
PHYSICAL REVIEW E 88, 012124 (2013)

Immigration-extinction dynamics of stochastic populations
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How high should be the rate of immigration into a stochastic population in order to significantly reduce
the probability of observing the population become extinct? Is there any relation between the population size
distributions with and without immigration? Under what conditions can one justify the simple patch occupancy
models, which ignore the population distribution and its dynamics in a patch, and treat a patch simply as either
occupied or empty? We answer these questions by exactly solving a simple stochastic model obtained by adding
a steady immigration to a variant of the Verhulst model: a prototypical model of an isolated stochastic population.
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I. INTRODUCTION

Any isolated population ultimately goes extinct with
probability one. This happens, even in the absence of detri-
mental environmental variations, because of the shot noise of
elementary processes of reproduction and death. The noise
(also called demographic stochasticity) ultimately brings the
population to an absorbing state at zero population size [1–3].
In sufficiently large, and therefore long-lived populations,
extinction is caused by a rare chain of events when population
losses dominate over gains. In this case the probability
distribution function (PDF) of population size exhibits a long-
lived metastable, or quasistationary state, and the probability
is slowly “leaking” into the absorbing state; see Ref. [3] and
references therein. A mathematically similar setting appears in
many other contexts in physics, chemistry, biology, and other
fields. One important example is extinction of a disease from
a population following an endemic, under the condition that
no new infectives arrive [1].

It has long been recognized that immigrants from
surrounding populations can prevent local extinction of a
small population by either recolonization of empty regions
or the “rescue effect” [4,5]. Similarly, introduction of new
infected individuals into a population, which has recovered
from an infection, can reignite the epidemics. Mathematically,
by introducing a steady immigration flux, with no matter
how small a rate, one eliminates the absorbing state at zero
population size and therefore prevents extinction. At too
a low immigration rate, however, this prevention is only
nominal. Indeed, if the immigration rate is much lower than
the characteristic extinction rate of the isolated population,
the observed population size will most likely be zero for
any chosen moment of time. How significant should the
immigration rate be so that the probability of observing
a local population extinct is considerably reduced? This
question was already posed by MacArthur and Wilson [7,8]
who discussed how the equilibrium number of species (the
sum of species-specific occupancies), found on an island,
depends on the balance of colonization and extinction rates.
More recently, Matis and Kiffe [9] considered a nonlinear
stochastic population model with immigration and suggested
a cumulant truncation procedure to approximate the PDF of
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the population size in this model. We will deal with a similar
model here, but solve it exactly. Furthermore, we use the
exact solution to address two additional questions that have
not been addressed before. The first question is the following:
Is there any connection between (i) the truly stationary PDF
of the population size in the case with immigration and
(ii) the quasistationary PDF of the population size without
immigration? The second question is: Under what conditions
can one justify the simple patch occupancy models [6] which
ignore the population distribution and its dynamics in a patch,
and treat a patch simply as either occupied or empty?

The model we will be dealing with is obtained by adding
a steady immigration process to a variant of the Verhulst
model: a prototypical model of isolated stochastic population.
In Sec. II we will first outline the Verhulst model without
immigration, and then add the immigration process. In Sec. III
we derive the exact solution for the PDF of the population size.
Sec. IV presents the results of asymptotic analysis of the exact
solution in the regime of low immigration rate and large mean
population size. In Sec. V we discuss the connection between
our Verhulst model with immigration and a simple two-state
stochastic patch occupancy model. In Sec. VI we extend some
of our finding to more complicated situations. The main results
are briefly summarized in Sec. VII.

