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Nonconvexity of the relative entropy for Markov dynamics: A Fisher information approach
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We show via counterexamples that relative entropy between the solution of a Markovian master equation and
the steady state is not a convex function of time. We thus disprove the hypotheses that a general evolution principle
of thermodynamics based on the decrease of the nonadiabatic entropy production could hold. However, we argue
that a large separation of typical decay times is necessary for nonconvex solutions to occur, making concave
transients extremely short lived with respect to the main relaxation modes. We describe a general method based
on the Fisher information matrix to discriminate between generators that admit nonconvex solutions and those
that do not. While initial conditions leading to concave transients are shown to be extremely fine-tuned, by our
method we are able to select nonconvex initial conditions that are arbitrarily close to the steady state. Convexity
does occur when the system is close to satisfying detailed balance or, more generally, when certain normality
conditions of the decay modes are satisfied. Our results circumscribe the range of validity of a conjecture by
Maes et al. [Phys. Rev. Lett. 107, 010601 (2011)] regarding monotonicity of the large deviation rate functional
for the occupation probability, showing that while the conjecture might hold in the long-time limit, the conditions
for Lyapunov’s second criterion for stability are not met.
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I. INTRODUCTION

The quest for general variational principles of thermody-
namics and for arrows of time far from equilibrium leads
researchers to examine the behavior of several ensemble and
path observables in order to establish the stability of steady
states, describe fluctuations out of them, and characterize
evolution towards them [1–7]. In the context of the proba-
bilistic formulation of thermodynamics in terms of Markov
processes [8–10], blending aspects of information theory
and thermodynamics, relative entropy with respect to the
steady state naturally draws the inquirer’s attention, having
a threefold role: a dynamic one as a Lyapunov functional [8],
a thermodynamic one as a nonadiabatic contribution to the
entropy production [11,12], and a statistical one as a tool for
parameter estimation [13,14]. Along these lines, many may
have conducted systematic research on the hypothesis that
relative entropy is a convex function of time along the solution
of a Markovian master equation, at least not too far from
the steady state. Indeed, this is a tempting hypothesis, in that
it would make for a new principle of thermodynamics for a
nonequilibrium state function, analogous to the principle of
minimum entropy production [3,15]. In this paper we display
a simple counterexample to this hypothesis and describe the
procedure by which similar counterexamples can be generated.
We also discuss the phenomenology and the typicality of such
violations, arguing that while the principle is not generally
true, actual violations are de facto marginal.

A. Physical motivation

We will work with continuous-time discrete-state space
stationary Markov processes, described by a master equation
whose solution p(t) tends asymptotically to a unique steady
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state p∗. Along this solution, relative entropy with respect to
the steady state is defined as

H (t) =
∑

i

pi(t)hi(t), (1)

where we refer to

hi(t) = ln
pi(t)

p∗
i

(2)

as the relative self-information.
Relative entropy is positive when p(t) �= p∗ and it de-

creases monotonically to zero; hence it is a proper Lyapunov
function [8,16]. For systems whose transition rates satisfy the
condition of detailed balance, affording an equilibrium steady
state with no net circulation of currents, relative entropy is
convex when the system is sufficiently close to the steady state,
i.e., in the linear regime. For this class of systems there exist
an energy function and an environment temperature T such
that dF = T dH is consistently identified as a free energy
increment (setting Boltzmann’s constant kB = 1). In this
case the entropy production is a state function d̄ Si = −dH ,
describing in many respects the system’s thermodynamics.
Monotonicity of the relative entropy corresponds to a positive
entropy production rate Ṡi � 0, i.e., to the second law
of thermodynamics. The entropy production rate vanishes
at equilibrium Ṡi = 0, where no irreversible fluxes occur.
Convexity of the relative entropy in the linear regime yields
the stability criterion S̈i � 0, which constitutes a version of
the minimum entropy production rate principle [3]. Hence the
thermodynamics of systems relaxing to equilibrium states is
fully encoded in the behavior of the relative entropy.

For autonomous nonequilibrium systems, whose generator
does not depend explicitly on time, (minus) the time derivative
of the relative entropy is not a fully satisfactory concept of
entropy production rate, as one expects that nonequilibrium
steady states should display a non-null steady flux of entropy
towards the environment. It can still be interpreted as a
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nonadiabatic contribution dSna = −dH to the total entropy
production d̄ Si = d̄ Sa + dSna , owing its name to the fact
that when the system is perturbed on time scales that are
longer than the spontaneous relaxation times of the system
(adiabatic limit), this contribution vanishes [12]. It has also
been interpreted as a sort of nonequilibrium free energy for
systems subject to nonequilibrium forces such as chemical
potential gradients, in an isothermal environment [17]. Along
the lines of research developed by Schnakenberg [8], an
adiabatic term d̄ Sa is added to the nonadiabatic one accounting
for a flux of entropy from the system to the environment,
due to departure from the condition of detailed balance. The
adiabatic-nonadiabatic splitting of Schnakenberg’s entropy
production is particularly useful to characterize the second law
of thermodynamics for nonautonomous Markovian evolution
[18], in which case one shall also account for work [19].

