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Noise-induced rupture process: Phase boundary and scaling of waiting time distribution
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A bundle of fibers has been considered here as a model for composite materials, where breaking of the fibers
occur due to a combined influence of applied load (stress) and external noise. Through numerical simulation and
a mean-field calculation we show that there exists a robust phase boundary between continuous (no waiting time)
and intermittent fracturing regimes. In the intermittent regime, throughout the entire rupture process avalanches
of different sizes are produced and there is a waiting time between two consecutive avalanches. The statistics of
waiting times follows a � distribution and the avalanche distribution shows power-law scaling, similar to what
has been observed in the case of earthquake events and bursts in fracture experiments. We propose a prediction
scheme that can tell when the system is expected to reach the continuous fracturing point from the intermittent
phase.
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Rupture and breakdown [1,2] are complex processes
that occur both in micro- and macroscales. Natural rupture
phenomena like earthquake, landslide, mine collapse, and
snow avalanches often appear catastrophic to human society.
It is therefore a fundamental challenge to understand the
underlying rupture process so that the losses in terms of
properties and lives can be minimized by providing early
alarms. The same crisis persists in construction engineering
and the material industry, where detailed knowledge of the
strength of the materials and their failure properties are
essential. But the physical processes, which initiate rupture,
help its growth, and finally result in breakdown, are not
completely understood yet.

Fiber bundle model (FBM) has become a useful tool for
studying rupture and failure [3] of composite materials under
different loading conditions. The simple geometry of the model
and clear-cut load-sharing rules allow one to achieve analytic
solutions [4–6] to an extent that is not possible in any of the
fracture models studied so far by the fracture community. FBM
was introduced first in connection with textile engineering [7]
and recently physicists took interest in it, mainly to explore
the critical failure dynamics and avalanche phenomena in this
model [8–10]. Not only the classical fracture failure (stress
induced) in composites, FBM has been used successfully
for studying noise-induced (fatigue) failure [11–15], creep
[16–18], and thermally induced failures [19,20]. The statistics
of avalanches in these types of failure models show similarities
with results for acoustic emissions [21] (during material
failure) and earthquakes [22–24].

In this work, through waiting time and avalanche statistics,
we analyze a noise-induced intermittent fracturing process in
composite materials under fixed external loading. The waiting
time is defined as the time (Monte Carlo steps) between
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two consecutive avalanches in the avalanche time series for
the entire failure process. Through a mean-field calculation
we show that in the stress-noise space, there exists a robust
phase boundary between continuous (no waiting time) and
intermittent fracturing regimes and that can be verified by
numerical simulations. In the intermittent fracturing regime
we study the distributions of avalanches and waiting times
for different types of fiber strength distributions. Finally, we
mention and discuss studies on waiting-time statistics in other
fracture models, earthquake events, and fracture experiments.

We consider first a bundle of N parallel fibers—and a load
(W = σN ) is applied on the bundle. The fibers have different
individual strengths (x) which are drawn from a probability
distribution and the bundle has a critical strength σc [3], so
that, without any noise, the bundle does not fail completely
for stress σ � σc, but it fails immediately for σ > σc. We now
assume that each fiber having strength xi has a finite probability
P (σ,T ) of failure at any stress σ induced by a nonzero noise
T :

P (σ,T ) =
{

exp
[− 1

T

(
xi

σ
− 1

)]
, 0 � σ � xi,

1, σ > xi.
(1)

Here P (σ,T ) increases as T increases and for a fixed value of
T and σc, as we increase σ , the bundle breaks more rapidly. We
simulate this failure phenomenon following Eq. (1) in discrete
time t . After each failure (at the fixed stress σ ), the total
load Nσ is redistributed among the remaining fibers equally
and we check, at time t + 1, if the present stress σ (t + 1) =
W/N (t + 1) can induce any further failure following Eq. (1).
When the value of σ is considerably large, it so happens that at
every time step at least a single fiber breaks until the complete
collapse of the bundle. This is a single avalanche and there is
no waiting time [15]. But as we decrease the initial value of
σ , at a limiting value, in a particular time step t not a single
fiber breaks. We consider this as a single waiting time (tW = 1)
and the limiting value of σ , at which the waiting time appears
for the first time is denoted by σ0. This is the onset of the
intermittent fracturing process. After one waiting time, again
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FIG. 1. (Color online) Phase boundary (σ0 vs T plot) for three
different type of fiber strength distributions with N = 20 000. Data
points are simulation results (averages are taken over 100 samples)
and solid lines are analytic estimates [Eqs. (3) and (4)] based on
mean-field arguments.

