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First-passage characteristics of biased diffusion in a planar wedge
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We obtain compact, exact, analytical expressions for the first-passage-time distribution for a particle undergoing
biased diffusion in a planar wedge for wedge angles π/p, where p is a positive integer. We then provide the
long-time limit of the first-passage time and found it to be dependent on the drift direction and wedge angle. We
finally provide exact expressions for the mean first-passage time for specific cases.
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I. INTRODUCTION

The biased diffusion model for stochastic processes in con-
fined media has been widely studied in the literature because it
can be applied to various physical phenomena. These applica-
tions include the voltage dependence of the current density due
to the disorder in organic semiconductors [1], photoexcitation
of carriers in a hydroxyl-terminated silicon surface [2], and
spin transport in semiconductor heterostructures [3]. This was
also used to calculate biomolecular diffusion rates [4] and
model chemotaxis [5] as well as tissue growth [6].

The dynamics of the biased diffusion process is governed
by the convection-diffusion equation:

∂

∂t
ρ(r,t) = ∇ · D(r)∇ρ(r,t) − ∇ · v(r)ρ(r,t), (1)

where ρ(r,t) is the particle’s probability density function
(PDF), D(r) is the diffusion coefficient, and v(r) is the
drift. When the diffusing particle is unbounded, the analytical
solution of Eq. (1) can be obtained for uniform and constant
diffusion coefficient and drift [7]. When there are confining
boundaries, the analytical solution for the PDF has been found
only in a few cases and geometries. Previously solved exact
models with absorbing boundaries include one-dimensional
cases [7,8], where the prescription used was the image solution
with varying weights. Series solutions for specific forms of
the diffusion coefficient Dr−η and drift (−kr + κr−1−η)r̂ for
η � 0 and for any wedge angle [9] have been found for
absorbing boundaries. For constant diffusion coefficient and no
drift, the solution was found exactly and in closed form when
the wedge angle is π/p, where p is 2 or a positive odd integer
[10]. Numerical methods have also been used [11]; however,
issues such as numerical dispersion, instability, and accuracy
of the solution in the boundary regions were encountered for
bias-dominated processes.

Through the PDF, we can calculate the first-passage-time
distribution (FPTD) of the particle. The FPTD describes the
probability that a stochastic process reaches for the first
time some specified values, e.g., boundaries. First-passage
processes are encountered in the study of biological processes,
particularly mechanochemical coupling in kinesins [12], in
DNA translocation [13], in the translocation of polymers
[14–16], and in the reaction rate for diffusion-controlled
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reactions [17]. However, only a limited number of exactly
solvable models or geometries have been found for the
FPTD, including one-dimensional cases [7,18] and planar
wedge boundaries without drift [10]. For unbiased diffusion in
arbitrary-angled planar wedge geometries, only the long-time
limit has been solved [7,19]. Numerical procedures have also
been implemented to solve for the FPTD when the drift is
linear in space [20]. A closely related quantity to the FPTD
is the survival probability; this has been studied for wedge
systems [7,9,10,19,20].

In this paper, we solve the convection-diffusion Eq. (1)
for absorbing planar-wedge geometries. We consider systems
with constant and uniform diffusion coefficient and drift; this
is applicable to incompressible velocity field in the context of
the evolution of fluid vorticity for the Fokker-Planck equation
[11,21] or for linear external field in the Smoluchowski
equation [22]. We emphasize that this physical system is
distinct from the system in Ref. [9], where the drift is radial.
The two systems are equivalent only when there is no bias
and the diffusion coefficient is uniform and constant in time.
For specific angles, we provide exact closed-form expressions
of the PDF (Sec. II), as well as the FPTD (Sec. III) to the
boundary. We found that the long-time limit of the FPTD to
be largely dependent on the wedge angle as well as the drift
direction. We also provide exact expressions for the mean
first-passage time (MFPT) (Sec. IV), or the average time that
the particle reaches the boundary for the first time, for special
cases of the drift direction and wedge angle.

