)VIC[fB(ω,TI ) + 1], (18)

where we noted that the Green’s function gI (ω) is symmetric,
since the spring matrix KI is symmetric. A straightforward
calculation shows that

gI (ω)�̃I (ω)gI (−ω) = i[gI (ω) − gI (ω)∗], (19)

so Eq. (18) becomes

II (ω) = iVCI (gI (ω) − gI (ω)∗)VIC[fB(ω,TI ) + 1] (20)

= −2VCI Im[gI (ω)]VIC[fB(ω,TI ) + 1] (21)

= −2Im[	I (ω)][fB(ω,TI ) + 1], (22)

where we used the definition (11). Defining the lead-coupling
function

�I (ω) = −2Im[	I (ω)], (23)

we see that the power spectrum of the noise caused by the
leads can be written as

〈η̂I (ω)η̂I (ω′)T 〉 = 2πδ(ω + ω′)�I (ω)[fB(ω,TI ) + 1]. (24)

Equation (24) is analogous to Eqs. (15) and (16) except for
the form of the coupling matrix �I (ω), now defined using the
self-energy of the lead as shown in Eq. (23). Equation (24)
is one of the main results of this paper, showing that an
atomic reservoir (lead) coupled to local heat baths at prescribed
temperature can be represented by noise and dissipation terms
related by a fluctuation-dissipation relation. In contrast to
previous works [24,44], our model assumes from the beginning
that there is damping everywhere in the system. This results,
e.g., in a lead Green’s function (8) that includes an additional
self-energy term imγω, in contrast to the ballistic lead Green’s
function defined, e.g., below Eq. (2.5) in [24]. Simply adding
the damping to the Green’s function used in Ref. [24] would not
give a consistent mathematical picture of the situation, since
the presence of damping also introduces thermal noise through
the fluctuation-dissipation relation and thereby modifies the
equations of motion.

Solution (13) combined with the noise correlations (15)
and (24) allows us to calculate the thermal averages of all
observables of interest.

C. Heat flow to baths

In the Heisenberg-Langevin equation of motion (10), the
friction and stochastic force terms induce energy exchange
with the heat bath. The energy exchange rate can be calculated
from the time derivative of local energy [53]. A natural
definition for the local Hamiltonian of atom i in the center
region is

hi = p2
i

2m
+ 1

2

∑
j

uiKijuj . (25)

In Eq. (25) and from now on, we drop the index C describing
the center region, since the lead coordinates do not appear
anymore. Using the equation of motion (5), the symmetrized
time derivative taking into account the noncommutativity of
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ui and pi can be calculated to be

ḣi = 1

2

{
ṗi ,

pi

m

}
+ 1

4

∑
j

Kij ({u̇i ,uj } + {ui,u̇j }) (26)

= −1

4

∑
j

Kij ({u̇i ,uj } − {ui,u̇j })

−
(

mγ u̇2
i − 1

2
{u̇i ,ξi}

)
. (27)

Here {A,B} = AB + BA is the anticommutator and for

simplicity, we have assumed that the particle is not at the
boundary so that it is not directly coupled to the leads. The term
inside the sum in Eq. (27) is the heat current flowing from site
i to site j and the second term in parentheses is the heat current

Qi = mγ u̇2
i − 1

2 [u̇iξi + ξi u̇i] (28)

flowing to the local heat bath at site i.
As shown in the Appendix, the statistical average of the

heat current is formed as a sum over the contributions of the
left (J = L) and right (J = R) leads and each local heat bath
(J ∈ {1,2, . . . ,NC}) as

〈Qi〉 =
∫ ∞

0

dω

2π
2γmω2

∑
J

[G(ω)�J (ω)G(−ω)T ]ii

× [fB(ω,TJ ) − fB(ω,Ti)]. (29)

Here the sum over bath index J ∈ {L,R,1,2, . . . ,NC} sepa-
rately accounts for the contribution of each individually treated
heat bath to the thermal balance at site i as detailed in the
Appendix. The coupling matrix �J is defined by Eq. (23) for
the lead heat baths (J = L or J = R). For the local heat baths
(J ∈ {1,2, . . . ,NC}), the only nonzero element of the coupling
matrix �J is �J

JJ = 2γmω. The term [G�J G†]ii describes the
thermal coupling between bath J and site i. In the following,
we refer to the bath at site i simply as bath i.

Using the definition of �i for local heat baths, we can write
Eq. (29) for the heat flow to bath i in the general form

〈Qi〉 =
∫ ∞

0

dω

2π
ω
∑

J

TiJ (ω)[fB(ω,TJ ) − fB(ω,Ti)], (30)

where the transmission function between baths i and J is

TiJ (ω) = Tr[�i(ω)G(ω)�J (ω)G(−ω)]. (31)

Equation (30) is also valid for the currents flowing to the leads,
i.e., for the substitution i → L or i → R, and the derivation
proceeds analogously. In this case, one should use the equation
of motion (10) in the ṗi term of (27) to calculate the heat inflow
to center region by the noise term η̂I and outflow by the force
term 	I û(ω).