another avalanche starts and eventually all the fibers break
after such a finite number of avalanches. The number of fibers
broken during a single avalanche is counted as the avalanche
size (m). It is obvious that as we increase the value of T ,
the value of σ0 decreases. When the noise is large, the initial
applied load has to be smaller for the emergence of a waiting
time. Thus stress (σ ) and noise (T ) values determine whether
the system is in continuous rupture phase or in the intermittent
rupture phase. It may be mentioned that T can be interpreted as
a measure of thermal noise in the system and similar thermally
activated breakdown in the fiber bundle model had been studied
experimentally [13] and theoretically [14].

To determine the phase boundary we can give a mean-
field argument that, at σ = σ0, at least one fiber must break
to trigger the continuous fracturing process. After this single
failure the load has to be redistributed on the intact fibers
and the effective stress must be more than σ0—which in turn
enhances failure probability for all the intact fibers. Therefore,
in the case of a homogeneous bundle where all the fibers
have identical strength xi = 1 (therefore, σc = 1), at the phase
boundary NP (σ0,T ) � 1 giving

N exp

[
− 1

T

(
1

σ0
− 1

)]
� 1, (2)

which gives

σ0 � 1

1 − T ln(1/N)
. (3)

In the absence of noise T , σ0 = 1 = σc, which is consistent
with the static FBM results [3]. This analytic estimate
coincides with the data obtained from simulation (Fig. 1).
It shows a nice phase boundary between the continuous and
intermittent fracturing regimes.

For heterogeneous cases where fibers have different
strength and the whole bundle has a critical strength σc, we

make the conjecture that

σ0 � σc

1 − T ln(1/N)
, (4)

keeping in mind that in the absence of noise T , σ0 = σc.
To verify our conjecture we choose heterogeneous bundles
of N fibers where strength of the fibers are drawn from a
statistical distribution. We have considered two different kinds
of fiber strength distributions: (1) uniform distribution of fiber
strength having cumulative form Q(x) = x for 0 < x � 1 and
(2) Weibull distribution Q(x) = 1 − exp(−xk), where k is the
Weibull index (we have taken k = 2.0 and 5.0). Each fiber
has a finite probability P (σ,T ) of failure at any stress σ

induced by a nonzero T as mentioned before. Similar to the
homogeneous case, for a particular value of T , below a certain
value of σ , the waiting time appears here. One can see that
the theoretical estimate of the phase boundary agrees with the
numerical data for the heterogeneous cases (Fig. 1). However,
this agreement was much better for the homogeneous case.
This difference can be explained through the amount of
randomness involved in the respective systems. In the case
of homogeneous bundle there is no randomness in the fiber
strength—the only randomness is coming from the noise term,
whereas in the case of heterogeneous bundles—there are two
sources of randomness—in the fiber strengths and in the noise
term.

The mean-field calculation (3) suggests that σ0 value
depends on the number of intact fibers in the bundle (N ).
It increases with decrease in the number of intact fibers at
time t (Nt ). Therefore, when we start with a much lower stress
value (σ < σ0) the σ0 value increases slightly with time (as
Nt decreases with small individual failures). But the effective
stress value follows a strict relation with applied stress and
number of intact fibers as

σt = σN/Nt . (5)

These two equations [(3) and (5)] allow us to make a theoretical
prediction of σ0 value for a particular bundle of homogeneous
fibers. If we plot together −σ0 vs Nt and σt vs Nt for a particular
σ—then the point of intersection will give the σ0 value for
that particular σ value (Fig. 2). Therefore, during a fracturing
process if we can measure the effective stress or the number of
intact elements in the system, we can always predict the onset
of continuous fracturing.

Existence of such a phase boundary has important con-
sequences on fracturing study in material failure and other
fracture-breakdown phenomena. In real situations of material
or rock fracturing, acoustic emission measurements can
show clearly whether an ongoing fracturing process belongs
to a continuous or intermittent fracturing phase. Acoustic
emissions [21] are basically sound waves produced during
a microcrack opening within the material body due to external
stress and noise factors. Once a system enters into a continuous
fracturing phase the breakdown must be imminent. Thus the
identification of rupture phase can predict the fate of a system
correctly.