II. MODEL

A. Without immigration

We assume a well-mixed single population where indi-
viduals undergo reproduction and death. In the absence of
immigration, the model coincides with a variant of Verhulst
model [10–12]; see also Ref. [13] for a closely related model
in the context of stochastic autocatalytic chemical reactions.
The reproduction and mortality rates are given by

λn = B n and μn = n + Bn2

N
, (1)

respectively, and time and the rates are rescaled by the linear
in n term in the mortality rate. We will assume throughout
most of this paper that the reproduction rate of the population
is greater than one: B > 1. In this case the deterministic rate
equation,

dn̄

dt
= (B − 1) n̄(t) − B

N
n̄2(t), (2)
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has an attracting fixed point, n̄ = N (1 − 1/B). This fixed
point describes an established population which, according
to the deterministic theory, persists forever. In the stochastic
model the shot noise drives the population to extinction.
Correspondingly, the stationary PDF of the population size
is equal to the Kronecker’s delta δn,0, so the probability to find
the system empty at t → ∞ is equal to 1. For N � 1, the
mean time to extinction is exponentially long in N :

τ �
√

2π

N

√
B

(B − 1)2
eN(1− 1

B
− ln B

B ), (3)

see Refs. [10–12]. The quasistationary PDF of the population
size can be calculated from the general formulas of Ref. [12].
In the limit of N � 1 and n � 1 the (normalized to unity)
quasistationary PDF is

πn � (B − 1)Ne−N[1− 1
B

− n
N

+( n
N

+ 1
B ) ln( n

N
+ 1

B )]

n
√

2πB(N + Bn)
. (4)

B. With immigration

Now we add to the model steady immigration: arrival of
new individuals with rate r > 0 [14]. The stationary PDF of
the population size is now nontrivial. In particular, no matter
how small r is, the probability, P0, of observing the system
empty at t → ∞ is less than one. How does P0 depend on
the immigration rate r? Furthermore, is there any relation
between the stationary PDF Pn observed at r > 0 and the
quasistationary PDF πn observed for r = 0?

The deterministic rate equation becomes

dn̄

dt
= r + (B − 1) n̄(t) − B

N
n̄2(t). (5)

This equation has an attracting fixed point ns such that

n̄s

N
= B − 1 +

√
(B − 1)2 + 4Br/N

2B
. (6)

The expected value of the population size in the stochastic
model is expected to be peaked, in the leading order in N � 1,
at n̄s .

A complete probabilistic description of the Verhulst model
with immigration is provided by the continuous-time master
equation

dPn

dt
= rPn−1 − rPn + B(n − 1)Pn−1 − BnPn

+
[
n + 1 + B(n + 1)2

N

]
Pn+1 −

(
n + Bn2

N

)
Pn,

(7)

where Pn(t) is the probability of observing the population size
n (n = 0,1, . . .) at time t .

III. EXACT SOLUTION FOR THE STEADY-STATE PDF

Let us introduce the probability-generating function [15]

G(p,t) =
∞∑

n=0

pnPn(t), (8)

where p is an auxiliary variable. G(p,t) obeys the normaliza-
tion condition

G(1,t) = 1, (9)

which follows from the conservation of the total probability.
The probability-generating function encodes all the probabil-
ities Pn(t), as those are given by the coefficients of the Taylor
expansion of G(p,t) around p = 0:

Pn(t) = 1

n!

∂nG

∂pn

∣∣∣∣
p=0

. (10)

In their turn, the moments of the PDF can be expressed through
the p derivatives of the generating function at p = 1, e.g.,
〈n〉(t) ≡ ∑

n nPn(t) = ∂pG(p,t)
∣∣
p=1.

By multiplying Eq. (7) by pn and summing over all n one
obtains an evolution equation for G(p,t):

∂G

∂t
= B

N
(1 − p) p

∂2G

∂p2

+ (p − 1)

(
Bp − 1 − B

N

)
∂G

∂p
+ r(p − 1)G. (11)

At sufficiently long times, a stationary PDF G0(p) sets in. It
is described by the second-order ODE

B

N
p G′′

0(p) −
(

Bp − 1 − B

N

)
G′

0(p) − rG0(p) = 0, (12)

where primes denote the derivatives with respect to the
argument. Equation (12) is the Laguerre differential equation.
One of its two independent solutions blows up at p = 0 and,
in view of Eq. (10), must be discarded. The other solution is
well behaved. Choosing the arbitrary constant so as to satisfy
the normalization condition (9), we obtain

G0(p) = 1F1
(

r
B

; B+N
B

; Np
)

1F1
(

r
B

; B+N
B

; N
) , (13)

where 1F1(a; b; z) is the Kummer confluent hypergeometric
function [16]. If there is no immigration, r = 0, Eq. (13) yields
G0(p) = 1, which corresponds to an empty system, Pn = δn,0,
as expected.