In general, the total entropy production rate is not a state
function, reflecting the well-known fact that irreversibility
along nonequilibrium processes is characterized by inexact
differentials that do not integrate to zero along closed paths,
a notable example being Clausius’s formulation of the second
law

∮
δQ/T � 0 (see Ref. [20] for a discussion in the context

of Schnakenberg’s theory). For this reason we distinguished
between the exact and the inexact differentials d and d̄ .
Moreover, while positive in accordance with the second law of
thermodynamics, the total entropy production rate presents no
apparent regularity in its time evolution. In particular it does
not approach its steady value monotonically.

Then convexity of the relative entropy, at least in the linear
regime, would be an intriguing hypothesis, in that it would
make for a minimum principle of a nonequilibrium state
function, amending the unpredictable behavior of the entropy
production rate. The principle would state that the nonadiabatic
rate of entropy production decreases monotonically to zero,
regardless of the concomitant spontaneous arrangement of heat
fluxes, matter fluxes, charge currents, etc.

B. Results and plan of the paper

The plan of the paper is as follows. In Sec. II A we
provide a counterexample for a simple three-state system
with a real spectrum of the generator. To generate it we
employ a method based on the Fisher covariance matrix. In
Sec. II B we describe the theory in the case of generators
with a real spectrum. We also show that convexity violation
can occur with initial conditions picked arbitrarily close
to the steady state, where by “close” we mean that the
second-order term in the expansion of the relative entropy
captures the full dynamical behavior. This steady state must
be nonequilibrium, as it is well known that for equilibrium
systems convexity is restored. We provide a proof of this fact
within our formalism in Sec. II C. While convexity violation
can occur arbitrarily close to the steady state, we argue in
Secs. II D and II E that it is rare and short lived. It requires a
wide separation of time scales and a very precise fine-tuning
of the initial conditions. Moreover, an extensive numerical
search did not allow us to find counterexamples for three-state
systems with complex spectrum, which might indicate that
convexity is even more robust when some eigenmodes have
an oscillatory character. If present at all, nonconvex transients

of the relative entropy prelude to a final regime dominated
by the mode with slowest decay rate. This regime is trivially
convex for systems with a real spectrum, while in the complex
case we derive conditions on the real and imaginary parts
of complex-conjugate eigenvalues in Sec. II F. For the sake of
completeness, the general theory for systems with a complex
spectrum is analyzed in Appendix A. Convexity still holds
near the steady state for a special class of normal systems, as
Maes et al. discussed in Ref. [5]; we recast this result in our
formalism.

In Sec. III a connection between the second time derivative
of the relative entropy and the first time derivative of the
dynamical activity near the steady state is established. This
allows us to discuss the range of validity of a conjecture
by Maes et al. regarding the monotonicity of the dynamical
activity [5,6].

Finally, in Sec. IV we discuss the statistical rationale behind
the Fisher information measure and give an interpretation of
the Fisher matrix in terms of correlation of modes, providing
bounds on the information loss about the initial state. This
material is autonomous and can be safely skipped in view of
the conclusions.

II. THEORY AND RESULTS: REAL SPECTRUM

A. Counterexample

Consider the continuous-time Markovian generator

W =
⎛
⎝−401 1 1

400 −2 1
1 1 −2

⎞
⎠ (3)

with steady state

p∗ = (3,801,402)/1206. (4)

Notice that the system is strongly unbalanced, with one
overwhelmingly large rate. As a consequence, one state is
almost neglected, its occupancy probability falling rapidly to
a value near zero. We choose as initial density

p = (0.002,0.464,0.534). (5)

We propagate p in time via p(t) = exp(tW )p and evaluate
relative entropy with respect to the steady state. The plot of
Ḧ (t) in Fig. 1 (bolder line) clearly becomes negative for a
short transient time.