Equation (30) is the multiprobe Landauer-Büttiker formula
[16] for thermal transfer between several heat baths. Equa-
tion (31) is the Caroli formula [54] for phonon transmission
function, first derived by Mingo and Yang [17] from the
mode picture and by Yamamoto and Watanabe [55] using
Keldysh formalism. We have rederived the formula using
local Langevin heat baths and thereby also included dissipative
effects in the leads.

We point out that although the average heat current 〈Qi〉
vanishes in the self-consistent temperature configuration for all

local heat baths in the center region, the spectral heat current

〈Q̂i(ω)〉 = 2γmω2
∑

J

[G(ω)�J (ω)G(−ω)T ]ii

× [fB(ω,TJ ) − fB(ω,Ti)] (32)

to a local heat bath is generally nonzero. For example, a bath
may have a net inflow of high-energy phonons, but then there
must be a corresponding net outflow of low-energy phonons.
These nonzero spectral currents lead to the redistribution of
phonon energies inside the structure, similarly to the full
nonequilibrium Green’s function formalism where generally
〈QL(ω)〉 �= −〈QR(ω)〉 [18].

In the limit of vanishing couplings to local heat baths,
γ → 0+, γI → 0+, the lead and center region Green’s func-
tions (8) and (14) reduce to their ballistic counterparts and the
only nonzero transmission function is TLR(ω). Equation (30)
reduces to

〈QR〉 =
∫ ∞

0

dω

2π
ωTLR(ω)[fB(ω,TL) − fB(ω,TR)] (33)

for the current flowing to the right reservoir. This is the two-
probe Landauer-Büttiker formula for ballistic phonon transfer,
derived earlier by various methods [4,17,44,55–57].

D. Physical interpretation of the bath temperatures

For the classical self-consistent thermal bath models, the
requirement of zero net energy exchange with the local baths
was enforced by requiring the bath temperatures to be equal to
the local kinetic temperatures [21]. The present model allows
finding a fully quantum interpretation for the self-consistent
bath temperatures. To this end, we first note that the heat
current flowing to a self-consistent reservoir at site i can be
written in the form

〈Qi〉 = γ

{
2
〈
ekin
i

〉 − ∫ ∞

0

dω

2π
ωDi(ω)

[
fB(ω,Ti) + 1

2

]}
,

(34)

where the local kinetic energy is ekin
i = mu̇2

i /2 and the
local density of states (LDOS) is defined as Di(ω) =
−4ωmIm[Gii(ω)] [58]. This form results from noting that
the first term of Eq. (28) is γmu̇2

i = 2γ ekin
i , and the second

term follows from Eq. (A10) by using the definition of LDOS
and dropping the odd term that cancels out in the integration.
The self-consistency criterion 〈Qi〉 = 0 then reduces to the
requirement

2
〈
ekin
i

〉 =
∫ ∞

0

dω

2π
ωDi(ω)

[
fB(ω,Ti) + 1

2

]
. (35)

The left-hand side of Eq. (35) can be interpreted as the total
energy at site i consisting of the kinetic and elastic energies,
which are equal in a statistical-mechanical system according to
the virial theorem [59]. Virial theorem is, of course, rigorously
valid only for the total kinetic and interaction energies at
thermal equilibrium. The right-hand side is the total vibrational
energy of an oscillator at temperature Ti . Equation (35)
gives a very natural interpretation to the self-consistent bath
temperature Ti as a measure of energy located at site i.

Note that for Ohmic baths, the integrals in Eqs. (34)
and (35) actually diverge, because the density of states scales as
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D(ω) ∼ −ωIm[1/(ω2 + iγmω)] ∼ ω−2 for ω → ∞, result-
ing in a logarithmic divergence in the zero-point term. The
divergence is, however, canceled by an identical term in 〈ekin

i 〉,
making Ti well defined.

In the classical limit, Eq. (35) reduces to〈
ekin
i

〉 = Ti

2

∫ ∞

0

dω

2π
Di(ω) = 1

2
Ti, (36)

where we used the sum rule
∫ ∞

0 (dω/2π )Di(ω) = 1. This
sum rule has been proven for the electronic case [60] and
the proof for phonons is analogous. Equation (36) can be
interpreted as the local equipartition theorem analogous to the
statistical mechanical equipartition theorem 〈ekin〉 = Nf T/2,
where Nf is the number of degrees of freedom in the
system. Relation (36) is routinely used as the definition of
local temperature in classical molecular dynamics simulations
[61]. Equation (35) suggests a similar definition for quantum
systems.

E. Solution of the Boltzmann transport equation in 1D chain

In a sense, the self-consistent thermal bath model (SCTB)
can be thought of as the fully wave-enabled extension of the
gray approximation [14,62] to the Boltzmann transport equa-
tion (BTE). Therefore it is instructive to compare the results
obtained from BTE and SCTB under conditions where the
wave effects are negligible and there are no reflections between
the chain and the reservoirs. For the simple one-dimensional
string of length L, BTE in the continuum approximation reads

v(ω)
∂n+(x,ω)

∂x
= −n+(x,ω) − n0(x,ω)

τ
(37a)

−v(ω)
∂n−(x,ω)

∂x
= −n−(x,ω) − n0(x,ω)

