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We study numerically scattering and transport statistical properties of tight-binding random networks
characterized by the number of nodes N and the average connectivity α. We use a scattering approach to
electronic transport and concentrate on the case of a small number of single-channel attached leads. We observe
a smooth crossover from insulating to metallic behavior in the average scattering matrix elements 〈|Smn|2〉, the
conductance probability distribution w(T ), the average conductance 〈T 〉, the shot noise power P , and the elastic
enhancement factor F by varying α from small (α → 0) to large (α → 1) values. We also show that all these
quantities are invariant for fixed ξ = αN . Moreover, we proposes a heuristic and universal relation between
〈|Smn|2〉, 〈T 〉, and P and the disorder parameter ξ .
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I. INTRODUCTION AND MODEL

During the past three decades there has been an increasing
number of papers devoted to the study of random graphs and
complex networks, in view of the fact that they describe
systems in many knowledge areas: from mathematics and
physics to finance and social sciences, passing through biology
and chemistry [1–4]. In particular, some of those works
report studies of spectral and eigenfunction properties of
complex networks; see, for example, Refs. [5–18]. That is,
since complex networks composed of nodes and the bonds
joining them can be represented by sparse matrices, it is quite
natural to ask about the spectral and eigenfunction properties
of such adjacency matrices. Then, in fact, studies originally
motivated by physical systems represented by Hamiltonian
sparse random matrices [19–23] can be directly applied to
complex networks.

In contrast to the numerous works devoted to studying
spectral and eigenfunction properties of complex networks,
to our knowledge just a few have focused on some of
their scattering and transport properties [24–28]. Therefore,
in the present work we study numerically several statistical
properties of the scattering matrix and the electronic transport
across disordered tight-binding networks described by sparse
real symmetric matrices. We stress that we use a scattering
approach to electronic transport; see, for example, [29]. In
addition, we concentrate on the case of a small number of
attached leads (or terminals), each of them supporting one open
channel. We also note that tight-binding complex networks
have also been studied in Refs. [5,6,12,13].

The tight-binding random networks we shall study here are
described by the tight-binding Hamiltonian

H =
N∑

n=1

hnn|n〉〈n| +
N∑

n=1

N∑
m=1

hnm (|n〉〈m| + |m〉〈n|) , (1)

where N is the number of nodes or vertexes in the network,
hnn are on-site potentials, and hnm are the hopping integrals
between sites n and m. Then we choose H to be a member
of an ensemble of N × N sparse real symmetric matrices
whose nonvanishing elements are statistically independent
random variables drawn from a normal distribution with zero

mean 〈hnm〉 = 0 and variance 〈|hnm|2〉 = (1 + δnm)/2. As in
Refs. [18,23], here we define the sparsity of H , α, as the
fraction of the N (N − 1)/2 nonvanishing off-diagonal matrix
elements. That is, α is the network average connectivity.
Thus, our random network model corresponds to an ensemble
of adjacency matrices of Erdös-Rényi–type random graphs
[3,30,31].

Notice that with the prescription given above, our network
model displays maximal disorder since averaging over the
network ensemble implies averaging over connectivity and
over on-site potentials and hopping integrals. With this
averaging procedure we get rid of any individual network
characteristic (such as scars [32], which in turn produce
topological resonances [33]) that may lead to deviations from
random matrix theory (RMT) predictions which we use as a
reference. That is, we choose this network model to retrieve
well known random matrices in the appropriate limits: a
diagonal random matrix is obtained for α = 0 when the nodes
in the network are isolated, while a member of the Gaussian
orthogonal ensemble (GOE) is recovered for α = 1 when the
network is fully connected.

However, it is important to add that the maximal disorder
we consider is not necessary for a graph or network to exhibit
universal RMT behavior. In fact, we can state the following: (i)
It is well known that tight-binding cubic lattices with on-site
disorder (known as the three-dimensional Anderson model
[34]), forming networks with fixed regular connectivity having
a very dilute Hamiltonian matrix, show RMT behavior in the
metallic phase (see, for example, Refs. [35,36]). (ii) It has been
demonstrated numerically and theoretically that graphs with
fixed connectivity show spectral [37,38] and scattering [28,39]
universal properties corresponding to RMT predictions, where
in this case the disorder is introduced either by choosing ran-
dom bond lengths [28,37,39] (which is a parameter not present
in our network model) or by randomizing the vertex-scattering
matrices [38] (somehow equivalent to considering random
on-site potentials). Moreover, some of the RMT properties of
quantum graphs have already been tested experimentally with
the use of small ensembles of small microwave networks with
fixed connectivity [40]. (iii) Complex networks having specific
topological properties (such as small-world and scale-free
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networks, among others), where randomness is applied only
to the connectivity, show signatures of RMT behavior in their
spectral and eigenfunction properties [10,12,24].