The above generator has a real spectrum, with eigenvalue
zero relative to the steady state and two negative eigenvalues
λ+ = −402 and λ− = −3 determining respectively fast and
slow exponential decays. Hence the system displays a large
separation between typical decay times. The corresponding
eigenvectors are

q+ ≈ (−1,1,0), q− ≈ (0, − 1,1). (6)

If we perturb the initial condition along the mode with
the slower decay rate q−, even large perturbations do not
suffice to restore convexity (see curves b and c in Fig. 1;
for the sake of better visualization near the origin, plots are
given as functions of t4). However, if we perturb the initial
condition along the mode with the faster decay rate q+,
even slight perturbations do (Fig. 1, curves d and e). Thus
a very precise fine-tuning on the initial conditions must be
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FIG. 1. (Color online) Second time derivative of the relative
entropy as a function of t4, with different initial conditions: curve a, as
in our counterexample, p(a)(0) = p; curves b and c, perturbed along
the slow mode, with p(b)(0) = p + 0.1 q− and p(c)(0) = p − 0.1 q−;
and curves d and e, perturbed along the fast mode, with p(d)(0) =
p − 0.001 q+ and p(e) = p − 0.005 q+.

attained to generate a counterexample. Moreover, since the
dynamics damps the fastest mode first, the concave regime
is extremely short lived, with a typical survival time of order
τ ∼ −λ−1

+ . Finally, the large separation of time scales implies
that mapping the initial state back in time with exp(−tW ) leads
very soon to nonphysical solutions (negative probabilities), as
the fastest eigenmode would now dominate. Reversing the
argument, typical dynamics will not pass by state p, which
has to be specifically selected.

B. Conditions for convexity violations

We describe in this section a general algebraic procedure
that allows us to discriminate between generators that admit
initial conditions violating convexity and those that do not. Let
us consider a Markovian continuous-time evolution on n states,
with irreducible rates wij for jumps from state j to i admitting
a unique steady state p∗. It is known that the n − 1 non-null
eigenvalues λa of W have a negative real part with units of
an inverse time −1/τa characterizing relaxation. We consider
in this section generators with a real nondegenerate spectrum,
which afford a complete set of independent eigenvectors. We
will discuss defective generators, affording a nondiagonal
Jordan normal form, in Sec. II E. The eigenvalue equations
read

Wqa = λaq
a, Wp∗ = 0. (7)

Diagonalizing the propagator U (t) = exp(tW ), we obtain for
the time-evolved distribution

p(t) = p∗ +
∑

a

eλat caq
a, (8)

where c = (c1, . . . ,cn−1) is a real vector, specifying the initial
state of the system. Let ca(t) = ca exp λat . We expand the
relative entropy to second order, obtaining

H (t) ≈
∑
a,b

gabca(t)cb(t), (9)

where

gab = 1

2

∑
i

qa
i qb

i

p ∗
i

= 1

2
〈qa,qb〉. (10)

The right-hand side defines a scalar product 〈·,·〉. Properties
of the matrix G = (gab)a,b, especially regarding equilibrium
systems, are well known [16]. Here it will be called Fisher
matrix for reasons that are rooted in estimation theory, which
will be explained in Sec. IV. It is a Gramian matrix, i.e., its
entries are obtained as scalar products among vectors. When
vectors qa are independent, as under our assumptions, Gramian
matrices are positive definite [21]. The Fisher matrix can then
be seen as a realization in local coordinates of a metric on the
space of statistical states; some applications to nonequilibrium
decay modes have been discussed by one of the authors in
Ref. [22].

We introduce the negative-definite diagonal matrix of
eigenvalues

� = diag{λ1, . . . ,λn−1}. (11)

Let c(t) = et� c. Taking twice the time derivative of the relative
entropy, to second order, we obtain

Ḧ (t) = c(t)T
K︷ ︸︸ ︷

(2�G� + �2G + G�2) c(t). (12)

The overbrace is used to define a bilinear symmetric form K ,
whose first contribution 2�G� is positive definite. However,
K itself might admit at least one eigenvector k relative to
a negative eigenvalue. When this is the case, the choice of
initial conditions c ∝ k yields an initially negative second time
derivative of the relative entropy. Moreover, since the length of
c can be made small at will, we can select initial states that are
arbitrarily close to the steady state, still displaying violation
of convexity and fulfilling the second-order approximation to
any degree of accuracy. Since K is known to be positive for
particular systems, by continuity a negative eigenvalue of K

can only occur if there exist generators such that

det K = 0. (13)

Notice that K is built out of the eigenvalues and eigenvectors
of the generator, which are expressed in terms of transition
rates. Hence Eq. (13) identifies an algebraic set within the set
of allowed rates.

To recapitulate, the search for nonconvex generators is
reduced to an algebraic polynomial equation, whose difficulty
can be tuned at will by suitably parametrizing transition rates.
Once a generator with at least one negative eigenvalue of K is
found, one can solve for eigenvalues and eigenvectors and find
initial conditions that violate convexity. We report that this
procedure greatly reduced the computational complexity of
the problem: Rather than randomly searching for a generator
and an initial state, we only looked for a suitable generator
by a simple algebraic procedure; nonconvex initial conditions
follow.