τ
, (37b)

where n+(x,ω) and n−(x,ω) are the distribution functions
for states with positive and negative group velocities, re-
spectively. The thermal boundary conditions are n+(0,ω) =
fB(ω,TL) and n−(L,ω) = fB(ω,TR). Distribution functions
relax towards the average distribution n0 = (n+ + n−)/2 with
relaxation time τ . Mode dispersion in a one-dimensional chain
is ω(q) = 2ω0 sin(qa/2), where a is the lattice constant. Note
that the dispersion of the discrete chain is used in Eqs. (37a)
and (37b) as usual (see, e.g., Ref. [63]). Mode velocity
is v(ω) ≡ dω/dq = aω0

√
1 − (ω/2ω0)2 and the density of

states is D(ω) ≡ dq/dω = v(ω)−1.
The solution of BTE is

n+(x,ω) = f (ω,TL) − C(ω)
x

2�(ω)
(38a)

n−(x,ω) = f (ω,TL) − C(ω)

[
1 + x

2�(ω)

]
, (38b)

where �(ω) = τv(ω) is the scattering length and C(ω) =
[fB(ω,TL) − fB(ω,TR)]/[1 + L/2�(ω)]. The solution results
in the heat current (again for h̄ = kB = 1)

Q =
∫ 2ω0

0

dω

2π
ω v(ω)D(ω)︸ ︷︷ ︸

1

[n+(x,ω) − n−(x,ω)] (39)

=
∫ 2ω0

0

dω

2π
ω

1

1 + L/2�(ω)
[fB(ω,TL) − fB(ω,TR)], (40)

which can be interpreted as Landauer-Büttiker current with the
effective transmission function

Teff(ω) = 1

1 + L/2�(ω)
. (41)

For L � �(ω) and classical statistics (T � ω0), the thermal
conductivity κ = lim�T →0

QL

�T
derived from Eq. (40) coincides

with the expression obtained for the classical self-consistent
heat bath model [24,51] when the BTE relaxation time τ is
identified with the inverse of the bath coupling constant γ .
This shows the similarity of SCTB and BTE models in infinite
classical systems.

III. SOLVING THE SELF-CONSISTENT EQUATIONS

The bath temperatures in the center region are determined
by demanding that the average heat current 〈Qi〉 to the local
heat baths i ∈ {1,2, . . . ,NC} given by Eq. (29) vanishes.
Since the bath temperatures appear in the Bose-Einstein
functions, the equations are nonlinear and the temperatures
must be solved by using iterative methods or by resorting
to linearizing approximations. We use both approaches and
compare solutions obtained from the full nonlinear equations
with linear and classical approximations. Solutions of the
nonlinear equations are calculated using the Newton-Raphson
method and in some cases an integration method based on the
existence of a steady state towards which the system evolves.

The Newton-Raphson method has previously been used to
solve the SCTB equations for 1D chains [27] and is quite
an efficient and reliable method for solving more general
problems as well, especially when the linearized solution
is used as the initial guess. However, each iteration of the
Newton-Raphson method requires evaluating N2

C frequency
integrals, which makes the method heavy for large systems.

A slightly different and potentially better-scaling method
for solving the equations can be found by writing a set of
equations for the time evolution of the temperatures of the
local baths and letting the system evolve toward the steady
state. If the reservoir is imagined to have heat capacity Ci , the
temperature Ti of the reservoir changes due to the inflow or
outflow of thermal current and obeys the differential equation

dTi(t)

dt
= 1

Ci

〈Qi(T1, . . . ,TNC
)〉, (42)

where the time t is now macroscopic time such that any
fluctuations in Qi vanish in the timescale of interest. This is an
ordinary differential equation (ODE) of first order that evolves
toward a steady state where the bath temperatures satisfy
the self-consistent temperature condition 〈Qi(T1, . . . ,TNC

)〉 =
0 ∀i ∈ {1,2, . . . ,NC}. We call the method of integrating
Eq. (42) the ODE method. In addition to having an intuitive
physical interpretation as transient time evolution of the heat
bath temperatures, the ODE method has the advantage that at
each time step, one only needs to calculate NC frequency inte-
grals to calculate the time derivative (dT1/dt, . . . ,dTNC

/dt).
For large systems, the method could therefore provide a good
alternative to the Newton-Raphson method. The heat capacity
Ci simply affects the time scaling in Eq. (42) and can be
included in the time variable t .

012128-6



THERMAL BALANCE AND QUANTUM HEAT TRANSPORT IN . . . PHYSICAL REVIEW E 88, 012128 (2013)

The full solution of the nonlinear equations can be avoided
by two common approximations that provide a linear set of
equations for the bath temperatures [35]. The linear response
approximation is based on the assumption that temperature
differences are small, allowing one to make in Eq. (29) the
substitution

fB(ω,TJ ) − fB(ω,Ti) → ∂fB

∂T
(ω,Tm)(TJ − Ti), (43)

where the mean temperature is Tm = (TL + TR)/2. The
linearization typically produces too low bath temperatures
compared to the exact results [27]. By considering a single-site
model, we have traced this feature back to the fact that the
second derivative of the Bose-Einstein function with respect
to temperature is strictly positive.

Unlike the linear-response approximation, the classical
approximation

fB(ω,TJ ) − fB(ω,Ti) → 1

ω
(TJ − Ti) (44)

makes the self-consistent equations linear also in lead temper-
atures, so the scaling of lead temperatures by a constant simply
scales the self-consistent bath temperatures by the same factor.

