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Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain
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We examine the generating function of the time-integrated energy for the one-dimensional Glauber-Ising
model. At long times, the generating function takes on a large-deviation form and the associated cumulant
generating function has singularities corresponding to continuous trajectory (or “space-time”) phase transitions
between paramagnetic trajectories and ferromagnetically or antiferromagnetically ordered trajectories. In the
thermodynamic limit, the singularities make up a whole curve of critical points in the complex plane of the
counting field. We evaluate analytically the generating function by mapping the generator of the biased dynamics
to a non-Hermitian Hamiltonian of an associated quantum spin chain. We relate the trajectory phase transitions
to the high-order cumulants of the time-integrated energy which we use to extract the dynamical Lee-Yang zeros
of the generating function. This approach offers the possibility to detect continuous trajectory phase transitions
from the finite-time behavior of measurable quantities.
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I. INTRODUCTION

The dynamics of a complex many-body system may be
much more intriguing than one would expect based on its
equilibrium properties only [1]. This dynamical richness can
be revealed by considering strictly dynamical observables
that depend on the full time evolution of the system. The
fluctuations of the dynamical observables capture temporal
correlations in the dynamics, unlike static quantities, which
depend only on the state of the system at a given time [2].
The complete statistical characterization of the dynamical
observables encodes the dynamical properties of the system
at hand. This observation has led to the emergence of the field
of full counting statistics (FCS) through parallel developments
in quantum optics [3], electronic transport [4], and classical
stochastic processes [5]. The typical observable is the total
count of dynamical events such as the number of photons
emitted from an atomic system [6], electrons having passed
through a mesoscopic conductor [7], or molecular motions
in a glassy liquid [8], for which one aims to obtain the full
statistical distribution.

To characterize and understand dynamical observables,
it is useful to pursue a statistical description using the
language of equilibrium statistical mechanics [9]. Within this
framework, one may think of dynamical trajectories in FCS as
microstates in thermodynamics [10,11]. The thermodynamic
large-system-size limit then corresponds to the limit of long
times in FCS, where the full statistical properties of the
dynamical observables are captured by large-deviation (LD)
functions [12] that play the role of dynamical free energies
[11,13]. An important consequence of this analogy is that the
dynamical free energies, just as in the static case, may display
singular changes in the dynamical fluctuations corresponding
to trajectory phase transitions [14–17]. It has been argued, for
instance, that a trajectory phase transition underlies the glass
transition in liquid systems [8,13,18–20].

However, in contrast to equilibrium statistical mechanics,
where a phase transition may be observed by tuning the
physical field that drives it, for example a magnetic field in
a magnetic system or the pressure in a fluid, the variable

conjugate to the counted observable in FCS, the “counting
field,” is typically not directly related to any physically acces-
sible parameters [8,10,13,18,21–24]. This makes it difficult,
if not impossible, to observe trajectory phase transitions in
experiment or even in simulations (without resorting to sophis-
ticated sampling techniques [25]). Furthermore, singularities
in the dynamical free energy, corresponding to trajectory phase
transitions, only appear in the limit of long times, i.e., at times
that are much longer than the typical relaxation times, which
often is beyond reach in practice.

Recently, two of us proposed a potential solution to
these problems by establishing a general relation between
trajectory phase transitions in stochastic many-body systems
and the high-order cumulants of the corresponding dynamical
observables [26]. Specifically, we made use of a dynamic
generalization of ideas from equilibrium statistical mechanics
by Yang and Lee [27,28] and connected the time evolution
of the zeros of the moment generating function (MGF) for
the dynamical observable of interest with the short-time
behavior of its high-order cumulants [29–31]. As we showed,
it is possible to infer the position of these dynamical Lee-
Yang zeros from the high-order cumulants of the dynamical
observable as they move toward the value of the counting
field at which the trajectory phase transition occurs. The
method was applied to two kinetically constrained models
of glassy systems, the Frederickson-Andersen model [32] and
the East model [33], for which we showed that a first-order
trajectory phase transition occurring at zero counting field
can be inferred from numerical simulations of the short-time
high-order cumulants of the activity, i.e., the number of
configuration changes in the systems.

The purpose of the present work is to apply the proposed
method to a stochastic many-body system which, unlike the
models above, exhibits a continuous trajectory phase transition
and furthermore has a whole curve of critical points in the
complex plane of the counting field, rather than just a single
transition point at zero counting field [34–36]. Concretely, we
investigate trajectory phase transitions in the one-dimensional
Glauber-Ising model [37] using the high-order cumulants of
the time-integrated energy [38]. In contrast to our previous
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work, where the high-order cumulants were obtained from
numerical simulations of the stochastic dynamics, the Glauber-
Ising chain permits an analytical treatment, as we shall see.
This, in turn, allows us to test our method on a challenging
problem and benchmark the results against exact solutions.