Now we can use Eq. (10) to find the stationary PDF Pn.
It is convenient to perform the symbolic differentiation with
MATHEMATICA [17], obtaining

Pn = Nn �
(
1 + N

B

)
�

(
n + r

B

)
n! �

(
r
B

)
�

(
n + N

B
+ 1

)
1F1

(
r
B

; 1 + N
B

; N
) , (14)

where �(z) is the gamma function [16]. In particular, the
probability to find the system empty is

P0 = 1

1F1
(

r
B

; 1 + N
B

; N
) . (15)

Equations (14) and (15) are exact and give the complete
stationary PDF for any positive values of N , B, and r .
Equation (15) enables us to determine the minimum value of
the immigration rate r needed, at given N and B, for bringing
the probability of observing the population extinct below, say,
0.5. An example is given in Fig. 1.
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FIG. 1. (Color online) The minimum value of the immigration
rate r versus N , needed for bringing the probability of observing the
population extinct below 0.5 as given by Eq. (15) (solid line) and by
the asymptotic (16) (dashed line). Parameter B = 2.

IV. LOW IMMIGRATION RATE

Most interesting for our purposes is the regime of a low
immigration rate and a large population size. Here one can
simplify Eqs. (14) and (15) by employing the strong inequal-
ities N � 1 and r � B and using asymptotic expansions of
the special functions; see the Appendix. For the stationary
probability P0 to find the system empty we obtain the following
approximation:

P0 � 1

1 + (
1 − 1

B

)
rτ

, (16)

where τ , given by Eq. (3), is the mean time to extinction of the
same population but without immigration (that is, at r = 0).
As expected, P0 → 1 as r → 0. When (1 − 1/B)rτ is much
larger than 1, P0 becomes exponentially small (because of
the presence of τ in the denominator) and goes down as 1/r

as r increases. Figure 1 illustrates that the approximation (16)
becomes accurate at sufficiently large N and small r . In its turn,
Fig. 2 compares the exact stationary probability P0 versus r

[see Eq. (15)] with the approximation (16), for N = 100 and
B = 2, and good agreement is observed.
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P
0

FIG. 2. (Color online) Solid line: the exact stationary probability
to find the system empty versus r , see Eq. (15). Dashed line:
approximation (16). The parameters are N = 100 and B = 2, so that
τ � 1.63 × 106.

For Pn�1 the asymptotic expansion (see the Appendix)
yields

Pn�1 � r eN[ n
N

− ln B
B

−( n
N

+ 1
B ) ln( n

N
+ 1

B )]

Bn
(
1 + Bn

N

)1/2 [
1 + (

1 − 1
B

)
rτ

] . (17)

This result holds for N � 1, n � 1, and r � B/ ln N . As one
can check by inspection, Eq. (17) can be rewritten as

Pn�1 �
(
1 − 1

B

)
rτ

1 + (
1 − 1

B

)
rτ

πn, (18)

where πn is the quasistationary PDF of the population without
immigration [see Eq. (4)], and τ is the mean time to extinction
of that population; see Eq. (3). When (1 − 1/B) rτ � 1 the
PDF,

Pn�1 �
(

1 − 1

B

)
rτ πn, (19)

is exponentially small. Here almost all of the probability is
concentrated in the empty state, P0. As r → 0, Pn�1 → 0 as
expected. For (1 − 1/B) rτ � 1 (but still r � B/ ln N ) we
obtain

Pn�1 � πn. (20)

As one can see from this equation, in a wide range of
(sufficiently small, but not too small) immigration rates,
the probability of observing a significant population size is
independent of the immigration rate and coincides with the
quasistationary PDF (4) of the same population but without
immigration.