The organization of this paper is as follows. In the next
section, we define the scattering setup as well as the scattering
quantities under investigation and provide the corresponding
analytical predictions from random scattering-matrix theory
for systems with time-reversal symmetry. These analytical
results will be used as a reference throughout the paper. In
Sec. III, we analyze the average scattering matrix elements
〈|Smn|2〉, the conductance probability distribution w(T ), the
average conductance 〈T 〉, the shot noise power P , and the
elastic enhancement factor F for tight-binding networks as
a function of N and α. We show that all scattering and
transport quantities listed above are invariant for fixed ξ =
αN . Moreover, we propose a heuristic and universal relation
between 〈|Smn|2〉, 〈T 〉, and P and the disorder parameter ξ .
Finally, Sec. IV presents the conclusions.

II. THE SCATTERING SETUP AND RMT PREDICTIONS

We open the isolated samples, defined above by the
tight-binding random network model, by attaching 2M semi-
infinite single channel leads. Each lead is described by the
one-dimensional semi-infinite tight-binding Hamiltonian,

Hlead =
−∞∑
n=1

(|n〉〈n + 1| + |n + 1〉〈n|) . (2)

Using standard methods, one can write the scattering matrix
(S matrix) in the form [41]

S(E) =
(

r t ′

t r ′

)
= 1 − 2i sin(k)W T (E − Heff)

−1W, (3)

where t , t ′, r , and r ′ are M × M transmission and reflection
matrices, 1 is the 2M × 2M unit matrix, k = arccos(E/2) is
the wave vector supported in the leads, and Heff is an effective
non-Hermitian Hamiltonian given by

Heff = H − eikWW T . (4)

Here, W is an N × 2M matrix that specifies the positions of
the attached leads to the network. However, in the random
network model we are studying here, all nodes are equivalent;
therefore, we attach the 2M leads to 2M randomly chosen
nodes. The elements of W are equal to zero or ε, where ε

is the coupling strength. Moreover, assuming that the wave
vector k does not change significantly in the center of the
band, we set E = 0 and neglect the energy dependence of Heff

and S.
Since in the limit α = 1 the random network model

reproduces the GOE, in that limit we expect the statistics of
the scattering matrix, Eq. (3), to be determined by the circular
orthogonal ensemble (COE), which is the appropriate scatter-
ing matrix ensemble for internal systems H with time-reversal
symmetry. Thus, below, we provide the statistical results for
the S matrix and the transport quantities to be analyzed in
the following sections, assuming orthogonal symmetry. In all
cases, we also assume the absence of direct processes (also
known as perfect coupling condition), i.e., 〈S〉 = 0.

We start with the average of the S-matrix elements. It is
known that

〈|Smn|2〉COE = 1 + δmn

2M + 1
, (5)

where 〈·〉 denotes an ensemble average over the COE.
Within a scattering approach to the electronic transport,

once the scattering matrix is known one can compute the
dimensionless conductance [42]

T = Tr(t t†) =
∑
m

∑
n

|tmn|2 (6)

and its distribution w(T ). For M = 1, i.e., considering two
single-channel leads attached to the network, w(T ) is given by

w(T )COE = 1

2
√

T
, (7)

while for M = 2,

w(T )COE =
{

3T/2, 0 < T < 1,

3
(
T − 2

√
T − 1

)
/2, 1 < T < 2.

(8)

For arbitrary M , the prediction for the average value of T is

〈T 〉COE = M

2
− M

2(2M + 1)
. (9)

For the derivation of the expressions above, see, for example,
Ref. [29]. A related transport quantity is the shot noise power

P = 〈Tr(t t† − t t†t t†)〉, (10)

which as a function of M reads [43]

PCOE = M(M + 1)2

2(2M + 1)(2M + 3)
. (11)

Another scattering quantity of interest that measures cross-
section fluctuations is the elastic enhancement factor [44]

F = 〈|Smm|2〉
〈|Smn|2〉 , (12)

which in the RMT limit becomes

FCOE = 2. (13)

In the following sections, we focus on 〈|Smn|2〉, 〈T 〉, P , and
F for the tight-binding random network model.