The Glauber-Ising chain exhibits a continuous trajectory
phase transition from paramagnetic trajectories to ferromag-
netically or antiferromagnetically ordered trajectories in the
limits of long times and large system size [38,39]. Here
we demonstrate how the trajectory phase diagram, with
the counting field treated as a complex variable, can be
extracted from the short-time evolution of the high-order
cumulants resolved with respect to the individual modes of an
associated non-Hermitian quantum Hamiltonian. Moreover, at
low temperatures a few critical points dominate the high-order
cumulants. This shows that one may use short-time cumulants
to infer a continuous trajectory phase transition occurring at
nonzero counting fields, even if the real physical dynamics
takes place at zero counting field.

The paper is structured as follows: In Sec. II we outline the
formalism used throughout the paper. In Sec. III we describe
the method developed in Ref. [26]. The Glauber-Ising model
is discussed in Sec. IV, where we also calculate analytically
the time-dependent MGF of the time-integrated energy. The
corresponding trajectory phase diagram is introduced in
Sec. V. In Sec. VI we proceed to present results for the
high-order cumulants of the time-integrated energy and discuss
how the full trajectory phase transition curve can be determined
using mode-resolved cumulants. In Sec. VII we perform a full
analysis without using the mode-resolved cumulants, and we
show that the dominating singularities of the system can still be
extracted but only at low temperatures, where the fluctuations
are dominated by the long-wavelength modes. In contrast, at
high temperatures all modes are important, making it difficult
to extract the transition points from the cumulants. Finally, in
Sec. VIII we present our conclusions and provide an outlook on
extensions of our method and applications to other interesting
systems for future work.

II. s-ENSEMBLE FORMALISM

We investigate trajectory phase transitions using a thermo-
dynamic formalism known as the “s-ensemble.” Within this
framework, the stochastic trajectories of a complex many-body
system are classified according to an associated time-extensive
quantity Bt and its time-dependent probability distribution
P (Bt ) [25]. Additionally, we introduce the time-intensive
counting field s conjugate to Bt by defining the MGF,

Z(s,t) =
∑
Bt

e−sBt P (Bt ). (1)

The MGF yields the moments of Bt by differentiation with
respect to the counting field at s = 0:〈

Bn
t

〉 = (−1)n∂n
s Z(s,t)|s→0. (2)

We define the cumulant generating function (CGF) as

�(s,t) = log Z(s,t) (3)

with corresponding cumulants reading〈〈
Bn

t

〉〉 = (−1)n∂n
s �(s,t)|s→0. (4)

In the limit of long times, the MGF obeys a LD principle and
takes on the form [12]

Z(s,t) ≈ etθ(s), t → ∞, (5)

such that the CGF becomes

�(s,t) ≈ tθ (s), t → ∞, (6)

where θ (s) is the LD function of the counting process.
Pursuing the analogy with equilibrium statistical mechanics

[10], we treat the counting variable s as a thermodynamic
field and consider θ (s) as the corresponding dynamical free
energy. Within this thermodynamic formalism, time plays the
extensive role of volume for the counting process, and the
corresponding entropy density associated with the counting
process may be obtained via a Legendre transformation.
However, rather than tuning the equilibrium configuration
of microstates as in equilibrium statistical mechanics, the
counting field s biases the trajectory ensemble from the actual
one at s = 0 and may in some cases drive the system across
a trajectory phase transition. Similar to equilibrium statistical
mechanics, the analytic properties of the dynamical free energy
θ (s) encode information about the phase behavior of ensem-
bles of trajectories of the counting process [15,36,40,41].

The following discussion pertains to a large class of
stochastic many-body problems. Here we focus for the sake
of concreteness on systems that evolve according to a Master
equation of the form

d

dt
P (C,t) = −r(C)P (C,t) +

∑
C′

W (C ′ → C)P (C ′,t), (7)

where P (C,t) is the probability for the system to be in
configuration C at time t . We denote the transition rate
from configuration C to C ′ by W (C → C ′), and r(C) =∑

C′ W (C → C ′) is the total escape rate from configuration C.
Equation (7) defines a system of linear differential equations
for the P (C,t)’s, which in a convenient matrix notation can be
expressed as

d

dt
|P (t)〉 = W |P (t)〉. (8)

The vector |P (t)〉 contains the probabilities P (C,t)’s, while
the matrix elements of W are

[W ]{C,C′} = W (C ′ → C) − r(C)δC,C′ . (9)