II. PROBABILITY DENSITY FUNCTION

Our first task is to calculate the PDF of a diffusing
particle with bias for the planar wedge boundary. We consider
the particle initially at (x0,y0) constrained in a wedge such
that the absorbing boundaries are at y = ±x tan β, where
2β is the angle of the wedge. The PDF is the solution
to the convection-diffusion Eq. (1), with initial condition
ρ(x,y; t = 0) = δ(x − x0)δ(y − y0), and absorbing boundary
condition ρ(x,y,t)|y=±x tan β = 0. To solve this partial differen-
tial equation, we recall the Green’s function for the unbounded
convection-diffusion equation with Dirac δ initial condition is

G(x0,y0; t) = 1

4πDt
e− (x−x0−vx t)2

4Dt e− (y−y0−vy t)2

4Dt . (2)

To satisfy the boundary conditions, a superposition of expres-
sions of this type is needed. We employ the method of images
to find this combination. The wedge system, for example, can
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FIG. 1. (Color online) Particle initially located at α0 inside a
wedge with boundaries at y = ±x tan β for wedge angle 2β = π/4.
The images located at α+

n and α−
n are also indicated.

be thought of as two half planes separated by an angle. We
first comment on the half-plane image solution in the context
of convection-diffusion equation.

For the half plane x > 0, the solution is just the superposi-
tion

ρ = G(x0,y0) − AG(−x0,y0), (3)

where −A = −e−vxx0/D is the weight of the image needed to
satisfy the absorbing conditions. This result is an extension of
the one-dimensional case found in Ref. [7]. We now generalize
this result to the planar boundary defined by y = x tan β. For
a particle initially at (r cos α,r sin α), such that α < β, the
reflected image can be seen to be at the angle 2β − α. We find
that

ρ = G(r0) − A(α)G(r1), (4)

where r1 is the image position, (v,θ ) are, respectively,
the magnitude and polar angle of the drift, and A(α,β) =
e− rv

D
sin(β−θ) sin(β−α). We note here that this superposition does

not work for spatially dependent diffusion coefficient and drift.
We can now calculate the PDF for absorbing wedge

boundary defined by y = ±x tan β. Let the particle be initially
at (x0,y0) = (r cos α0,r sin α0) as shown in Fig 1. The image
of the particle on the upper boundary, y = +x tan β, is at a
radius r and an angle α+

1 = 2β − α0. The reflection on the
lower boundary, y = −x tan β, is at α−

1 = −(2β + α0). We
now reflect the image at α+

1 on the lower boundary, which we
find at an angle α+

2 = −(4β − α0). The reflection of the image
at α−

1 on the upper boundary yields the angle at α−
2 = 4β + α0.

For n reflections, with the images getting reflected alternately
with the upper and lower boundaries, we get the angles

α+
n = (−1)n−1(2nβ − α0) α−

n = (−1)n(2nβ + α0), (5)

and at the same distance from the origin, r . The superscript
in our notation here denotes whether the first reflection is
at the upper ( + ) or the lower ( − ) boundary. We impose
that the wedge angles be 2β = π/p, where p is a positive
integer, which implies that the last reflection from both the
upper and lower boundaries coincide. For these wedge angles,
and repeated reflection of the images for two half planes, the

PDF of our system is

ρ = G(α0) + (−1)p
p∏

m=1

Am(α+
m,β)G(αp)

+
p−1∑
n=1

(−1)n
n∏

m=1

[
Am(α+

m,β)G(α+
n )

+Am(α−
m, − β)G(α−

n )
]
, (6)

where

Am(α,β) = e− rv
D

sin((−1)mβ−θ) sin((−1)mβ−α). (7)

This solution is valid only within the wedge, (−β,β), and is
zero outside of the wedge.

III. FIRST-PASSAGE-TIME DISTRIBUTION

The first-passage-time distribution to the boundary can now
be calculated for our wedge system through the formula

F (t) = − d

dt

∫
ρ(r,t)dσ, (8)

where the integral is an area integral over the wedge. Evalu-
ation of this integral is not straightforward, but for unbiased
diffusion it has been done for specific wedge angles π/p,
where p is 2 or an odd integer [10]. For other cases, however,
it is not straightforward to evaluate this integral. Instead of
directly evaluating the integral in Eq. (8), we first express the
FPTD as

F (t) = −
∫

dσ (D∇ · ∇ρ − v · ∇ρ). (9)

For constant v, the above expression reduces to

F (t) =
∫

(D∇ρ − vρ) · dn̂, (10)

where the line integral is over the wedge boundaries and n̂

is the inward unit vector normal to the boundary. Because
of absorbing boundary conditions, the second-term integral
vanishes. Thus, the FPTD is equal to the flux of the PDF at the
wedge boundaries.