III. RESULTS

In all cases below, we set the coupling strength ε such that

〈S〉 ≡ 1

2M

∑
mn

|〈Smn〉| (14)

is approximately zero in order to compare our results, in the
limit α → 1, with the RMT predictions reviewed above; see
Eqs. (5), (7)–(9), (11), and (13). To find the perfect coupling
condition, we plot 〈S〉 versus ε for fixed N and α and look for
the minimum. As an example, in Fig. 1 we plot 〈S〉 versus ε for
random networks having N = 50 nodes with α = 0.2, 0.44,
and 0.99. Notice that for ε = 0, 〈S〉 = 1. That is, since there is
no coupling between the network and the leads, there is total
reflection of the waves incoming from the leads, while since
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FIG. 1. Average S-matrix, as defined in Eq. (14), for tight-binding
random networks having N = 50 nodes as a function of the coupling
strength ε. We found ε0 ≈ 1.76, 2.15, and 2.63 for α = 0.2, 0.44, and
0.99, respectively. Dashed lines are fittings of Eq. (15) to the data.
Each point was computed by averaging over 106 random network
realizations.

for any ε > 0 the waves do interact with the random network,
〈S〉 < 1.

It is clear from Fig. 1 that the curves 〈S〉 versus ε behave
similarly. In fact, we identify two regimes: when 0 < ε < ε0,
〈S〉 decreases with ε, while for ε > ε0, 〈S〉 increases with ε.
Since ε0 is the coupling strength value at which 〈S〉 ≈ 0, we
set ε = ε0 to achieve the perfect coupling condition.

In addition, as in previous studies [45,46], here we found
that the curves 〈S〉 versus ε are well fitted by the expression

〈S〉 = C0

1 + (C1ε)±C2
− C3, (15)

where Ci are fitting constants and the plus and minus signs
correspond to the regions 0 < ε < ε0 and ε > ε0, respectively.
With the help of Eq. (15) we can find ε0 with a relatively small
number of data points. Moreover, we heuristically found that

ε0 ≈ (αN )1/4. (16)

Then, we use this prescription to compute ε0, which is the
value for the coupling strength that we set in all the calculations
below.

In the following, all quantities and histograms were com-
puted with the use of 106 random network realizations for each
combination of N and α.

A. Average scattering matrix elements

First we consider the case M = 1, where the S matrix is
a 2 × 2 matrix. In Fig. 2(a) we plot the ensemble average of
the elements |S11|2 (average reflection) and |S12|2 (average
transmission) as a function of the connectivity α for three
different network sizes. The COE limit, Eq. (5), expected for
α → 1 is also plotted (dot-dashed lines) as a reference. Notice
that for all three network sizes the behavior is similar: there is a
strong α dependence of the average S-matrix elements driving
the random network from a localized or insulating regime
[〈|S11|2〉 ≈ 1 and 〈|S12|2〉 ≈ 0; i.e., the average conductance is
close to zero] for α → 0, to a delocalized or metallic regime
[〈|S11|2〉 ≈ 2/3 and 〈|S12|2〉 ≈ 1/3; i.e., RMT results are
already recovered] for α → 1. Moreover, the curves 〈|Smn|2〉
versus α are displaced along the α axis: the larger the network

1 10
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1

0.01 0.1 1
α
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0.5

1
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N = 100
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|
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|
2
>
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FIG. 2. (Color online) Average S-matrix elements 〈|S11|2〉 and
〈|S12|2〉 for tight-binding random networks having N nodes as a
function of (a) α and (b) ξ , for M = 1. The dot-dashed lines
correspond to 2/3 and 1/3; the RMT prediction for 〈|S11|2〉 and
〈|S12|2〉, respectively, given by Eq. (5). Red dashed lines in (b) are
Eqs. (18) and (19) with δ ≈ 0.198. Error bars in this and the following
figures are not shown since they are much smaller than the symbol
size.

size N , the smaller the value of α needed to approach the COE
limit.

We now recall that the parameter

ξ ≡ αN (17)

was shown to fix (i) spectral properties of sparse random
matrices [23], (ii) the percolation transition of Erdös-Rényi
random graphs (see, for example, Ref. [3], where ξ represents
the average degree); and (iii) the nearest-neighbor energy
level spacing distribution and the entropic eigenfunction
localization length of sparse random matrices [18]. So, it make
sense to explore the dependence of 〈|Smn|2〉 on ξ . Then, in
Fig. 2(b) we plot again 〈|S11|2〉 and 〈|S12|2〉 but now as a
function of ξ . We observe that curves for different N now fall
on top of a universal curve.