C. Convexity and time-reversal symmetry

In this section we show that the relative entropy of close-
to-equilibrium systems obeys convexity and how properties of
the Fisher matrix are related to time-reversal symmetry. This
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analysis will be extended to the complex spectrum case in
Appendix A.

A Markov process run backward is not in general a
Markov process. However, when the trajectory is sampled
from the steady state, the backward process is indeed Marko-
vian. The corresponding generator, called time reversal, in
general will not coincide with the forward generator [23].
The time-reversed dynamics inverts certain nonequilibrium
characteristics (e.g., steady currents) while preserving others
(e.g., waiting times). It has been considered by various authors
to detail fluctuation theorems [24–26], to prove convexity for
normal systems [5], to discuss spectral properties of Markov
processes [27], and to identify a supersymmetry in Markovian
dynamics [28].

Introducing the diagonal matrix

P = diag{p∗
1, . . . ,p

∗
n−1}, (14)

the time-reversal generator is given by

W = PWT P −1. (15)

Its properties include the following: The transformation is
involutive, the reversed dynamics affords the same steady state,
steady currents and affinities change sign, exit probabilities out
of states are unchanged, and the spectra of W and W coincide.

Equilibrium generators are those for which the time-
reversed generator coincides with the original generator
W = W . In practice, this translates into the condition of
detailed balance wijp

∗
j = wjip

∗
i . We can further characterize

equilibrium generators in terms of the Fisher matrix as follows.
We define

V = P −1/2WP 1/2. (16)

Equation (16) is a similarity transformation, hence the spectra
of W and V coincide and eigenvectors are mapped into
eigenvectors. Performing an analogous transformation on the
reversed generator, we obtain

V T = P −1/2W̄P 1/2 = P 1/2WT P −1/2. (17)

Hence the condition of detailed balance translates into V being
symmetric. By the spectral theorem it follows that its spectrum
is real (equilibrium systems do not admit complex eigenvalues)
and it affords a complete set of orthonormal eigenvectors
va . Letting v0 = √

p∗ be the null eigenvector of V , all other
eigenvectors va can be normalized so as to have

2gab =
∑

i

va
i v

b
i = δab. (18)

On the left-hand side one can recognize the Fisher matrix,
by transforming back to the eigenvectors of W , given by
qa = P −1/2va . This transformation maps the Euclidean scalar
product in the above equation into the scalar product 〈·,·〉.
Given that we followed a chain of necessary and sufficient
facts, it is then proven that the Fisher matrix G is diagonal if
and only if the generator W satisfies detailed balance and that
one can opportunely scale the eigenmodes qa so as to have
G = I , where I the (n − 1)-dimensional unit matrix. In this
case we have

K = 4�2, (19)

which is obviously positive definite. Hence convexity holds
for equilibrium systems, in the linear regime. We do not know
whether a violation of convexity could occur out of the linear
regime, where higher-order contributions from the logarithm
in the expression for the relative entropy might come into
play. By continuity, nearly equilibrium systems also satisfy
convexity.

D. Time-scale separation

The counterexample provided in Sec. II A is characterized
by a wide separation of typical decay times. It is an inter-
esting question whether time-scale separation is necessary
for violating convexity. Certainly it is not sufficient, as it is
well known that the spectrum alone does not characterize the
nonequilibrium character [27]. For example, the generator

W =
⎛
⎝−202 201 1

201 −202 1
1 1 −2

⎞
⎠ (20)

has decay times 1/3 and 1/403, but it satisfies detailed balance,
hence it does not violate convexity.

In the rest of this section we argue that a large time-scale
separation might be necessary. We first hint at a general
argument in favor of this conjecture and then discuss the
complications arising with nearly defective generators in the
next section.

Two consequences of time-scale separation are that con-
cavity is extremely short lived and it has a short past.
In fact, selecting initial conditions c = k along a negative
eigenvector of K and perturbing them for a short time τ , the
time-evolved coefficients c(τ ) ≈ (1 + �τ )k skew k along the
fastest mode, with typical time for restoring convexity given by
the smaller decay time τ = − supa λ−1

a . For the same reason,
mapping back in time with exp(−tW ) leads soon to negative
nonphysical probabilities. Hence nonconcave states are hardly
encountered by typical dynamics.