PDF (17) has its maximum at

n = n∗ = N

(
1 − 1

B

)
− 3B − 1

2(B − 1)
+ O(1/N),

that is very close to the N (1 − 1/B), the attracting fixed
point (6) of the deterministic rate equation (5) for a zero
immigration rate r = 0. Furthermore, in a vicinity of n = n∗
PDF (17) can be approximated by a Gaussian:

PG(n) � 1√
2πN

(
1 − 1

B

)
rτ

1 + (
1 − 1

B

)
rτ

e− (n−n∗)2

2N . (21)

The Gaussian region makes a dominant contribution to the
total probability P ≡ ∑∞

n=1 Pn of observing the population
nonextinct. One obtains

P =
(
1 − 1

B

)
rτ

1 + (
1 − 1

B

) , (22)

so P plus P0 from Eq. (16) yields 1 as expected.
Figure 3 shows a comparison of the approximate stationary

PDF (17) with the exact result (14) for N = 100,B = 2, and
r = 10−6. As one can see, the agreement is excellent. For
these parameters the stationary probability to find the popula-
tion extinct is P0 = 0.5393 . . . , whereas the approximation
Eq. (16) predicts P0 � 0.55. Also shown in Fig. 3 is the
Gaussian asymptotic (21). It agrees well with the exact result
in the “body” of the PDF. It is not as faithful, however, in the
distribution tails, as evidenced by the lower panel of Fig. 3
which depicts the corresponding distributions in logarithmic
scale.
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FIG. 3. (Color online) A comparison of the exact and approx-
imate stationary PDFs for N = 100,B = 2 and r = 10−6. Circles:
exact results. Solid curve: Eq. (17). Dashed curve: the Gaussian
asymptotic (21). The lower panel shows the natural logarithm of
the corresponding distributions.

V. PATCH OCCUPANCY MODEL

In metapopulation theory, much of work has been based
on stochastic patch occupancy models [6] which ignore the
local population distribution and its dynamics in a patch and
treat a patch simply as either occupied or empty. The simplest
stochastic patch occupancy model appears in the context of
mainland-island model [7], where the mainland effectively
serves as a stationary reservoir of immigrants. As we will now
show, in the regime where the population is long lived and
the immigration rate is low, the results obtained with a patch
occupancy model agree with the results we have obtained from
the Verhulst model with immigration.

Consider a single patch (island) that can be either occupied,
with probability P , or empty with probability P0, so that
P + P0 = 1. Assuming that both immigration events into the
patch and extinction events of the patch population are rare,
and therefore independent and Poisson distributed, we set the
transition rate from the empty state to the occupied state as
λ = R, and the transition rate of the reverse process as μ. The
dynamics of this simple two-state system is described by the
equations

dP0

dt
= −RP0 + μP,

dP
dt

= RP0 − μP. (23)

In the steady state one obtains

P0(t → ∞) = μ

R + μ
, P(t → ∞) = R

R + μ
. (24)

Now let us relate the rates R and μ with the detailed model
we dealt with in the previous sections. The transition rate μ

from the occupied state to the empty state is equal to 1/τ :

the extinction rate of the population without immigration. One
might assume that the transition rate R from the empty state
to the occupied state can be identified with r: the immigration
rate of the detailed model. This assumption, however, would
overestimate R. This is because the immigration rate r of
the detailed model is merely an attempt rate of occupying
the site, while the rate R characterizes successful attempts.
To find R we should go back to our detailed model where,
at low population sizes, we can neglect the nonlinear term
in the mortality rate (1). Therefore, we set λn = Bn and μn =
n (the immigration process is ignored as r is very small).
Let pn be the probability of population going extinct before
establishment if starting from a small number of n individuals.
If the population currently has n individuals, the probabilities
of the population size becoming n − 1 and n + 1 are

mn− = μn

λn + μn

= 1

B + 1

and

mn+ = λn

λn + μn

= B

B + 1
,

respectively. Hence pn satisfies the equation

pn = 1

B + 1
pn−1 + B

B + 1
pn+1. (25)

The general solution of this linear recursive equation, pn =
C1 + C2/B

n, includes two arbitrary constants. Demanding
obvious boundary conditions p0 = 1 and p∞ = 0, we arrive
at the unique solution pn = 1/Bn [2,18]. In particular, upon
arrival of a single individual, n = 1, the population either
goes extinct with probability 1/B or gets established with
probability 1 − 1/B. As a result, the rate of successful
establishment is R = r(1 − 1/B). With this R and μ = 1/τ ,
the stationary probabilities P0 and P from Eq. (24) coincide
with the predictions from Eqs. (16) and (22), respectively.