In Ref. [26] we classified the stochastic trajectories accord-
ing to their dynamical activity, i.e., the number of configuration
changes in a trajectory, for example the number of spin flips
in a chain of spins. Here we show that our method may also
be applied if a time-integrated observable is considered. In
the following, B(t) denotes a static observable that depends
only on the configuration of the system at time t , and the
corresponding time-integrated quantity is

Bt =
∫ t

0
dt ′B(t ′). (10)
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The probability of the system being in configuration C at time
t , given a certain value of Bt , is P (C|Bt ,t). We then define

P (C,s,t) =
∑
Bt

P (C|Bt ,t)e
−sBt (11)

such that the MGF of Bt may be written

Z(s,t) =
∑
C

P (C,s,t). (12)

In matrix notation, the corresponding vector |P (s,t)〉 contain-
ing the P (C,s,t)’s obeys the modified master equation

d

dt
|P (s,t)〉 = W (s)|P (s,t)〉, (13)

with the matrix W (s) defined as [10,13,25]

W (s) ≡ W − s
∑
C

b(C)|C〉〈C|. (14)

Here b(C) is the value of the observable B in configuration C,
and 〈C| is a projection state of configuration C. We proceed by
formally solving Eq. (13) as

|P (s,t)〉 = eW (s)t |P (0)〉, (15)

where |P (0)〉 is the state of the system at the initial time t = 0.
Introducing the “flat” state, 〈−| ≡ (1, . . . ,1), we can express
the MGF as

Z(s,t) = 〈−|eW (s)t |P (0)〉. (16)

The time evolution of the MGF is determined by the eigen-
values of W (s). At zero counting field, the matrix W (0)
has a single zero eigenvalue λ0(s = 0) = 0 corresponding
to the stationary state, defined as the normalized solution
of W (0)|P S〉 = 0. All other eigenvalues λj 	=0(s = 0) have
negative real parts, ensuring exponential relaxation from an
arbitrary initial state toward the stationary state. As the
counting field is introduced, the eigenvalue spectrum is
perturbed, and the long-time limit of the MGF is governed
by the eigenvalue with the largest real part. We then have

Z(s,t) ≈ emaxj [λj (s)]t , t → ∞ (17)

and the CGF becomes

�(s,t) ≈ t max
j

[λj (s)], t → ∞ (18)

from which we can identify

θ (s) = max
j

[λj (s)] (19)

as the LD function in Eq. (6). Importantly, the introduction of
a counting field makes it possible that two large eigenvalues
may cross each other at particular values of the counting
field s = sc, where the dynamical free energy becomes
singular, signaling a trajectory phase transition. Analogous to
equilibrium statistical mechanics, a first-order trajectory phase
transition gives rise to a discontinuity in the first derivative of
θ (s) at s = sc. Similarly, if the discontinuity appears at a higher
derivative, we may speak of a continuous phase transition.

As we show below, trajectory phase transitions may be
inferred from the complex zeros of the MGF at finite times
as they move toward the transition value of the counting
field sc. In particular, the position of the leading pair of

these dynamical Lee-Yang zeros can be extracted from the
high-order cumulants of the dynamical observable of interest.
This approach was proposed by two of us in Ref. [26]. For
completeness, we describe the details of the method in the
following section before turning to a concrete application.

III. LEE-YANG ZEROS METHOD

We consider the MGF close to a transition value of the
counting field, where two large eigenvalues are degenerate,
λ0(sc) = λ1(sc). For s 
 sc, the MGF in Eq. (16) can be
approximated as

Z(s,t) 
 c0(s)eλ0(s)t + c1(s)eλ1(s)t , (20)

where c0(s) and c1(s) are given by the initial conditions. The
contributions from other eigenvalues are small and can be
neglected. Solving for the zeros of the MGF, we find

λ0(s) = λ1(s) + log[c1(s)/c0(s)] + iπ (2n + 1)

t
, (21)

with n being an integer. Importantly, this equation reduces to
λ0(s) = λ1(s) in the long-time limit, t → ∞. Thus, with time
the dynamical Lee-Yang zeros of the MGF will move toward
the transition point at s = sc.

The motion of the Lee-Yang zeros can be extracted from the
high-order cumulants of the dynamical observable of interest.
To see this, we express the MGF in terms of the dynamical Lee-
Yang zeros. Based on the Hadamard factorization theorem, we
expect that the MGF can be written in terms of its zeros as

Z(s,t) = ea(t)s
∏
j

[sj (t) − s]

sj (t)
. (22)

Here sj (t) are the dynamical Lee-Yang zeros and a(t) is a real
function of time which is independent of the counting field.
The Lee-Yang zeros come in complex conjugate pairs at all
times since the MGF is a real function for real s.