Both linearizations exclude any nonlinear effects such
as thermal rectification [35] and produce more symmetric
temperature profiles than the nonlinear equations due to the
equivalence of mapping Ti → TL + TR − Ti and the spatial
reflection of the structure.

IV. NUMERICAL RESULTS

To highlight the pertinent physics and the properties of
the exact and approximate solutions of the self-consistent
equations, we study in more detail the thermal conduction
and temperature profiles in two structures shown in Fig. 2. In
the one-dimensional setup of Fig. 2(a), the temperatures are
determined self-consistently in the center region consisting of
a chain of N atoms. The chain is connected to two semi-infinite
chains interacting with heat baths at constant temperatures TL

and TR so that there is no geometric scattering and phonon
flow is reduced only by interactions with the local heat baths.
The setup reduces to the Rubin-Greer geometry [45] if the heat
baths are removed.

In the two-dimensional constriction geometry of Fig. 2(b),
two wide leads are connected by a narrow constriction.
The center region includes not only the constriction but
also L layers of lead atoms to account for the effects of
temperature drop near the constriction. In both geometries,
nearest neighbors are assumed to be connected by harmonic
springs with spring constant k = mω2

0, where m is the mass
of the atoms. Each atom has only a single degree of freedom
corresponding to, e.g., the atomic displacement in the out-of-
plane direction.

Unless otherwise stated, we set ω0 = 1 in the following so
that dimensionless temperatures are in units of h̄ω0/kB and
thermal currents in units of h̄ω2

0. The dimensionless friction
parameter is then in units of ω0. The friction parameter
in the leads is set equal to the friction in the central
region, γC = γL = γR = γ . In Secs. IV A, IV B, and IV C, all
exact self-consistent temperature configurations are calculated
using the Newton-Raphson iteration with the linear response

FIG. 2. (Color online) Illustration of the systems studied in
Secs. IV A and IV B: (a) a chain of length N connected to two
semi-infinite chains, (b) a constriction of width w and length l between
two leads of width W . L layers of atoms in the leads are included in
the self-consistent calculation to account for the gradual temperature
drop near the constriction.

temperatures used as the initial guess. Newton-Raphson and
ODE methods are compared in Sec. IV D.

A. Rubin-Greer chain

Due to the lack of geometric scattering in the Rubin-Greer
setup of Fig. 2(a), the setup serves as an ideal simplified model
to compare the basic differences and similarities between the
exact and approximate solutions of the self consistent problem.
Figure 3 compares the self-consistent quantum exact, quantum
linear, and classical bath temperature profiles in a chain of
length N = 5 with friction parameters (a) γ = 10−3 and (b)
γ = 0.1. The lead temperatures are set to TL = 0.2, TR = 0.1.
In the nearly ballistic system of Fig. 3(a), all temperature
profiles are nearly constants as a function of position, because
coupling to baths is too weak for efficient thermalization. For
increased damping in Fig. 3(b), there is a clear temperature
gradient due to interaction with the heat baths. The temperature
gradients of the quantum exact and quantum linear response
models are approximately the same, but the classical gradient is
clearly larger. The most prominent feature in Figs. 3(a) and 3(b)
is, however, that the quantum exact temperature is higher than
the temperatures obtained in linear approximations, as noted
also earlier for Ohmic leads [27].

To highlight the difference of the Rubin-Greer setup to the
Ohmic reservoirs studied in Ref. [27], we compare in Fig. 4 the
temperature profiles for the two setups. In the low-frequency
limit ω → 0, the self-energy of the semi-infinite Rubin-Greer
chain is 	RG(ω) ≈ −1 − iω [64]. The real part effectively
means that the ends of the chain are free and not coupled
to fixed particles as in Ref. [27]. The imaginary part of
the low-frequency approximation of the Rubin-Greer chain
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FIG. 3. (Color online) Bath temperature profiles in a chain
of length N = 5 sandwiched between two semi-infinite leads at
temperatures TL = 0.2 and TR = 0.1. Friction parameters are (a)
γ = 10−3, i.e., the system is nearly ballistic and (b) γ = 0.1.
Symmetry requires that T3 = 0.15 for the linearized models, but the
quantum exact temperature is higher due to the nonlinearity of the
Bose-Einstein function.

self-energy can then be imitated by an Ohmic self-energy
	o = −iγoω by choosing γo = 1. Since only low-frequency
phonons are excited at low temperature, the low-frequency
approximation is fairly accurate at low temperature and the
temperature profiles are then expected to agree closely, as
verified by Fig. 4 for end temperatures TL = 0.2, TR = 0.1. For
γo = 2, the temperature profile is steeper due to the stronger
coupling to the external baths at the ends of the chain, which
also introduces more dissipation in the system. At higher
temperature, high-frequency phonons in the nonlinear range of
self-energy are excited as well, and the Ohmic coupling with
γo = 1 cannot reproduce the temperature profile as closely any
more (not shown).