Let us suppose that decay rates are not widely separated,
i.e., that there exists some average value λ within the spectrum
such that

εi = λi − λ

λ
(21)

are all small. Defining the matrix

ε = diag{ε1, . . . ,εn−1} (22)

such that � = λ(I − ε) and evaluating

�G� = λ2(G + εG + Gε + εGε), (23a)

�2G = λ2(G + 2εG + ε2G), (23b)

G�2 = λ2(G + 2Gε + Gε2), (23c)

we find that

K = 4�G� + λ2[ε,[ε,G]]. (24)

Here [·,·] is the commutator. Equation (24) states that correc-
tions to the positive-definite contribution 4�G� are second
order in the eigenvalue spacings. Although the above equations
suggests that typically the second contribution will be smaller
than the first one, the expression is not sufficient per se to
prove separation of time scales as there might be directions
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where �G� also becomes small and the two contributions
comparable. We discuss this subtle issue in the next section.

E. Time-scale separation: Defective generators

It can be the case that when eigenvalues are made closer to
each other, eigenvectors of the generator also tend to overlap in
a limit where W becomes defective, i.e., it lacks a complete set
of eigenvectors relative to degenerate eigenvalues. As one of
the authors analyzed in Ref. [22], when W is nearly defective
G is nearly degenerate and it affords a nearly null eigenvector
w0. For example, for three-state systems, one would have

G ∼
(

1 1 + O(ε2)
1 + O(ε2) 1

)
(25)

and w0 = (1, − 1). Then choosing w = �−1w0 makes
wT �G�w small of order ε2 as well. Notice that, among
matrices with degenerate spectrum, matrices that afford a
basis of eigenvectors are a set of zero measure with respect
to defective matrices,1 so the latter are quite crucial for our
argumentation.

In this section, for three-state systems, we give compu-
tational evidence that slightly departing from a defective
generator, convexity still holds for any initial conditions, so one
might conclude that nonconvexity and time-scale separation
are closely associated. A general proof seems to be elusive.

Consider a generic three-state system with a real spectrum,
with two real eigenvalues −λ± relative to eigenvectors q±.
Matrix K is given by

K =
(

4λ2
+〈q+,q+〉 (λ+ + λ−)2〈q+,q−〉

(λ+ + λ−)2〈q+,q−〉 4λ2
−〈q−,q−〉

)
(26)

and the determinant condition for convexity reads

4λ+λ−
(λ+ + λ−)2

>
|〈q+,q−〉|

‖q+‖ · ‖q−‖ = cos ϕ, (27)

where the norm is calculated with respect to the scalar product
〈·,·〉. We recognize on the right-hand side the cosine of
the angle ϕ between the two vectors, which vanishes when
eigenmodes are orthogonal, i.e., for equilibrium systems.
At the opposite extremum, cos ϕ reaches value 1 when
eigenmodes are collinear; this only occurs when the system is
defective, as it lacks a set of independent eigenvectors, in which
case the two eigenvalues are identical and also the left-hand
side attains value 1. In the vicinity of a defective generator,
with slightly spaced eigenvalues and eigenvectors

λ± = λ(1 ± ε), q± = x ± εy, (28)

we have 4λ+λ−/(λ+ + λ−)2 = 1 − ε2 and

cos ϕ = 1 − 2ε2

‖x‖4
(‖x‖2‖y‖2 − 〈x,y〉2). (29)

Introducing the two parameters α = ‖y‖/‖x‖ and β =
〈x,y〉/‖x‖2, inequality (27) becomes

α2 − β2 > 1/2. (30)

1This is because blocks in their Jordan form have lower algebraic
multiplicity than geometric for all values of the non-null off-diagonal
terms.

FIG. 2. (Color online) 20 000 values of α and β obtained by
randomly picking five transition rates of a three-state system within
the same range, fixing the sixth to give a defective generator, and
calculating α and β via the explicit formulas given in Sec. II E and
Appendix B. The shaded region corresponds to α2 − β2 � 1/2.

In Appendix B we give further details on how to express x and
y (hence α and β) in terms of the transition rates of a nearly
defective generator. In Fig. 2 we plotted 20 000 randomly
generated values of α and β for defective generators, finding
that none of them violates inequality (30). This suggests that,
at least for three-state systems, a large separation of time scales
is necessary.

F. Long-time behavior

Since our results show that nonconvex transients of the
relative entropy can occur arbitrarily close to the steady
state, a natural question is whether a convex behavior is
always restored in the long-time limit when the dynamics
is dominated by the mode with slowest decay rate. While
this is a trivial fact for systems with a real spectrum, for
systems with a complex spectrum it only holds when certain
algebraic relations between the real and the imaginary parts of
the eigenvalues are satisfied.