Using this expression, we may write the CGF as

�(s,t) = a(t)s +
∑

j

{log[sj (t) − s] − log[sj (t)]}. (23)

The cumulants of Bt are then [29–31]〈〈
Bn

t

〉〉 = a(t)δn,1 + (−1)(n−1)(n − 1)!
∑

j

e−in arg[sj (t)]

|sj (t)|n , (24)

having introduced the polar notation

sj = |sj |ei arg[sj ]. (25)

The zeros of the MGF correspond to logarithmic singularities
in the CGF which determine the high-order derivatives of the
CGF, or the cumulants, in accordance with Darboux’s theorem
[42,43].

For large n, the sum in Eq. (24) is dominated by the
leading pair of Lee-Yang zeros closest to the origin, denoted
as s0(t) and s∗

0 (t), and we may approximate the sum as
[26,29–31,43,44]〈〈

Bn
t

〉〉 ≈ (−1)(n−1)(n − 1)!
2 cos[n arg s0(t)]

|s0(t)|n . (26)

We see that the higher-order cumulants grow as the factorial
of the cumulant order n and oscillate as a function of any

012119-3



HICKEY, FLINDT, AND GARRAHAN PHYSICAL REVIEW E 88, 012119 (2013)

parameter that changes the complex argument arg s0 of the
dominant pair of Lee-Yang zeros [29,43]. This behavior has
been observed experimentally in real-time counting experi-
ments on electron transport through a quantum dot [29,45].
Moreover, from the relation above follows the matrix equation
[26,30,31,46]⎡

⎣ 1 − κ
(+)
n

n

1 − κ
(+)
n+1

n+1

⎤
⎦ [−(s0 + s∗

0 )

|s0|2

]
=

[
(n − 1)κ (−)

n

nκ
(−)
n+1

]
, (27)

which can easily be solved for the leading pair of Lee-Yang
zeros given the ratios of cumulants

κ (±)
n (t) ≡

〈〈
Bn±1

t

〉〉〈〈
Bn

t

〉〉 . (28)

Thus, from a measurement (or simulation) of the high-order
cumulants of Bt at finite times, evolving under the unbiased
dynamics at s = 0, it is possible to monitor the leading pair
of Lee-Yang zeros as they move toward a transition value
of the counting field at which a trajectory phase transition
occurs [26,28].

This method was used by two of us in Ref. [26] to investigate
a first-order trajectory phase transition occurring at sc = 0 in
kinetically constrained models of glass formers [32,33]. In the
following sections, we apply the same method to a system
which exhibits a continuous trajectory phase transition along
a whole curve of critical points in the complex plane of the
counting field.

IV. GLAUBER-ISING CHAIN

The one-dimensional Glauber-Ising model consists of a
periodic chain of N classical spins with total energy

E = −J

2

∑
i

SiSi+1, (29)

where the sum runs over all sites of the chain and Si = ±1 is
the value of the spin on site i [37]. The rate for flipping the
spin on site i is given as

	i = 	

1 + eβ�Ei
, (30)

where

�Ei = JSi(Si−1 + Si+1) (31)

is the energy cost of flipping the spin and β = 1/kBT is the
inverse temperature. The rate 	 sets the overall time scale
for the spin-flip processes. The spin-flip rates obey detailed
balance, such that the spins become Boltzmann-distributed
in the stationary state. However, in contrast to its stationary
properties, the relaxation of the system toward equilibrium is
a complex dynamical process.

In the following, we investigate the dynamical fluctuations
of the time-integrated energy, taking the energy function E(t)
as the static observable B(t) which forms Bt as the time-
integral

Et =
∫ t

0
dt ′E(t ′). (32)

To this end, we evaluate the time-dependent MGF of the time-
integrated energy. Technically, we proceed as in Ref. [38] by
introducing the variables

ni = 1
2 (1 − SiSi+1) (33)

corresponding to the number (ni = 0,1) of domain walls
between sites i and i + 1. In terms of these domain-wall
variables, the energy function simplifies to

E = J
∑

i

(ni − 1/2). (34)

We may moreover express the Master operator W in terms of
Pauli matrices by defining

σ z
i = 2(ni − 1/2) (35)

together with the standard raising and lowering operators σ+
i

and σ−
i . The presence of a domain wall corresponds to the

up-state of σ z
i , while no domain wall is represented by the

down-state. In this notation, we have

E = J

2

∑
i

σ z
i (36)

and

�Ei = −J
(
σ z

i + σ z
i−1

)
. (37)

The generator for the time evolution may then be written as
(see also Refs. [38,47])

W = 	

2

∑
i

[
2σ+

i σ−
i+1 + γ σ−

i σ−
i+1 + λσ+

i σ+
i+1

+ (λ−1)σ z
i − 1

]
, (38)

where

γ = 2

1 + e−2Jβ
(39)

and

λ = 2 − γ. (40)

From Eq. (14), the biased Master operator becomes

W (s) = W − s
J

2

∑
i

σ z
i . (41)

We note that the LD statistics of the time-integrated energy
for antiferromagnetic interactions (J → −J ) can be obtained
by changing the sign of the counting field s and the inverse
temperature β. In the following, energy and time are measured
in units of J and 	−1, and we are free to set J = 1 and
	 = 1.