Figure 5 shows the thermal current Q ≡ 〈QR〉 through the
chain as a function of left lead temperature TL for fixed right
lead temperature TR = 0.2. Friction parameters are set to (a)
weak friction γ = 10−3 and (b) strong friction γ = 0.1. The

FIG. 4. (Color online) Comparison of temperature profiles in a
chain of length N = 5 for two kinds of external reservoirs: Rubin-
Greer leads [Fig. 2(a)] and Ohmic reservoirs studied in Ref. [27]. In
contrast to Ref. [27], we also couple the particles at the ends of the
chain to self-consistent baths. The reservoirs are at temperatures TL =
0.2 and TR = 0.1 and the coupling constant to self-consistent baths
inside the chain is γ = 0.1. In the Rubin-Greer setup, the coupling
constant in the leads is γL = γR = 0.1. In the case of Ohmic external
reservoirs, coupling constant at the ends of the chain is denoted by
γo. Choosing γo = 1 reproduces the low-frequency self-energy of
the Rubin-Greer chain, leading to similar temperature profiles at low
temperatures. The geometries are shown in insets.

length of the self-consistently modeled chain is N = 10. In the
ballistic limit of Fig. 5(a), the current flowing through the chain
at low bias TL ≈ TR is equal to Q = GQ(TL − TR), where
the quantum of thermal conductance [4] is GQ = πk2

BT /6h̄,
which reduces to GQ = πT/6 in present units. When friction
is increased in Fig. 5(b), currents decrease due to the phonon
damping caused by the heat baths. With both weak and strong
friction, the classical approximation strongly overestimates
thermal current, but the linear response approximation is valid
up to TL � 0.6. The classical approximation also makes the
current response fully linear.

Figure 6 compares the thermal currents given by the
self-consistent thermal bath (SCTB) solution and Boltzmann
transport equation (BTE) solution (40) as a function of chain
length N . In the SCTB model, the friction parameter in the
center region is γ = 0.1 and in the leads γL = γR = 0.1
or γL = γR = 0.001. The string length L in BTE is set
to L = (N + 1)a to correspond to a chain of N atoms
and the relaxation time in the chain is τ = γ −1 = 10. The
temperatures of the baths are set to TL = 0.2 and TR = 0.1 so
that the system is in the nonlinear low-temperature regime. As
expected, the current decreases in both models as a function of
chain length due to phonon decay in the chain. The BTE result
matches the exact SCTB result perfectly, when the lead friction
parameters γL and γR are small, i.e., the leads are assumed to be
nearly ballistic and the center region friction parameter is tied
by the relation γ = τ−1. The requirement of ballistic leads
is natural, since we assumed that the phonon occupation in
the leads is given by the Bose-Einstein distribution, which
in SCTB model is exactly valid only in the limit of zero
broadening, γR = γL → 0+. We have verified that the BTE
and SCTB heat currents for small γR = γL agree also at other
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FIG. 5. (Color online) Thermal current Q as a function of lead
temperature TL for fixed TR = 0.2. Chain length is N = 10 and the
friction parameters are (a) γ = 10−3 and (b) γ = 0.1. With both weak
and strong friction, the linear response approximation reproduces the
exact current up to very high values of bias. In (a), current Q =
GQ(TL − TR) corresponding to the quantum of thermal conductance
GQ = πT/6 with T = 0.2 is also shown (black dashed).

temperatures. Figure 6 also shows that increasing γL and γR

in the leads, which increases scattering, slightly reduces the
thermal current flowing through the center region.

Despite the similarities between the predictions of BTE
and SCTB for the simple 1D geometry, the models are not
equivalent. For more complex geometries, the Green’s function
method, which contains full atomistic dynamics, wave effects,
and geometric scattering, is a drastic improvement over solving
BTE under the gray approximation.

The agreement of thermal currents between the SCTB
model and BTE would have been very cumbersome to
highlight if the leads had been described by Ohmic reservoirs
as in earlier works [27] instead of Rubin-Greer chains. Because
Ohmic baths at the ends of the chain would reflect some of the
phonons back to the chain, the thermal boundary conditions for

FIG. 6. (Color online) Exact thermal current as a function of chain
length N . The friction parameter in the center region is γ = 0.1. The
BTE current (40) matches the self-consistent current if the leads are
nearly ballistic, γL = γR = 0.001. The bath temperatures in the left
and right semi-infinite chains are TL = 0.2 and TR = 0.1, but the
currents also agree at other temperatures for ballistic leads.

the distribution functions of right- and left-moving phonons in
the BTE formulation would have been different from simple
Bose-Einstein functions.

B. Constriction in two-dimensional lattice

In real systems, phonon transport is more complicated
than in a one-dimensional chain due to, e.g., phonon reflec-
tions from boundaries. The new features arising from mode
mismatch at contacts and other geometric factors will be
studied in the constriction geometry of Fig. 2(b), where the
atoms are set in a square lattice such that a constriction of
width w and length l connects two leads of width W . To
account for the effects of temperature drop near the junction,
L atom layers in the leads closest to the constriction are also
included in the self-consistent calculation. The constriction
geometry has been studied earlier using molecular dynamics
[65,66], but in contrast to molecular dynamics, the present
methodology allows to include full quantum statistics in the
phonon populations. From the application point of view,
constrictions are interesting due to their ability to act as thermal
insulators, as noted in a recent experiment in GaAs point
contacts [67]. Although the present square lattice model is too
primitive to accurately handle the experimental situation, our
model could be used to gain insight into the local temperature
profiles and diffusive effects inside the constriction.