In the real spectrum case, let λ1 be the largest eigenvalue
that affords a non-null coefficient c1 in the expansion of the
initial state. We assume λ1 to be nondegenerate. Then at large
times p(t) ∼ p∗ + c1e

tλ1q1 and

H (t) ∼ g11c
2
1e

2tλ1 , (31)

which is obviously convex.
The case of systems with complex spectrum is discussed

at length in Appendix A. In general, the relative entropy can
be written as a quadratic form in terms of a Fisher matrix
that contains the information about the superposition of the
real and imaginary parts of the complex eigenmodes. Let
us only report that, by letting λ1 = −τ−1

1 + iω1 and λ∗
1 be

the complex-conjugate eigenvalues with the largest real part
affording non-null coefficients c1 and c∗

1 in the expression
for the initial state p = p∗ + c1q

1 + c∗
1q

1∗, convexity in the
long-time limit implies the following relationship between real
and imaginary parts of the eigenvalues:

[
1

1 + (ω1τ1)2

]2

� 1 − 4 detG1

(trG1)2
, (32)
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where G1 is the 2 × 2 matrix having as entries the super-
positions between real and complex parts of the relevant
eigenvector, i.e., g r1i1 = 〈Req1,Imq1〉/2, and so on. Letting
g+ and g− be the positive eigenvalues of G1 with g+ � g−,
the above condition translates into

(τ1ω1)2 � 2g−
g− − g+

. (33)

In particular, the period of oscillation is (variably) bounded
from below by its corresponding relaxation time. If convexity
is to hold in the long-time limit, oscillations cannot be too
fast with respect to their typical exponential decay time.
The upper frequency bound depends on how the real and
complex parts of the decay mode overlap. Notice that the above
conditions follow from requiring the complex-case analog
of K in Eq. (12) to have all 2 × 2 diagonal blocks positive
definite. This condition is less restrictive than having only
the (complex-case analog of) �2G + G�2 obey the same
condition (referred to as sector condition in Ref. [6]). Also, it is
less restrictive than having K being globally positive definite.
We report that, contrarily to the real case, as we performed an
intensive numerical search on three-state generators, we were
not able to find systems that violate the sector condition. Hence
convexity seems to be more robust for systems with a complex
spectrum.

III. NONMONOTONICITY OF
THE DYNAMICAL ACTIVITY

In light of the above results, in this section we present a
discussion of the work by Maes et al. [5,6], to which we refer
for the details.

Consider a stochastic trajectory ω up to time t and let μω
i (t)

be the fraction of time spent on site i along the trajectory. The
question is how typical a set of values μω(t) ≡ μ(t) is. The
answer is found in the framework of large deviation theory in
terms of the Donsker-Varadhan rate functional or dynamical
activity D[μ(t)], which describes fluctuations out of the most
probable distribution p∗, for which it vanishes. Here time plays
the role of the extensive parameter; as t → ∞, the steady
state is exponentially favored. Instead, if N trajectories are
independently sampled at fixed time t , the rate functional for
the probability of being at a site is given by relative entropy,
with N the extensive parameter. Therefore, relative entropy
is a static rate functional, while the dynamical activity is a
dynamic one. The latter captures the Markovian nature of the
process, while the former regards independent realizations.

All this given, the static nature of relative entropy as a large
deviation functional does not prevent it from being mono-
tonically decreasing, when evaluated along the solution of a
Markov process [8]. Does the Donsker-Varadhan functional
monotonically decrease as well? Maes et al. showed that it
does not when the initial state is picked far from the steady
state, but that monotonic behavior is restored in the long-time
limit. They discussed a few examples supporting their case
and proved that normal systems (see Appendix A) display a
longstanding monotonic behavior. The remaining question is
whether monotonicity might occur with initial states picked
along any superposition of modes, arbitrarily close to the
steady state. Returning to our previous counterexample, we

will show that this is not the case. More specifically, our
counterexample shows that one of the hypotheses for Theorem
III.1 in Ref. [5] is not generally satisfied.