We continue by symmetrizing W (s) to obtain the non-
Hermitian matrix

H(s) = eβE/2W (s)e−βE/2, (42)

where E is the diagonal energy operator in Eq. (36). The matrix
H(s) then takes the form of a non-Hermitian Hamiltonian for
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a quantum spin chain,

H(s) = 1

2

∑
i

(
1 + √

γ λ

2
σx

i σ x
i+1 + 1 − √

γ λ

2
σ

y

i σ
y

i+1

+(λ − 1 − s)σ z
i − 1

)
. (43)

The counting field s is in general complex and appears as
a complex magnetic field above, making the Hamiltonian
non-Hermitian. In particular, one should note that the biased
dynamics maps directly to the Hamiltonian of the one-
dimensional quantum Ising chain, when s is real and β = 0,
such that γ = λ = 1. We now focus on the case in which s

is real to evaluate the MGF and CGF in the long-time and
large-system-size limit, before analytically continuing to the
complex-s plane.

We diagonalize the Hamiltonian by applying a Jordan-
Wigner transformation followed by a Bogoliubov rotation (see
Appendix A), yielding

H(s) = −
∑

k

[�k(s)(c†kck − 1/2) + 1/2]. (44)

Here c
†
k and ck are fermionic creation and annihilation

operators labeled by the wave vectors

k = πn

N
, n = −N + 1, − N + 3, . . . ,N − 1, (45)

and the dispersion relation reads

�k(s) =
√

(s − λ + 1 − cos k)2 + γ λ sin2 k. (46)

In terms of the Hamiltonian of the quantum spin chain, the
MGF becomes

Z(s,t) = 〈0|etH(s)|0〉, (47)

where |0〉 is the ground state of H(s) at s = 0.
Using this expression, we obtain the MGF as

Z(s,t) =
∏
k>0

et(�k (s)−1) cos2 αs
k

(
1 + tan2 αs

ke
−2t�k (s))︸ ︷︷ ︸

Zk(s,t)

, (48)

where the αs
k’s are related to the angles of the Bogoliubov

rotation (see Appendix A), and we have used that Z−k(s,t) =
Zk(s,t). Additionally, the CGF becomes

�(s,t) =
∑
k>0

log Zk(s,t) =
∑
k>0

�k(s,t), (49)

showing explicitly that each k mode contributes independently
to the fluctuations of the time-integrated energy with a
corresponding term �k(s,t) in the CGF.

Equations (48) and (49) constitute the central results of
this section as they allow us to investigate the time-dependent
fluctuations of the time-integrated energy and its cumulants.
As an important check of our result, we see that Eq. (48) in the
long-time limit correctly takes the form Z(s,t) ≈ etθ(s), where

θ (s) =
∑
k>0

[�k(s) − 1]︸ ︷︷ ︸
θk(s)

= 1

2

∑
k

θk(s) (50)

is the LD function in agreement with Ref. [38], having
corrected for a missing constant of −1/2. In the last step,

we used �−k(s) = �k(s), allowing us to extend the sum to
negative values of k. As in Ref. [38], we can take the large-
system-size limit, N → ∞, where the LD function becomes

θ (s) → N

2

∫ π

−π

dk

2π
[�k(s) − 1] (51)

from which we may determine the trajectory phase diagram
of the Glauber-Ising chain.

In the thermodynamic limit, one should consider the scaled
dynamical free energy θ (s)/N , which is well-behaved as
N → ∞. It is worth noting that for all finite N the Hadamard
factorization (22) still holds and the method outlined in this
Section is still applicable. For a finite time t, the range of
possible values Bt may take is bounded from above and
from below. Furthermore, even in the N → ∞ limit where
this factorization may not hold, using appropriately scaled
cumulants, our method is expected to be applicable. However,
in the thermodynamic limit the mode occupation numbers
become dense on the interval [0,π ], and examining the
mode-resolved cumulants as will be described in Sec. VI may
be difficult in an actual experiment or simulation.