In general, the contributions to the integral of the upper
boundary and the lower boundary are not equal and are
dependent on the initial position of the particle as well as
the drift velocity. Evaluation of the line integral over the upper
boundary is easier if we rotate our coordinate axis through the
rotation matrix:(

x̄1

ȳ1

)
=

(
cos β sin β

− sin β cos β

)(
x

y

)
. (11)

Here, the upper boundary is rotated clockwise such that it
is now a line ȳ1 = 0 and n̂ub = − ˆ̄y. Similarly, the integral
over the lower boundary can be evaluated by rotating our axis
counter-clockwise by β, such that the lower boundary line is
at ȳ2 = 0 and that n̂lb = ˆ̄y2. The FPTD is then determined by
adding these two line integral contributions:

F (t) =
∫ ∞

0

∂ρ

∂ȳ2

∣∣∣∣
ȳ2=0

dx̄2 −
∫ ∞

0

∂ρ

∂ȳ1

∣∣∣∣
ȳ1=0

dx̄1. (12)
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To make our expressions for the FPTD concise, we first
define the line integral for the unbounded solution G(α) over
the lower boundary:

f (α,β) =
∫ ∞

0

∂G(α)

∂ȳ

∣∣∣∣
ȳ2=0

dx̄2

= r sin(β + α) + vt sin(β + θ )

8
√

Dt3π

× exp

{−[r sin(α + β) + vt sin(β + θ )]2

4Dt

}

×
{

1 + erf

[
r cos(β + α) + vt cos(β + θ )√

4Dt

]}
.

(13)

The line integral over the whole wedge boundary for the
unbounded Green’s function solution is, thus, defined as

g(α) =
∫ ∞

0

∂G

∂ȳ2

∣∣∣∣
ȳ2=0

dx̄2 −
∫ ∞

0

∂G

∂ȳ1

∣∣∣∣
ȳ1=0

dx̄1

= f (α,β) − f (α, − β), (14)

where the last line is due to symmetry. We can now express
the FPTD as

F (t) = g(α0) + (−1)pg(α+
p )

p∏
m=1

Am(α+
m−1,β)

+
p−1∑
n=1

(−1)n
[
g(α+

n )
n∏

m=1

Am(α+
m−1,β)

+ g(α−
n )

n∏
m=1

Am(α−
m−1, − β)

]
, (15)

where α+
n = (−1)n−1(2nβ − α), α−

n = (−1)n(2nβ + α), and
Am(α,β) = e

−rv
D

sin[(−1)mβ−θ] sin[(−1)mβ−α]. This expression for
the FPTD is the main result of this paper and is valid for
any wedge of angle π/p, where p is a positive integer. To
illustrate this result, we plot the FPTD for a specific case,
where the wedge angle is π/4 and the drift velocity is along
the x direction. The plot is shown in Fig. 2.

The long-time limit of the FPTD for the biased case (v �= 0)
simplifies to

F (α0) t → ∞
v �= 0

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C
v sin(β+θ)

4
√

Dtπ
e−v2t sin2(β+θ)/4D + C

v sin(β−θ)
4
√

Dtπ
e−v2t sin2(β−θ)/4D; β − π

2 � θ � π
2 − β

C
v sin(β+θ)

4
√

Dtπ
e−v2t sin2(β+θ)/4D; −β − π

2 � θ < β − π
2

C
v sin(β−θ)

4
√

Dtπ
e−v2t sin2(β−θ)/4D; −β + π

2 � θ < β + π
2

C
[tan(β+θ)+tan(β−θ)]

4t
√

π
e−v2t/4D; |θ | > β + π

2

, (16)

where the constant C is

C = 1 + (−1)p +
p∏

m=1

Am(α+
m−1,β)

+
p−1∑
n=1

(−1)n
[

n∏
m=1

Am(α+
m−1,β) +

n∏
m=1

Am(α−
m−1,−β)

]
.