Moreover, we have found that the universal behavior of
〈|S11|2〉 and 〈|S12|2〉, as a function of ξ , is well described by

〈|S11|2〉 = 1 − 〈|S12|2〉, (18)

〈|S12|2〉 = 1

3

[ 1

1 + (δξ )−2

]
, (19)

where δ is a fitting parameter. Equation (18) is a consequence
of the unitarity of the scattering matrix, SS† = 1, while the
factor 1/3 in Eq. (19) comes from Eq. (5) with M = 1. In
Fig. 2(b) we also include Eqs. (18) and (19) (red dashed lines)
and observe that they reproduce very well the corresponding
numerical results. In fact, we have to add that Eqs. (18) and
(19) also work well for other random matrix models showing
a metal-insulator phase transition [46].

For M > 1, we observe the same scenario as for M =
1: All S-matrix elements suffer a localization-delocalization
transition as a function of ξ . See Fig. 3, where we plot some
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FIG. 3. (Color online) Average S-matrix elements 〈|Smm|2〉 (with
mm = 11, 22, 33, and 44) and 〈|Smn|2〉 (with mn = 12, 23, 34, and
41) for tight-binding random networks having N = 200 nodes as a
function of ξ for (a) M = 2 and (b) M = 3. The dot-dashed lines
correspond to the RMT prediction for 〈|Smm|2〉 and 〈|Smn|2〉; see
Eq. (5). Red dashed lines are Eqs. (20) and (21) with (a) δ ≈ 0.237
and (b) δ ≈ 0.242.

of the average S-matrix elements for M = 2 and 3. Moreover,
we were able to generalize Eqs. (18) and (19) to any M as

〈|Smm|2〉 = 1 − (2M − 1)〈|Smn|2〉, (20)

〈|Smn|2〉 = 〈|Smn|2〉COE

[ 1

1 + (δξ )−2

]
. (21)

Then, in Fig. 3 we also plot Eqs. (20) and (21) and observe
very good correspondence with the numerical data. We also
note that the fitting parameter δ depends slightly on M .

Finally, we want to remark that concerning 〈|Smn|2〉,
the RMT limit, expected for α → 1 or ξ → N , is already
recovered for ξ � 30.

B. Conductance and shot noise power

Now we turn to the conductance statistics. In Figs. 4
and 5, we present conductance probability distributions w(T )
for M = 1 and 2, respectively. In both cases, we include the
corresponding RMT predictions. We report histograms for four
values of ξ and three network sizes. From these figures, it is
clear that w(T ) is invariant once ξ is fixed; i.e., once ξ is
set to a given value, w(T ) does not depend on the size of
the network. We also recall that in the limit α → 1, w(T ) is
expected to approach the RMT predictions of Eqs. (7) and (8).
However, we observe that w(T ) is already well described by
w(T )COE once ξ � 30. We observe an equivalent scenario for
w(T ) when M > 2 (not shown here).

We now increase further the number of attached leads.
Then, in Figs. 6(a) and 7(a) we plot the average conductance
〈T 〉 and the shot noise power P for tight-binding random
networks having N = 200 nodes, for several values of ξ with
M ∈ [1,5] (we recall that for M = 5, ten single-channel leads
are attached to the networks). It is clear from these plots
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FIG. 4. (Color online) Conductance probability distribution w(T )
for tight-binding random networks having N nodes, in the case
M = 1, for some values of ξ . Dashed lines are w(T )COE; the RMT
prediction for w(T ) given by Eq. (7).

that changing ξ from small (ξ < 1) to large (ξ � 1) values
produces a transition from localized to delocalized behavior in
the scattering properties of random networks. That is, (i) for
ξ < 0.5, 〈T 〉 ≈ 0 and P ≈ 0; and (ii) for ξ � 30, 〈T 〉 and P

are well given by the corresponding RMT predictions given by
Eqs. (9) and (11), respectively. Equivalent plots are obtained
(not shown here) for other network sizes.

Moreover, we have observed that 〈T 〉 and P as a function of
ξ behave (for all M) as 〈|Smn|2〉 does. That is, they show a uni-
versal behavior as a function of δξ that can be well described by

X(ξ ) = XCOE

[ 1

1 + (δξ )−2

]
, (22)

where X represents 〈T 〉 or P and δ is the fitting parameter.
Then, in Figs. 6(b) and 7(b) we plot 〈T 〉 and P normalized to
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FIG. 5. (Color online) Conductance probability distribution w(T )
for tight-binding random networks having N nodes, in the case
M = 2, for some values of ξ . Dashed lines are w(T )COE; the RMT
prediction for w(T ) given by Eq. (8).
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FIG. 6. (Color online) (a) Average conductance 〈T 〉 as a function
of M for tight-binding random networks having N = 200 nodes for
several values of ξ . (b) 〈T 〉/〈T 〉COE as a function of δξ for M ∈ [1,5].
Inset: δ vs M . δ is obtained from the fitting of Eq. (22) to the 〈T 〉 vs ξ

data. Thick full lines correspond to 〈T 〉 = 0. Dashed lines are (a) the
RMT prediction for 〈T 〉, given by Eq. (9); and (b) 1. The red dashed
line in (b) on top of the data is Eq. (22).