In the intermittent fracturing phase avalanches of different
sizes are produced separated by waiting times (tW ) of different
magnitudes. This happens for a stress value σ below σ0 at
a certain noise (T ) level. We have studied the waiting time
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FIG. 2. (Color online) Prediction scheme for homogeneous bun-
dle: σt vs t are plotted for three different initial stress values with
N = 20 000. The intersection points with red line [Eq. (3)] indicates
the starting of continuous fracturing. The inset shows the variation of
σ0 value with initial stress (σ ) in the same bundle.

distribution for both homogeneous and heterogeneous bundles
with N = 20 000. Each curve can be fitted with a � distribution
[22–24]

D(tW ) ∝ exp(−tW /a)/t
1−γ

W , (6)

where γ = 0.15 for the homogeneous case and γ = 0.26
for heterogeneous cases (Fig. 3). As shown in the inset of
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FIG. 3. (Color online) Simulation results for the waiting time
distributions for three different types of fiber strength distributions
(square, circle, and triangle symbols are used for homogeneous,
uniform, and Weibull distributions, respectively) with N = 20 000.
All the curves can be fitted with the � form exp(−tW /a)/t

1−γ

W (dashed
line), where γ = 0.15 for the homogeneous case (averages are taken
over 25 samples) and γ = 0.26 for uniform and Weibull distributions
(averages are taken over 100 samples). In the inset we show the
data collapse of the waiting time distributions with system sizes for
uniform distribution.
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FIG. 4. (Color online) Evolution of waiting time for a homoge-
neous fiber bundle (N = 20 000; average number = 25) at T = 0.9
and σ = 0.062.

Fig. 3, the plot of D(tW )/N against tWN gives good data
collapse for different N values [D(tW ) = A(1 − P )tW N ∼
A exp(−P tWN ), where P denotes individual failure proba-
bility and A is a constant; hence the normalization of D(tW )
requires A ∼ N ]. Such a data collapse indicates the robustness
of the � function form. The value of a is the measure of the
extent of the power-law regime and it has different values
for different types of strength distribution. As we increase N ,
the value of a gradually decreases. We have also studied the
waiting time distribution for a fixed value of N , but different
sets of values of T and σ , all of which show � distribution
of the form of Eq. (6). For a fixed value of N and T as σ

decreases, the power-law region extends longer and thus the
value of a increases, but the exponent of power-law decay
remains the same. Again for a certain value of N and σ as T

decreases, the value of a increases without any change in the
power-law exponent. These results imply that the power-law
exponent remains unchanged with variation of σ , T , and N .

The noise-induced rupture process, modeled here, has two
basic ingredients: external stress σ and noise T . The noise
term triggers initial rupture which induces one or more load-
redistribution cycles that finally enhance the effective stress
level on the system. Therefore, the initial phase of the rupture
process is dominated by the noise term and as the rupture
process goes on the stress factor becomes more dominating.
At the final stage the stress redistribution mechanism drives
the system toward complete collapse through a big avalanche.

For finite values of N , we have studied the waiting time
distribution at an interval of 0.20 of the fraction of the broken
fibers (φ). It has been observed that within the intermittent
regime for a homogeneous fiber bundle (N = 20 000) the
waiting time distribution is purely a � distribution during the
first 0.20 fraction of fibers broken (Fig. 4). During the next
0.20 fraction of broken fibers (i.e., 0.20–0.40), the power-law
portion diminishes and for the next interval (0.40–0.60) there
is no power-law regime at all. For the next two intervals
(0.60–0.80 and 0.80–1.00) no waiting time appears which
implies that for a homogeneous fiber bundle the waiting time
monotonously disappears with the breaking of fibers (Fig. 4).
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FIG. 5. (Color online) Evolution of waiting time for uniform fiber
strength distribution (N = 20 000; average number = 100) at T = 0.7
and σ = 0.027.