V. TRAJECTORY PHASE DIAGRAM

We are now ready to explore the trajectory phase diagram
of the Glauber-Ising model based on the above-mentioned
LD function. The following analysis simplifies considerably if
we consider the individual k-mode contributions θk(s) to the
LD function; see Eq. (50). We first treat the counting field s

as a real variable. The individual k-mode contributions θk(s)
are singular at values of the counting field, where �k(s) has
a square-root branch point. These can be found by solving
�k(s) = 0, which immediately gives us a series of phase
transition points that we denote as sc. Requiring that the
counting field s is real, we find k = 0,π and

s(±)
c (β) = λ − 1 ± 1, (52)

where λ is given by Eqs. (39) and (40). The k = 0 and
k = π modes separate paramagnetically ordered trajectories
from antiferromagnetic and ferromagnetic trajectories,
respectively [38]. The two lines of trajectory phase transition
points are shown in the left panel of Fig. 1 together with the
different trajectory phases. We note that the phase transitions
are continuous [38].

Next, we promote the counting field s to a complex variable
and solve again for the trajectory phase transition points of
the individual k-mode contributions. In this case, all k-mode
contributions are singular at some complex value of the
counting field. We now find that �k(s) has square-root branch
points at the following complex values of the counting field:

sc(k,β) = λ − 1 + cos k + i
√

γ λ sin k. (53)

In the thermodynamic limit, N → ∞, the wave vector k ∈
[−π,π ] becomes continuous such that the transition points
(for a fixed temperature) form a closed curve in the complex
plane of the counting field; see Fig. 1. At finite temperatures
(β > 0), the curve is an ellipse, since γ λ 	= 1. However, as the
temperature increases, the curves approach the unit circle as
expected in the infinite-temperature limit (β = 0 and γ = λ =

012119-5



HICKEY, FLINDT, AND GARRAHAN PHYSICAL REVIEW E 88, 012119 (2013)

2 1 0 1 2
2

1

0

1

2

2 1 0 1 2
2

1

0

1

2

2 1 0 1 2
2

1

0

1

2

2 1 0 1 2
2

1

0

1

2(a) (b) (c) (d)

Im
[s

]

Im
[s

]

Im
[s

]

β

Re[s]Re[s] Re[s]Re[s]

β = 1 β = 0.5 β = 0

AFM

PM

FM

k = 0k = π

FIG. 1. (Color online) Trajectory phase diagram and closed curves of critical points. (a) Trajectory phase diagram in the plane of the inverse
temperature β and the real part of the counting field Re{s}. (Changing the sign of the interaction J → −J is equivalent to the sign changes
s → −s and β → −β.) The k = π and k = 0 modes separate paramagnetically (PM) ordered trajectories from antiferromagnetic (AFM) and
ferromagnetic (FM) trajectories, respectively. (b)–(d) Closed curves of trajectory phase transition points in the complex plane of the counting
field for different inverse temperatures, β = 1, 0.5, and 0.

1) according to the Lee-Yang circle theorem of the associated
one-dimensional quantum Ising model [27].

VI. MODE-RESOLVED CUMULANTS

Having understood the trajectory phase diagram, we move
on to the application of the method proposed in Ref. [26]
and described again in Sec. III. We recall that the method
is applicable in situations in which only the real physical
dynamics (taking place without the counting field, i.e., s = 0)
can be probed during a finite period of time. The purpose of
this section is to apply the proposed method in order to detect
signatures of the trajectory phase transition points found above.

We first consider the individual k-mode contributions
�k(s,t) at finite times; see Eqs. (48) and (49). The corre-
sponding (time-dependent) k-resolved cumulants are〈〈

En
t

〉〉
k

= (−1)n∂n
s �k(s,t)|s→0. (54)

In the left panel of Fig. 2, we show the k-resolved cumulants
(full lines) of order m = 6,7,8,9 as functions of time for a
particular value of k. (We have checked that other values of
k give similar results.) The absolute value of the cumulants is
plotted on a logarithmic scale, such that a downward-pointing
spike corresponds to a cumulant crossing zero.

In the next step, we use Eq. (27) to extract the leading
pair of Lee-Yang zeros closest to s = 0 from the finite-time
cumulants. This allows us to follow the motion of the leading
pair of Lee-Yang zeros as they move with time. In the right
panel of Fig. 2, we show the motion of the extracted Lee-Yang
zeros (open circles) in the complex plane of the counting field.
Together with the Lee-Yang zeros, we plot the full curve of
critical points (full line) as well as the particular critical points
corresponding to the given value of k (red circles). Clearly, the
leading pair of Lee-Yang zeros approaches the critical points
with increasing time. In particular, we see that the nonzero
critical points can be deduced from the finite-time behavior of
the high-order cumulants (obtained at zero counting field).