Figure 7 shows the (a) quantum exact and (b) classical
temperature profiles in a w = 5, l = 9 constriction coupled
to leads of size W = 71 and L = 35 in the low-temperature
(TL = 0.2, TR = 0.1) and nearly ballistic regime (γ = 0.01).
The asymmetry arising from the nonlinearity of the self-
consistency equations is very prominent in the quantum exact
profile of Fig. 7(a), as the temperature profile patterns in
the left and right sides are visibly different. The junction
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FIG. 7. (Color online) Bath temperature profiles in a w = 5,
l = 9 constriction coupled to leads of width W = 71 and L = 35
[see Fig. 2(b)]. Lead temperatures are TL = 0.2 and TR = 0.1.
Figures show (a) quantum exact and (b) classical self-consistent bath
temperature profiles. Friction parameter is γ = 0.01. The separation
of isolines is 0.05 and four contour lines are labeled for convenience.

temperature is approximately 0.17, which is notably higher
than the average temperature 0.15. This is a similar effect as
noticed in the previous section for the 1D chain: the mixing of
the statistics of phonons at hot and cold temperatures results
in a thermal population whose temperature is higher than the
average temperature.

In the classical case of Fig. 7(b), on the other hand,
symmetry of the self-consistent model requires that the
temperature profile is symmetric with respect to spatial
reflection and mapping Ti → TL + TR − Ti . Therefore, the
central part of the junction is at temperature 0.15. In addition,
the temperature profile in the bulk parts exhibits directional
features at 45 degree angles with respect to the junction.
These features have been observed also earlier for similar
geometry in classical molecular dynamics simulations [66].
In the quantum profile, these diagonal directional features are
absent and the temperature profiles are more directed straight
towards the leads. This feature is even more prominent for
narrower constrictions (not shown). The difference between

the quantum and classical profiles is most likely related to
the transmission properties of high-energy phonons (ω � T ),
whose populations are overestimated by classical statistics.
Another major difference between quantum and classical
statistics is that the currents flowing through the structure
are Q = 84.1 × 10−4 for quantum statistics and Q = 138 ×
10−3 for classical statistics, i.e., current is very strongly
overestimated by the classical statistics in the low-temperature
regime, as noted also for the 1D chain [Fig. 5].

Our results indicate that the diagonal temperature patterns
observed in Fig. 7(b) and in the classical molecular dynamics
simulations of Ref. [66] may be washed out by the quantum
effects at low temperature. At higher temperature, quantum
effects are reduced and the diagonal features reappear, but
only if phonon transport remains close to ballistic. Increasing
the temperature also increases phonon-phonon scattering [48],
so finding a temperature regime where classical statistics
prevail but phonon transport is sufficiently ballistic can be
problematic.

The self-consistently modeled center region of Fig. 7
contains 4873 atoms. For this size of system and temperature
range, the determination of the quantum linear response
temperature profile, which was used as the initial guess for
Newton-Raphson iteration, took approximately five hours wall
time with 12 CPU cores. Newton-Raphson iteration converged
after three iterations and took approximately 14 hours wall
time. The calculation of the classical temperature profile
took approximately 14 hours wall time as well. The solution
of the classical temperature profile is computationally more
demanding than calculating the linear response profile, since
the population functions appearing in the equations decay more
slowly and need more integration time.

Note that even though the system is smaller than the mean-
free path of long-wavelength phonons, the use of nonreflecting
boundary conditions (i.e., semi-infinite leads) ensures that
phonons are not reflected from the boundaries between the
center region and the leads back to the junction. If the ends
had been thermalized with Ohmic heat baths, reflections from
the baths could skew the temperature profiles.

C. Thermal transport in a graphene constriction

The two-dimensional square lattice model is easily ex-
tended to real materials such as graphene. It is interesting
to see, for example, if the directional features observed in
the square lattice remain for more complex lattice geometries.
The example geometry is shown in Fig. 8(a). The junction
geometry in graphene has also been studied earlier [68], but
our methodology gives access to local temperature profiles
in the constriction. The method also allows us to include
diffusive effects, which would become important in large
systems where the mean-free path is comparable to device
dimensions. Each atom now has three degrees of freedom,
which are all coupled to a single local Langevin heat bath.
We set the temperature range close to the room temperature,
TL = 300 K and TR = 280 K, because the acoustic phonon
lifetime τ at room temperature is known to be of the order of
τ = 1 ps [69], suggesting that the bath coupling constant is
γ = τ−1 = 1012 s−1. Carbon-carbon interactions are modeled
by the fourth-nearest-neighbor force constant model [70] with
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FIG. 8. (Color online) (a) Graphene nanoconstriction. The leads
extend infinitely to the left and right, but the temperatures are
determined self-consistently only for the gray atoms in the shown
center region. (b) and (c) Self-consistent bath temperature profiles
(K), in (b) quantum exact case and (c) classical approximation. The
semi-infinite leads are at temperatures TL = 300 K and TR = 280 K.
The relaxation time τ = 1/γ is set to 1 ps.

the parameters of Ref. [71], which reproduce the bulk ab initio
phonon spectrum of graphene very accurately, at least for the
acoustic modes. The optical modes are not active at room
temperature, since they are populated only at temperatures
close to T ≈ 1000 K, but are fully included in the model in any
case. We have verified the correct implementation of the force
constant model by comparing ballistic thermal conductances
of pure nanoribbons to the results of Ref. [72].