The simple patch-occupancy equations (23) also predict
the characteristic relaxation time of the system toward the
stationary state (24):

tr = 1

R + μ
= τ

1 + (
1 − 1

B

)
rτ

. (26)

Note that in this regime the relaxation time is quite long.
When r → 0, the relaxation time (towards the empty state)
approaches τ , the mean time to extinction in the system without
immigration. When (1 − 1/B)rτ � 1, the relaxation time is
equal to the inverse rate of successful establishment, 1/R. We
expect that Eq. (26) also holds, for large N and small r , for the
detailed model (7), where it gives the relaxation time toward
the stationary PDF described by Eqs. (16) and (17) [or (18)].

VI. SOME EXTENSIONS

The connection to the patch occupancy model provides
a simple, albeit nonrigorous, tool for extending some of
our results to more complex situations that those accounted
for by the simple Verhulst model. (We should remember,
however, to demand a sufficiently low immigration rate, and
that the population without immigration is long lived.) One
immediate extension is to allow the immigrants to arrive
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in groups. Let qn be the probability that the arriving group
includes n individuals, n = 1,2,3, . . .. Then the probability
that an arriving group leads to successful establishment is
Rg = ∑

n qn(1 − pn), where pn = 1/Bn; see the paragraph
after Eq. (25). For example, let the group size be Poisson
distributed with mean ν, qn = e−ννn/n!, and let the arrival
rate of groups be r/ν [14] so that the per-capita arrival rate
is r as before. It is easy to see that the rate of successful
establishment in this case is

Rg = r[1 − e−(1−1/B) ν]

ν
, (27)

with corresponding results for the steady state values

P0(t → ∞) = 1

1 + Rgτ
, P(t → ∞) = Rgτ

1 + Rgτ
. (28)

One can see from here that arrival in groups is less beneficial
for the population: the probability of the patch being occupied
is maximized when ν goes to zero.

A more important extension is to account for the Allee
effect, by which population biologists call a group of effects
leading to a reduction in the per-capita growth rate at small
population sizes [19]. When the Allee effect is present, a
nonzero critical population size for establishment appears
already in deterministic theory. If the initial population size
is smaller than the critical size, the population goes extinct
quickly, whereas if the initial population size is greater than
the critical size, a long-lived population appears. A simple way
to account for the Allee effect is to modify the reproduction
rate λn in Eq. (1), so that

λn = B n

1 + n0/n
, (29)

where the magnitude of the Allee effect is governed by
the parameter n0. At low immigration rates, and when the
population can be long lived without immigration, the Allee
effect changes the quantities μ and R entering Eq. (24).
The extinction rate of the population without immigration
is μ = 1/τA, where τA is the mean time to extinction with
account of the Allee effect. For the Verhulst model with the
modified reproduction rate (29) an accurate approximation for
τA can be calculated from the general relations of Ref. [12].
The result is

τA � 4π
√

Bq0 (B − 1 + Bq0 + D)

D(B − 1 − Bq0 + D)2
eN	S, (30)

where

	S = D

B
− 2

B
arctanh

[
D

B(1 − q0) + 1

]

− 2q0 arctanh

[
D

B(1 + q0) − 1

]
, (31)

q0 = n0/N , and D = [(B − 1 − q0B)2 − 4Bq0]1/2.
To evaluate R we should solve the recursion equation (25),

where we can neglect the density dependence in the mortality
rate μn but must keep it in the reproduction rate λn from
Eq. (29) (the latter procedure is legitimate at n0 � N ). The

solution is

pn =
(
1 − 1

B

)n0+1
(n + n0)! 2F̃1

(
1,n + n0 + 1; n + 1; 1

B

)
Bn n0!