Let μ(0) be the initial state of the system and μ(t) =
exp(Wt)μ(0) its time-evolved state and let us consider a
time-dependent transformation of the transition rates

w
u(t)
ij = wij e

[ui (t)−uj (t)]/2 (34)

such that the generator Wu(t) simulates steadiness at a frozen
time t , that is, it affords μ(t) as its steady state,

Wu(t)μ(t) = 0. (35)

It can be proven that there exists a unique choice of u(t), up to
a ground potential, such that the above equation holds. Maes
et al. proved that the Donsker-Varadhan functional is given by

D[μ(t)] =
∑
i,j

[
wij − w

u(t)
ij

]
μj (t). (36)

It affords a simple interpretation as the difference between
the average escape rate of the actual dynamics and that of the
time-frozen steady dynamics at time t . According to Eq. (10)
in Ref. [6], when the state of the system is sufficiently close to
the steady state, one has

Ḋ[μ] = − 1
2 [(PWT u,WT u) + (Pu,WT 2

u)], (37)

where we recall that P is the matrix having the steady
probability entries along its diagonal. Letting u = P −1p, after
some manipulations we obtain

Ḋ[μ] = − 1
2 〈(W + W )p,Wp〉. (38)

Similarly, we can express the second time derivative of the
relative entropy to second order as

Ḧ [p] = 〈(W + W )p,Wp〉. (39)

We notice an analogy by interchanging the generator and the
time-reversed generator. Therefore, to second order

d

dt
D[exp(tW )μ(0)]

∣∣∣∣
0

= −1

2

d2

dt2
H [exp(tW )p(0)]

∣∣∣∣
0

. (40)

The respective initial conditions are connected by

WP −1p(0)μ(0) = 0. (41)

In Fig. 3 we represent violation of monotonicity of the
dynamical activity, using as time-reversed generator the one
already employed in Sec. II A, namely, Eq. (3). The initial
state was chosen to have a relative entropy 0.025 (in base 3).2

It is possible to reduce this measure of distance to smaller
and smaller values, making all curves in the picture closer and
closer. Notice that the correspondence between the dynamical
activity and the relative entropy (to second order) only holds
at the initial time. Later, the two differ for two reasons: Their
time behavior is due to different dynamics and they are not the
same functional of the probability distribution.

2The choice of base n = 3 is suggested by the fact that the relative
entropy of the certain distribution δi,1 with respect to the uniform
distribution 1/n is ln n.
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FIG. 3. (Color online) Solid lines, plotted as functions of t4, show
the first derivative of the dynamical activity as a function of μ(t)
(curve a) and its second-order approximation (curve c). Dashed lines
show one-half minus the second time derivative of the relative entropy
as a function of p(t) (curve d) and its second-order approximation
(curve b).

We point out that Lyapunov’s second theorem for stability
assumes that there exists a function whose first derivative is
negative in some neighborhood of a candidate fixed point.
Using our procedure, we were able to show that the dynamical
activity and the first time derivative of the relative entropy
do not satisfy this requisite. We note, however, that this
fact is quite irrelevant since the stability of steady states for
irreducible Markov processes is well established.

Given the equivalence between this problem and that of
convexity of the relative entropy, the same considerations on
the long-time limit of the dynamical activity hold as discussed
in Sec. II F.

IV. INFORMATION GEOMETRY OF RELATIVE
ENTROPY AND EIGENMODE ESTIMATION

Before drawing conclusions, in this section we briefly linger
on the interpretation of the Fisher matrix.

Let x̂ be a random variable taking values i with probability
distribution pi(ϑ) conditional on an unknown parameter ϑ

whose value one might want to estimate. Fisher’s information
is defined as [13]

g(ϑ) =
〈(

∂p(ϑ)

∂ϑ

)2〉
p(ϑ)

. (42)

It measures how much information the random variable
retains about the parameter. The derivative with respect to
ϑ grants that g(ϑ) detects the sensibility of the probability
to a parameter variation. For example, if the probability
distribution does not depend on the parameter at all, it vanishes.
An important result concerning Fisher’s information is that it
sets a bound to the accuracy of an estimation of the parameter
ϑ expressed by the Cramér-Rao inequality g(ϑ)Var(ϑ̂) � 1,
where ϑ̂ is a so-called unbiased estimator of parameter ϑ . For
example, in the case where the probability does not depend
on ϑ , the variance of the estimator is infinite. This sort of
indeterminacy relation has been connected with quantum [29]

and statistical [30] uncertainty; see Ref. [31] for an application
to temperature estimation.

It has also long been known [14] that Fisher’s information
is twice the relative entropy (Kullback-Leibler divergence)
H {·‖·} between two nearby probability distributions, to second
order:

H {p(ϑ + dϑ)‖p(ϑ)} ≈ 1
2g(ϑ)dϑ2. (43)

While this point of view slightly hinders the statistical rele-
vance for parameter estimation, it provides a clear geometrical
picture since the relative entropy locally defines a metric on
submanifolds of the space of statistical states. This metric
is called the Fisher-Rao metric [32]. Generalizing to several
estimation parameters, we can express the Fisher-Rao metric
in local coordinates ϑ = (ϑa)a as3

H {p(ϑ + dϑ)‖p(ϑ)} ≈ 1
2gab(ϑ)dϑadϑb. (44)