To corroborate our extraction of the leading pair of Lee-
Yang zeros, we plug the zeros back into Eq. (26) and show
the resulting curves (dashed lines) in the left panel of Fig. 2
together with the exact results (full lines). The agreement
between the two sets of curves demonstrates that Eq. (26)

provides a good approximation to the exact results. In general,
we expect that Eq. (26) works well at relatively short times,
where only a single pair of Lee-Yang zeros is close to s = 0.
Some deviations are already seen in Fig. 2 as the second
pair of Lee-Yang zeros comes close to s = 0 and starts to
contribute to the sum in Eq. (24). The accuracy of the method
may be improved by using higher cumulants [30,31,46]. At
longer times, more Lee-Yang zeros move toward the critical
points and the agreement breaks down between Eq. (26) and
the exact results for the high-order cumulants (not shown).
However, as seen in the right panel of Fig. 2, the critical points
can be extracted from the k-resolved cumulants before this
breakdown.

VII. FULL ANALYSIS

We now consider the full MGF in Eq. (48) and the
corresponding cumulants which are simply the sum of all
k-resolved cumulants,〈〈

En
t

〉〉 =
∑

k

〈〈
En

t

〉〉
k
. (55)

We recall that the approximation in Eq. (26) only includes
the leading pair of Lee-Yang zeros, which will converge to
(at most) two distinct points in the complex-s plane. This
immediately makes it clear that one cannot determine the full
line of phase transition points as with the k-resolved cumulants.
However, in some cases a few critical points closest to s = 0
may dominate the fluctuations of the time-integrated energy.

Indeed, considering again Fig. 1 it is clear that the fluctu-
ations of the time-integrated energy in the high-temperature
limit (β = 0) are influenced by all the critical points on the
unit circle which are equally far from s = 0. In contrast, as the
temperature is lowered, a few points on the ellipse are closest to
the origin, and those points will dominate the dynamics of the
system and the fluctuations of the time-integrated energy. With
this in mind, we may anticipate that our method will work well
in the low-temperature regime. This regime has interesting
dynamical properties as thermal fluctuations are suppressed
and only the intrinsic dynamical fluctuations associated with
the model determine the temporal evolution of the cumulants.
In contrast, we expect that the method will not be successful
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FIG. 2. (Color online) Mode-resolved cumulants and dynamical Lee-Yang zeros. (a) Natural Logarithm of mode-resolved cumulants of
order n = 6–9 as functions of time with k = 3π/4 and β = 0.5. Exact results (full lines) together with the approximation (dashed lines)
based on the extracted pair of Lee-Yang zeros. (b) Motion of the Lee-Yang zeros (open circles) extracted from the high-order cumulants. The
Lee-Yang zeros move toward the phase transitions points (filled circles) on the closed curve of transition points.

in capturing the critical points in the high-temperature
limit.

In Fig. 3, we show the dynamical Lee-Yang zeros extracted
from the high-order cumulants of the time-integrated energy
at low and at high temperatures, respectively. For these
calculations, we have used the full cumulants and not the
k-resolved cumulants as in the previous section. At low
temperatures (left panel), a few critical points on the ellipse are
closest to the origin and these points are expected to dominate
the fluctuations of the time-integrated energy. In this case,
we see that our method is successful in capturing the motion
of the leading pair of Lee-Yang zeros as they approach the
dominating critical points. At low temperatures, the high-order
cumulants are dominated by the low-k modes, whose singu-
larities are closest to s = 0. Going to the high-temperature
limit (β = 0) in the right panel of Fig. 3, this picture changes
drastically. In this case, all k modes contribute significantly to
the fluctuations and all critical points become important. Of
course, we can in principle still extract dynamical Lee-Yang
zeros from the high-order cumulants using Eq. (27). However,
as Eq. (26) is no longer valid, and since several Lee-Yang zeros
now contribute to the high-order cumulants, the extraction is
no longer meaningful. Indeed, as we see in the right panel
of Fig. 3, the extracted Lee-Yang zeros do not approach the
critical points as time increases.

VIII. CONCLUSIONS

We have employed our recently proposed method to extract
dynamical Lee-Yang zeros from high-order cumulants of

dynamical observables. Concretely, we have investigated the
time-integrated energy of the one-dimensional Glauber-Ising
model for which we evaluated the generating function at finite
times by mapping the generator of the biased dynamics to
a non-Hermitian Hamiltonian of an associated quantum spin
chain. The Glauber-Ising chain is of special interest, since the
singularities of the dynamical free energy make up a whole
curve of critical points and the trajectory phase transitions are
continuous rather than of first order. Compared to our previous
work on dynamical systems with a single first-order transition
point at zero counting field [26], this makes the Glauber-Ising
model a particularly challenging problem for the proposed
method.