(17)

For the unbiased case, the FPTD falls with t−3/2, as previously
derived in Refs. [7,10]. In the presence of the drift, however,
we observe an exponential time decay factor for the long-time
limit, suggesting that the FPTD falls faster in the presence
of a drift. We can characterize the FPTD for the biased case,
depending on the scale factor t−1/2 or t−1 and on the direction
of the drift. When |θ | > β + π

2 , the FPTD falls fastest, which
we characterize as the particle going effectively toward the
boundary. When β − π

2 < θ < π
2 − β, the FPTD falls slowest,

which characterizes to the particle effectively moving away
from the boundary.

IV. MEAN FIRST-PASSAGE-TIME

The standard MFPT formula [7],

〈t〉 =
∫ ∞

0
tF (t)dt, (18)

gives a meaningful average value when the survival probabil-
ity S(t) = ∫

ρdσ = 1 − ∫ t

0 F (t ′)dt ′ approaches zero at long
times, i.e., all particles will eventually reach the boundary. In
the presence of the drift, however, the survival probability does
not vanish at long times. Explicitly calculating the survival

FIG. 2. (Color online) FPTD of a particle initially at α0 = 0 inside
a wedge of angle π/4. The drift velocity here is set in the x direction.
We set the parameters D = 1/2 and r = 1.

012121-3



DIANDREW LEXTER DY AND JOSE PERICO ESGUERRA PHYSICAL REVIEW E 88, 012121 (2013)

probability in the long-time limit using our expression for the
PDF (6), we obtain

S(t)|t→∞ = Cerf

(
v
√

t sin(β + θ )

2
√

D

)

−Cerf

(
v
√

t sin(β − θ )

2
√

D

)
, (19)

where the constant C is written in Eq. (17). The long-time limit
of the survival probability does not vanish when −β � θ �
β and v �= 0. For this case, we define the normalized mean
first-passage time (NMFPT) as

〈t̃〉 =
∫ ∞

0
t F̃ (t)dt, (20)

where F̃ (t) = F (t)/(
∫ ∞

0 F (t ′)dt ′) is the normalized FPTD.
For other cases, the FPTD is already normalized and repro-
duces the standard definition of the NMFPT [7].

For the unbiased diffusion, the NMFPT have been solved
for any wedge angle [7]. For v �= 0, however, this solution
is not as straightforward. In this work, we use the exact
FPTD expressions to derive the mean time through the integral
Eq. (20). For some special cases, exact evaluation of this
integral is possible.

A. Unbiased diffusion on a wedge

For the unbiased diffusion (v = 0), we have A = 1 regard-
less of the placement of the image. The FPTD, thus, simplifies
to

F (α0)p,even = 1

2
√

Dt3π

p∑
n=1

(−1)n−1r sin[(2n − 1)β + α0]

× e
−r2 sin2([2n−1]β+α0)

4Dt erf

{
r cos[(2n − 1)β + α0]√

4Dt

}

F (α0)p,odd = 1

2
√

Dt3π

p∑
n=1

(−1)n−1r sin[(2n − 1)β + α0]

× e
−r2 sin2[(2n−1)β+α0]

4Dt . (21)

This result is applicable for any wedge of angle 2β = π/p,
where p is a positive integer. The FPTD here is normalized
since for the unbiased case, the survival probability (19)
vanishes at long times. This is a generalization of the result
in Ref. [10], where the closed form expression is determined
only when p is 2 or an odd integer. The vanishing long-time
limit of the survival probability implies that this FPTD is
normalized. We now calculate the mean first-passage-time for
this distribution for each case where p is even or odd.

The MFPT can be calculated as

t̄p �=2,even = r2

2D

p∑
n=1

(−1)n−1 sin[(2n − 1)2β + 2α0]

π

×
{

1 − tan[(2n − 1)β + α0]

×
[
π

2
− (2n − 1)β − α0

]}

t̄p �=1,odd = r2

2D

p∑
n=1

(−1)n sin2[(2n − 1)β + α0], (22)

and it diverges for p = 1,2. The exact expression of the MFPT
here agrees with that of the results derived in Ref. [7] by a
different approach.