their respective COE average values, as a function of δξ for
M ∈ [1,5]. Notice that all curves for different M fall on top
of the universal curve given by Eq. (22).
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FIG. 7. (Color online) (a) Shot noise power P as a function of M

for tight-binding random networks having N = 200 nodes for several
values of ξ . (b) P/PCOE as a function of δξ for M ∈ [1,5]. Inset: δ

vs M . δ is obtained from the fitting of Eq. (22) to the P vs ξ data.
Thick full lines correspond to P = 0. Dashed lines are (a) the RMT
prediction for P , given by Eq. (11); and (b) 1. The red dashed line in
(b) on top of the data is Eq. (22).
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FIG. 8. (Color online) Elastic enhancement factor F as a function
of ξ for tight-binding random networks having N = 50 nodes for
M = 1, 2, and 4. Black full line is Eq. (23) with M = 1 and δ = 0.198.
Red dashed lines are fittings of Eq. (24) to the data with C = 205,
138, and 106 for M = 1, 2, and 4, respectively. The horizontal black
dashed line corresponds to the RMT limit value of FCOE = 2.

C. Enhancement factor

Finally, in Fig. 8 we plot the elastic enhancement factor F

as a function of ξ for random networks with N = 50 nodes for
M = 1, 2, and 4. From this figure we observe that, for any M

(and also for any N , not shown here), F decreases as a function
of ξ and approaches smoothly, for large ξ (ξ → N ), the RMT
limit value of FCOE = 2. Also note that when ξ � 1, F ∝ ξ−2;
this seems to be a signature of our random network model.

To have an analytic support for the observations made
above, we substitute Eqs. (20) and (21) into Eq. (12) to get
the following estimation for F :

F ≈ (2M + 1)(δξ )−2 + 2. (23)

Notice that Eq. (23) reproduces properly the behavior of F

for small and large ξ : F ∝ ξ−2 and F → 2, respectively.
Unfortunately, Eq. (23) does not describe qualitatively the
curves of Fig. 8; see as example the black full line in this
figure that corresponds to Eq. (23) with M = 1. The reason for
this discrepancy, as a detailed analysis shows, is that Eq. (21)
overestimates the magnitude of 〈|Smn|2〉 when ξ � 1 and as a
consequence Eq. (23) underestimates the magnitude of F for
those ξ values. Then, to fix this issue we propose the following
expression:

F ≈ Cξ−2 + 2, (24)

where C is a fitting constant, to describe the curves F versus
ξ . In Fig. 8, we also show that Eq. (24) fits reasonably well the
numerical data.

IV. CONCLUSIONS

We studied scattering and transport properties of tight-
binding random networks characterized by the number of
nodes N and the average connectivity α. We observed a
smooth crossover from localized to delocalized behavior in
the scattering and transport properties of the random network
model by varying α from small (α → 0) to large (α → 1)
values. We showed that all the scattering and transport
quantities studied here are independent of N once ξ = αN is
fixed. Moreover, we proposed a heuristic and universal relation
between the average scattering matrix elements 〈|Smn|2〉, the
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average conductance 〈T 〉, and the shot noise power P and
the disorder parameter ξ . See Eq. (22). As a consequence, we
observed that the onset of the transition takes place at δξ ≈ 0.1;
i.e., for δξ < 0.1, the networks are in the insulating regime.
While the onset of the random matrix theory limit is located at
δξ ≈ 10. That is, for δξ > 10 the networks are in the metallic
regime. Also, the metal-insulator transition point is clearly
located at δξ ≈ 1; see the red dashed curves in Figs. 6(b)
and 7(b). Here, δ ∈ [0.2,0.4] is a parameter that depends
slightly on the number of attached leads to the network but
also on the quantity under study; see the insets of Figs. 6(b)
and 7(b).

Since our random network model is represented by an
ensemble of sparse real symmetric random Hamiltonian
matrices, in addition to random graphs of the Erdös-Rényi–
type and complex networks, we expect our results to be also
applicable to physical systems characterized by sparse Hamil-
tonian matrices, such as quantum chaotic and many-body
systems.
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