Figures 8(b) and 8(c) show the quantum and classical
temperature profiles close to the room temperature. The
temperature profiles agree quite closely, which is unexpected
since the phonon populations originating from the classical
and Bose-Einstein distributions at room temperature are quite
different: the highest-lying vibrational energies of graphene

correspond to temperatures of TD ≈ 2300 K. The agreement
of temperature profiles therefore suggests that only the low-
frequency modes close to the � point, for which quantum
and classical statistics agree, contribute to the transport and
detailed temperature profile. On the other hand, the heat flow
through the structure is still quite strongly overestimated by the
classical approximation: quantum current is Q ≈ 2.1 × 10−8

W and the classical Q ≈ 5.1 × 10−8 W. No directional features
appear in the studied geometry at room temperature, but
lowering the temperature and increasing the phonon relaxation
time could produce more complex temperature profiles. These
studies, as well as investigation of different geometries and
their influence on temperature profiles, are left for future work.
Note also that approximately only half of the total temperature
drop takes place in the constriction.

D. Comparison of the solution methods

As a final example of the numerics of the solutions, we
compare the Newton-Raphson iteration and the ordinary differ-
ential equation (ODE) method. The differential equation (42)
is integrated using the MATLAB R© [73] implementation of an ex-
plicit Runge-Kutta formula with the Dormand-Prince pair [74]
and adaptive step size. Using an adaptive step-size integrator
is necessary to avoid slowing down as integration approaches
the self-consistent temperature configuration. Integration is
stopped when the maximum heat current flowing to the bath
is less than 10−5γ .

Figure 9 shows the comparison of the two methods in the
search for self-consistent solution. The setup is the Rubin-
Greer setup of Fig. 2(a) with N = 2 and the values of the
friction parameter are (a) γ = 0.01, and (b) γ = 1. Although
it is best to use, e.g., the linear response approximation
temperatures as initial guess for iteration, we use now T1 =
TL = 0.2 and T2 = TR = 0.1 for illustrative purposes. The
contour lines of the target function f (T1,T2) = Q2

1 + Q2
2 are

also shown. The function f is defined such that the self-
consistent temperature configuration is the global minimum
and zero of f . The self-consistent temperatures are (T̃1,T̃2) =
(0.1590,0.1585) and (T̃1,T̃2) = (0.1616,0.1574) for the cases
of Figs. 9(a) and 9(b), respectively.

For both weak and strong friction, the Newton-Raphson
iteration proceeds similarly: The first iteration step of the
Newton-Raphson method slightly misses the solution, but
the second iteration already takes temperatures very close to
the self-consistent temperature configuration. ODE method,
on the other hand, proceeds approximately along the direction
of steepest descent in the target function. Since the gradient
∇f = 2JT Q, J being the Jacobian matrix of Q, is not
necessarily parallel to Q, the path taken by the ODE method
is generally not strictly along the steepest descent.

For the case of larger γ in Fig. 9(b), the contour lines are
elongated forming a canyonlike shape and the heat exchange
between the local baths starts to dominate over the heat
exchange with the leads. In this case, the ODE method does not
proceed directly towards the solution. We have noted that such
cases can be very difficult to handle for the ODE method, since
the residual time integration along the canyon requires a very
small step size. Newton-Raphson iteration, on the other hand,
always seems to find the solution with only a few iterations.

012128-11
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FIG. 9. (Color online) The search for the self-consistent bath
temperatures T1 and T2 that satisfy Q1(T1,T2) = Q2(T1,T2) = 0 for
an N = 2 chain. The lead temperatures are TL = 0.2 and TR =
0.1 and the friction parameters are (a) γ = 10−2 and (b) γ = 1.
The two methods used for the search are Runge-Kutta-Fehlberg
integration of Eq. (42) (dots connected by dashed lines) and Newton-
Raphson iteration (crosses connected by dash-dotted lines). The
contours belong to the target function f (T1,T2) that is defined to
be the squared sum of the currents flowing to the self-consistent
reservoirs, f (T1,T2) = Q1(T1,T2)2 + Q2(T1,T2)2. The self-consistent
temperature configuration (T̃1,T̃2) satisfies f (T̃1,T̃2) = 0 and is also
the global minimum of f . The initial guess is T1 = 0.2, T2 = 0.1.

In future, it would be interesting to study how well phonon
damping and dephasing induced by the self-consistent heat
baths mimics true anharmonic effects. Comparisons could
be carried out, for example, by comparing the classical
approximation of self-consistent equations with classical
molecular dynamics (MD) simulations. Knowing now that the
bath temperatures correspond to the local kinetic temperature
[Eq. (36)], the local bath temperatures could be meaningfully
compared to the local kinetic energy densities obtained from
MD. It would also be worth investigating whether nondiffusive
transport effects such as anomalous heat conduction in one

dimension [75] could be reproduced by using a frequency-
dependent bath coupling constant. If that is the case, one
could study quantum effects in anomalous transport using the
Green’s function method.