B. Biased diffusion on a half-plane

We now consider some special cases for the biased
diffusion. We first consider the biased diffusion on a half-plane,
or when β = π/2. For this case, the FPTD simplifies to

F (t)p=1 = r cos α0

2
√

Dt3π
exp

[
− (r cos α0 + vt cos θ )2

4Dt

]
, (23)

which is consistent with that found in Ref. [7]. The normalized
FPTD can be computed to F̃ (t) = F (t)/N , where N =
e− rv cos α(cos θ+| cos θ |)

2D . The MFPT and NMFPT can then be calculated
to

〈t̃〉p=1 = 〈t〉p=1

N
= r cos α0

v| cos θ | . (24)

FIG. 3. (Color online) FPTD and the NFPTD with their corresponding MFPT and NMFPT (inset) of the biased diffusion in the half-plane
for several drift direction θ . We set the parameters α0 = 0,v = 2,r = 1 and D = 1.
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The effect of the drift direction to the half-plane for the
FPTD, NFPTD, MFPT, and NMFPT is illustrated in Fig. 3.
The NFPTD when the drift direction θ goes away from the
boundary is equal to the FPTD for drift direction π − θ . In the
limit where v → 0, the MFPT and NMFPT diverges, which
is consistent with the results for the unbounded diffusion. We
see that the presence of a nonzero drift for this case causes the
MFPT and NMFPT to be finite except when the drift direction
is at θ = ±π

2 .

C. Vertical bias in a π/ p-wedge with p > 1 and odd

We now consider the case where the drift direction is
vertical and for special wedge angles π/p, where p is odd
and p > 1. The FPTD here is normalized from the long-time
limit of the survival probability, Eq. (19). We can evaluate the
MFPT exactly for this case as

〈t±〉 = 〈t̃±〉 = jt±(α0) + (−1)pjt±(α+
p )

p∏
m=1

Am(α+
m−1,β)

+
p−1∑
n=1

(−1)njt±(α+
n )

[
n∏

m=1

Am(α+
m−1,β)

+ jt±(α−
n )

n∏
m=1

Am(α−
m−1, − β)

]
, (25)

where we define the functions

jt±(α) = e
−rv
2D

cos β[± sin(α+β)+| sin(α+β)|]

4v2 cos2(β)
×{rv cos(β)[± sin(α + β) + | sin(α + β)|] ± 2D}

+ e
−rv
2D

cos β[± sin(α−β)+| sin(α−β)|]

4v2 cos2(β)
×{rv cos(β)[± sin(α − β) + | sin(α − β)|] ± 2D}.

(26)

FIG. 4. (Color online) MFPT of the particle initially at the middle
(α0 = 0) for several wedge angles 2β = π/p and drift speed. We set
the parameters D = 1 and r = 10.

FIG. 5. (Color online) MFPT of the particle with upward bias for
several wedge angles 2β = π/p, with p an odd integer. The initial
position of the particle is set at α0 = π/99, 0, − π/99 (see inset).
We set the parameters D = r = 1 and v = 30. The data points here
are exact.

In our notation, the subscripts + and − refer to the drift
directions θ = π/2 and θ = −π/2, respectively. We see here
that the MFPT is equal for both bias directions. We plot
the MFPT for several angles and drift speed in Fig. 4. We
observe that for small wedge angles, the MFPT goes to
zero.

An interesting property of the MFPT for the vertical bias
case is that it does not vary monotonically with the distance
of the particle’s initial position to the boundary. To illustrate
this behavior, we plot the MFPT for several wedge angles
in Fig. 5, when the particle is initially at α0 = π/99, α = 0,
and α = −π/99. We see that the MFPT for the three cases
increase as the wedge angle is increased. However, the order
of the values of the MFPT for these three cases changes as we
increase the wedge angle. For small wedge angles, we see that
〈t〉α=+π/99 < 〈t〉α=−π/99 < 〈t〉α=0. For large angles, however,
this order changes to 〈t〉α=+π/99 < 〈t〉α=0 < 〈t〉α=−π/99. We
also observe that at large angles, the MFPT for each case
becomes closer to each other. This is a consequence of the
distance of the initial position to the boundary being close to
equal for the three cases.

V. CONCLUSION

In this paper, we studied the biased diffusion in a planar
wedge for wedge angles π/p, where p is a positive integer.
We obtained compact, exact, analytical expressions for the
first-passage-time distribution for this system and provided
conditions for the wedge angle and drift direction, wherein the
particle effectively moves away and toward the boundary. We
finally provided exact expressions for the mean first-passage
time for specific cases of the bias and wedge angle and found
that it does not vary monotonically with the distance of the
particle’s initial position to the boundary.
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