The nature of evolution of waiting time distribution for the
uniform distribution is different from that of the homogeneous
one. In the case of a uniform fiber bundle up to 0.60 fraction
of fibers (at an interval of 0.20) the value of a increases and
large waiting times appear as more fibers break. This is due
to the fact that initially the fibers of very low strength break
down instantaneously as soon as a finite stress is applied.
But gradually those fibers of low strength become scarce and
due to the presence of fibers of intermediate strengths and
the moderately increased stress (due to gradual breakdown of
fibers), waiting times of broad range appear. But the breaking
of the consequent fibers are faster due to the increased stress
and gradually the a value decreases (Fig. 5).

In general, avalanches or bursts bear important information
of the dynamics of intermittent processes. In our model the
noise T triggers a rupture process which continues through
the load (or stress) redistribution mechanism. The avalanche
size distributions follow a universal power-law [D(s) ∼ s−ξ ]
scaling with exponent ξ = 2.5. This result (Fig. 6) demands
that such intermittent rupture process belongs to the quasistatic
fracturing class, where the universality of the exponent value
has already been established [8].

Instead of considering all the avalanches up to the complete
failure of the system, if we gather avalanches within some win-
dow during the breaking process, the shape of the avalanche
distributions changes as the system approaches complete
failure. In the case of homogeneous strength distribution, there
is a monotonic variation (Fig. 7), i.e., more and more large
avalanches appear as the failure point is approached but bundle
with uniform strength distribution shows a nonmonotonic
variation (Fig. 8).

Our model for noise-induced rupture process is not limited
to any particular system, rather it is a general approach and can
model more complex situations. There are evidences of stress
redistribution and stress localization around fracture-fault lines
and several factors that can help rupture evolution are friction,
plasticity, fluid migration, spatial heterogeneities, chemical
reactions, etc. In our model such stress redistribution or stress
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FIG. 6. (Color online) Numerical data for avalanche size distribu-
tions for three different types of fiber threshold distributions (averages
are taken over 25 samples for homogeneous case and 100 samples for
uniform and Weibull cases) with N = 20 000. The straight line has a
slope −2.5.

localization can be taken into account through a proper load
sharing scheme and noise term (T ) can represent the combined
effect of other factors.

We would like to mention here that waiting times and their
statistics in different types of fracture models have also been
discussed recently. Creep rupture in a nonlinear viscoelastic
FBM was proposed and studied extensively by Hidalgo et al.
in 2002 [16]. By construction it is a different class of fiber
bundle model—there is no noise term and nonlinearity in
material response has been introduced through an exponent
in the constitutive equation. This model is different from our
simple noise-induced FBM. It has been observed that the strain
rate shows power-law relaxation in the creep regime followed
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FIG. 7. (Color online) Evolution of the avalanche distributions
with the fraction of broken fibers (φ) for a homogeneous fiber bundle
(N = 20 000; averages are taken over 25 samples) at T = 0.9 and
σ = 0.062.
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FIG. 8. (Color online) Evolution of avalanche distributions with
fraction of broken fibers (φ) for uniform fiber strength distribution
(N = 20 000; averages are taken over 100 samples) at T = 0.7 and
σ = 0.027.

by a power-law acceleration up to complete rupture [17] and
the waiting time distributions in such creep models obey power
laws [18].

Yoshioka et al. [19,20] discussed thermally activated failure
in FBM introducing a Gaussian fluctuation in local force
(stress) on individual fibers. Potentially this model goes back
to classical FBM if the fluctuation term is zero. But if the

fluctuation is nonzero, then the bundle can fail even when the
external stress is zero which is confusing and not real. In that
sense our noise-induced failure scheme in FBM (introduced
in 2003 in Ref. [15]) is more robust and some exact analytic
results (failure time and avalanche distribution) have already
been calculated through this scheme.

Identification of phase boundary is crucial for any dynam-
ical system because a system usually changes its behavior as
it moves from one phase to another. As we can see in our
model, there is no waiting time above the phase boundary
(continuous rupture phase) and waiting time appears below
the phase boundary (intermittent phase). One can also estimate
the failure time of the system exactly [15] in the continuous
rupture phase. In the case of fracturing in loaded rocks or
materials, such study can help to identify reliable precursors
which can warn of an imminent breakdown. We notice, in
our model system, the magnitude of waiting time reduces
gradually towards the breakdown point which is reflected in
the variation of a in the functional form of the distribution.
What is the exact form of this variation? Does it depend on
the applied stress and noise level? Which one is the more
sensitive parameter? These questions must be answered to
develop a prediction scheme based on available precursors
prior to failure or breakdown.
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