As we have shown, the full trajectory phase space diagram
may still be reconstructed using mode-resolved cumulants.
Considering the full cumulants, we find that the dominating
singularities of the system can still be extracted, but only at
low temperatures, where the fluctuations are dominated by the
long-wavelength modes. In contrast, at high temperatures all
modes are important, making it difficult to extract the transition
points from the cumulants.

Our work leaves a number of interesting questions and tasks
for future research. It would be interesting to see if the nature
of a trajectory phase transition (first-order or continuous) can
be understood from the dynamical Lee-Yang zeros. In analogy
with conventional Lee-Yang theory, we expect that the way the
dynamical Lee-Yang zeros accumulate in the long-time limit
carries this information [28]. Such an approach may require
that not only is the leading pair of Lee-Yang zeros extracted
from the high-order cumulants, but also some of the subleading
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FIG. 3. (Color online) Dynamical Lee-Yang zeros at different temperatures for a chain with N = 20. (a) At low temperatures (β = 1), the
fluctuations of the time-integrated energy are dominated by the long-wavelength modes, whose singularities are closest to s = 0. The extracted
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does not move toward the phase transition points. The dynamical Lee-Yang zeros were extracted from the cumulants of order n = 6,7,8,9.

pairs may be needed. Finally, it would be interesting to apply
the proposed method to a number of open quantum systems,
for instance driven quantum dots [40], micromasers [36], and
single-electron transistors [41].
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APPENDIX : DIAGONALIZATION OF Hs

The quantum spin chain is governed by the Hamiltonian
H(s) in Eq. (43), which can be diagonalized using a Jordan-
Wigner transformation in combination with a Bogoliubov
rotation [2]. The Jordan-Wigner transformation expresses
the spin- 1

2 operators σ z
i , σ+

i , and σ−
i at site i in terms of

corresponding fermionic operators ai and a
†
i with {a†

i ,aj } =
δi,j as

σ z
i = 1 − 2a

†
i ai, σ+

i =
∏
j<i

(1 − 2a
†
j aj )ai,

(A1)
σ−

i =
∏
j<i

(1 − 2a
†
j aj )a†

i .

Moreover, by changing to the Fourier representation

ai = 1√
N

∑
k

e−ikri ak, (A2)

we may rewrite the Hamiltonian as

H(s) = 1

2

∑
k

[2(s+1 − λ)a†
kak+2 cos ka

†
kak

−i
√

γ λ sin k[a−kak + a
†
−ka

†
k − (s+2−λ)]]. (A3)

For an even number of spins N and with periodic boundary
conditions, the discrete wave vector k takes on the values given
by Eq. (45).

We note that the Hamiltonian in Eq. (A3) contains terms that
do not conserve the number of fermions, for instance a

†
−ka

†
k .

These terms are eliminated next via a canonical Bogoliubov
rotation [2]. This transformation expresses the Jordan-Wigner
operators as a linear combination of a new set of s-dependent
fermionic operators ck,s and c

†
k,s with {ck,s,c

†
k′,s} = δk,k′ as

ak = cos φs
kck,s + i sin φs

kc
†
−k,s ,

(A4)
a
†
k = cos φs

kc
†
k,s − i sin φs

kc−k,s .

The Bogoliubov angles φs
k satisfy

φs
−k = −φs

k (A5)

and are chosen such that only terms that conserve the number
of fermions are present in the transformed Hamiltonian. To
enforce this condition, the Bogoliubov angles must satisfy

tan φs
k = −

√
γ λ sin k

s + 1 − λ − cos k
. (A6)

With this choice we arrive at Eq. (44) (having omitted the s

dependence of the operators ck,s and c
†
k,s) with the free-fermion

dispersion relation given by Eq. (46).
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Next, we evaluate the MGF Z(s,t). To this end, we note
that the vacuum state |0〉s=0 of H(s = 0) may be expressed as
a BCS state of H(s) with s 	= 0. Since ck,s=0|0〉s=0 = 0 for all
k, we may expand |0〉 as a BCS state of the s vacuum |0〉s of
the form

|0〉s=0 = 1

N exp

(∑
k>0

B(k)c†k,sc
†
−k,s

)
|0〉s

=
⊗
k>0

[
cos αs

k|0k,0−k〉s − i sin αs
k|1k,1−k〉s

]
, (A7)

where the second line is obtained by expanding the expo-
nential and using the Bogoliubov rotation (A4). Here N
is a normalization factor,

⊗
is a direct product, |nk,n−k〉s

indicates occupation states of the fermionic modes with
±k, and the coefficients αs

k are related to the Bogoliubov
angles via

αs
k = φ0

k − φs
k

2
. (A8)

With these expressions at hand, we may evaluate the MGF
directly and thereby arrive at Eq. (48).
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