V. CONCLUSION

We studied quantum heat transport in nanostructures using
the Green’s function method combined with self-consistent
heat baths. Semi-infinite leads acting as thermal reservoirs
were reduced to sources of noise and dissipation in the
boundaries of the scattering region. In the scattering region, the
temperatures of the heat baths mimicking anharmonic effects
were determined self-consistently from the requirement of heat
current conservation. The self-consistent bath temperatures
were shown to measure local energy density, thereby giving
them a meaningful physical interpretation. In the classical
limit, local kinetic temperature is equal to the bath temperature.

By coupling one-dimensional chain to semi-infinite chains,
thereby eliminating contact resistance, we demonstrated the
equivalence of thermal currents obtained by the self-consistent
thermal bath model and the Boltzmann transport equation
under gray approximation with full phonon dispersion. Self-
consistent thermal bath model is, therefore, a physically
meaningful method to introduce phonon relaxation to ballistic
quantum transport models.

As an application of the formalism, we presented tempera-
ture profiles in two-dimensional constrictions and showed that
quantum statistics plays a vital role in how directional patterns
of temperature emanate from the junction. In a graphene
constriction at room temperature, the bath temperature profile
obtained by classical approximation agreed very closely with
the quantum temperature profile, suggesting that quantum
effects are not strong and molecular dynamics simulations
could be justified under those assumptions. In more general
cases, we expect, however, that the Green’s function method
combined with self-consistent thermal baths is a very useful
tool in studying quantum heat transfer in the ballistic, diffusive,
and crossover regimes of phonon transport due to the good
balance of complexity, insight, and predictivity it offers.
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APPENDIX: DERIVATION OF EQ. (29)

In this Appendix, we derive Eq. (29) for thermal current
flowing to a local heat bath. For notational simplicity, we
combine the lead noises ηL and ηR and center region local
bath noises ξC to a single vector variable sJ , where the index
J ∈ {L,R,1,2, . . . ,NC} is now a general index for either a
lead bath (J ∈ {L,R}) or a self-consistent local bath (J ∈
{1,2, . . . ,NC}). NC is the number of atoms in the center region.
Explicitly, sL = ηL, sR = ηR and si is a vector whose only
nonzero component is si

i = ξCi , the ith component of ξC . The
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noise covariances are then

〈ŝJ (ω)ŝJ ′
(ω′)〉 = 2πδ(ω + ω′)�J (ω)[fB(ω,TJ ) + 1]δJJ ′

.

(A1)

If index J ∈ {L,R}, the coupling function �J is defined by the
self-energy of the lead, Eq. (23). For J = i, the only nonzero
matrix element in the coupling function is �i

ii(ω) = 2mγω

(we write γC = γ in this section).
Equation (13) can be written (dropping the index C for

center region)

û(ω) = −G(ω)
∑

J

ŝJ (ω). (A2)

The heat flowing to an Ohmic bath is obtained by calculating
the statistical average of the symmetrized heat current

Qi = γmu̇2
i − 1

2
[u̇iξi + ξi u̇i]. (A3)

We proceed term by term. The statistical average of the first
term is〈
γmu̇2

i

〉
= γm

〈 ∫
dω

2π
(−iω)ûi(ω)e−iωt

∫
dω′

2π
(−iω′)ûi(ω

′)e−iω′t
〉

(A4)

=
∫

dω

2π

dω′

2π
γm(−ωω′)e−i(ω+ω′)t

∑
JJ ′

∑
jk

Gij (ω)Gik(ω′)

× 〈
ŝJ
j (ω)ŝJ ′

k (ω′)
〉

(A5)

=
∫

dω

2π
γmω2

∑
J

[G(ω)�J (ω)G(−ω)T ]ii[fB(ω,TJ ) + 1].

(A6)

The average of the second term is

−〈u̇iξi〉 = −
〈 ∫

dω

2π
(−iω)ûi(ω)e−iωt

∫
dω′

2π
ξ̂i(ω

′)e−iω′t
〉

(A7)

=
∫

dω

2π

dω′

2π
(−iω)e−i(ω+ω′)t

∑
J

∑
j

Gij (ω)
〈
ŝJ
j (ω)ξ̂i(ω

′)
〉
.

(A8)

The only term surviving the sum over baths J is the one
corresponding to the local heat bath at site i, so

−〈u̇iξi〉 = −2
∫

dω

2π
iGii(ω)γmω2[fB(ω,Ti) + 1]. (A9)

Combined with the symmetrizing term, one gets

−1

2
〈u̇iξi + ξi u̇i〉 = −

∫
dω

2π
i[Gii(ω) − Gii(−ω)]γmω2

× [fB(ω,Ti) + 1] (A10)

= −
∫

dω

2π

∑
J

[G(ω)�J (ω)G(−ω)]iiγmω2

× [fB(ω,Ti) + 1], (A11)

where we used Eq. (19) with the replacements gI → G and
�̃I → ∑

J �J . Combining Eqs. (A6) and (A11), we get

〈Qi〉 =
∫

dω

2π
γmω2

∑
J

[G(ω)�J (ω)G(−ω)T ]ii

× [fB(ω,TJ ) − fB(ω,Ti)]. (A12)

Noting that the integrand is an even function finally gives
Eq. (29).
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