,

(32)

where 2F̃1 is the regularized generalized hypergeometric func-
tion [17]. For n = 1, a single immigrant, we obtain a simple
formula p1 = 1 − (1 − 1/B)n0+1 (which, in its turn, coincides
with our previous result p1 = 1/B for n0 = 0: when the Allee
effect is absent). Therefore, the establishment probability for
the single immigrant is 1 − p1 = (1 − 1/B)n0+1, and the rate
of establishment is RA = r(1 − 1/B)n0+1. Finally, we use
Eq. (24) to predict the stationary probability of observing the
population extinct:

P0 = 1

1 + (1 − 1/B)n0+1 rτA

,

with τA from Eq. (30). As expected, a strong Allee effect,
n0 � 1, greatly decreases the establishment probability for
the single immigrant and increases P0.

VII. SUMMARY

We determined the stationary PDF of the population size in
a variant of the Verhulst model: a simple stochastic population
model with independent births, density-dependent deaths, and
steady immigration. We solved this problem exactly and
found the minimal immigration rate r needed for bringing the
probability of observing the population extinct below some
fixed level, for example, 0.5. In the limit of low immigration
this probability [see Eq. (16)] is determined by the ratio of
the rate of successful immigration, R = r(1 − 1/B), and the
extinction rate in the same system but without immigration.
We have also established, in this limit, a simple relation
between the PDF of the population size in the steady state with
immigration and the long-lived quasistationary distribution
of the population without immigration. The low-immigration
asymptotics enabled us to establish connection between the
detailed stochastic population model (7) and the simple
patch occupancy model (23). Finally, we have exploited this
connection for predicting the relaxation time (26) of the
population size distribution toward its stationary state and
for extending our main results to arrivals in groups and to
populations exhibiting the Allee effect.
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APPENDIX

Here we simplify Eqs. (14) and (15) by employing the
strong inequalities N � 1 and r � B and using asymptotic
expansions of the special functions in Eqs. (14) and (15). First,
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we use an integral representation of the Kummer function [16],
and rewrite Eq. (15) as

P0 = �
(

r
B

)
�

(
1 + N−r

B

)
�

(
1 + N

B

)
[∫ 1

0
eNt t

r
B

−1 (1 − t)
N−r

B dt

]−1

(A1)

and Eq. (14) as

Pn = Nn �
(
n + r

B

)
�

(
1 + N−r

B

)
n! �

(
n + N

B
+ 1

)

×
[∫ 1

0
eNt t

r
B

−1 (1 − t)
N−r

B dt

]−1

. (A2)

At N � 1 and r � B = O(1) the main contributions to the
integral in Eqs. (A1) and (A2) come from two well-separated
regions: the region of t → 0, where the integrand diverges,
and a saddle-point region. The contribution at t → 0 is
approximately equal to B/r , where we have assumed that
r/B � 1/ ln N . (As will be seen shortly, this strong inequality
indeed holds in the interesting region of parameters.)

To evaluate the saddle-point contribution, we rewrite
the integrand as t r/B−1 (1 − t)−r/BeNf (t), where f (t) = t +
B−1 ln(1 − t). The saddle point is at t∗ = 1 − 1/B; it belongs
to the interval 0 < t < 1 because B > 1. The second derivative
f ′′(t∗) = −B. To extend the integration to the infinite interval
(−∞,∞), two conditions must hold:

√
N/B � 1 and

1 − 1/B � (NB)−1/2. (A3)

Performing the Gaussian integration, and adding the contribu-
tion of the t → 0 region, we finally obtain

∫ 1

0
eNt t

r
B

−1 (1 − t)
N−r

B dt � B

r
+

√
2π

BN

B

B − 1
eN(1− 1

B
− ln B

B ).

(A4)

As a result, Eq. (A1) becomes

P0 � 1

1 +
√

2π
BN

r
B−1 eN(1− 1

B
− ln B

B )
. (A5)

Using Eq. (3), we can recast this result as Eq. (16). In its turn,
Eq. (A2) for Pn becomes Eq. (17).
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