The Fisher matrix then arises as one possible representation
of the metric in a set of preferred coordinates, which are
dictated by the problem at hand. For example, in applications
to equilibrium statistical mechanics the Fisher matrix takes the
form of a covariance matrix, coordinates being the intensive
variables conjugate to the physical extensive observables in
the equilibrium measure (temperature, pressure, chemical
potential, interaction constants etc.) [33]. Using the square
roots of the entries of the probability density ψi = √

pi as
coordinates, one obtains the real part of the Fubini-Study
metric for quantum states [34]. Studies on the quantum
Fisher information have also been proposed [35,36]; see
Ref. [37] for a comprehensive treatment of several related
concepts in application to quantum Gaussian channels. Beyond
equilibrium, recent works [38] focus on how geodesic transport
can represent classes of nonequilibrium transformations. Far
from equilibrium, the Fisher information has been employed
to characterize the arrow of time [7].

In our work, the Fisher matrix is obtained by parametrizing
the probability distribution in the vicinity of the steady state
with a vector of variables ϑ = c(t), at fixed time. Expressing
the probability increment along a small displacement from
the steady state as dp = ∂ap(ϑ)dϑa , we can interpret the
decay modes qa = ∂ap as tangent vectors at p∗ [22]. In this
guise, the Fisher matrix tells how the probability density
depends on eigenmodes and in particular how eigenmodes
are correlated. More specifically, perturbing the steady state
in the a-th direction and defining the relative self-information
carried by the a-th mode as

ha
i = ln

p∗
i + εqa

i

p∗
i

≈ εqa
i /p∗

i , (45)

we can interpret the Fisher matrix gab = ε−2〈hahb〉 as the
correlation matrix between such individual contributions to the
self-information, which are uncorrelated for normal systems,
including equilibrium systems.

Within our framework, one can interpret the Cramér-Rao
inequality as a limit to the precision with which one can

3For reasons of internal consistency we inverted the convention
on index positioning with respect to standard literature on physical
applications of differential geometry.

012112-7



MATTEO POLETTINI AND MASSIMILIANO ESPOSITO PHYSICAL REVIEW E 88, 012112 (2013)

estimate the weight of a mode at some time, hence, more
interestingly, as a limit on our ability to retrieve the initial
conditions. In this respect, eigenvalues play a role analogous
to Lyapunov’s exponents in dynamical systems. Suppose
we want to estimate the permanence of eigenmodes in a
state at some given time (considering that, more often, one
will want to estimate the value of an observable associated
with eigenmodes). Unbiased estimators of the coefficients
ca(t) can be intuitively built as follows. Suppose at time t

we sample N independent realizations of stochastic jump
process whose probability distribution is described by a
master equation, obtaining data x1, . . . ,xN . Since each datum
was sampled with probability p(t), the probability of the
sample is px1 (t) . . . pxN

(t). Let fi = N−1 ∑N
n=1 δi,xn

be the
empirical distribution of such samples, that is, a histogram.
Consistently, if we average the empirical distribution over
possible samples we obtain the original distribution (we drop
the time-dependence hereafter)

〈fi〉 =
∑

x1,...,xN

px1 . . . pxN
fi = pi. (46)

We project the empirical distribution onto the left eigenvectors
qL,a of W such that (qL,a,qb) = δab. The empirical coefficients
ĉa = ∑

i q
L,a
i fi are unbiased estimators since one can easily

show that 〈ĉa〉 = ca . Let Cab = 〈(ĉa − ca)(ĉb − cb)〉 be their
covariance matrix. The multivariate Cramér-Rao bound then
states that CG � N−1I , where matrix inequality A � B

means that A − B is positive semidefinite. Notice that the
bound becomes less strict as the number of samples is
increased.

For equilibrium systems, using an orthonormal set of
modes with respect to the scalar product 〈·,·〉, we have
Caa � N−1, which is a statement about the variance of
individual estimators; the information stored in the estimators
decouples. However, by a straightforward calculation one
can show that the simple estimators that we built are not
uncorrelated, even for equilibrium systems. Building uncor-
related maximum-likelihood estimators, using orthogonality
of the Fisher parameters, is an important task in estimation
theory [39]. In this respect the theory states that equilibrium
systems are more tractable for parameter estimation.

Another case of interest is that of nearly defective systems.
Using the nearly degenerate Fisher matrix in Eq. (25) and
evaluating wT

0 CGw0 along vector w0 = (1, − 1), one obtains

2c12 − c11 − c22 � 2

ε2N
, (47)

which as ε → 0 implies that the covariance matrix is singular
and that the cross correlation must diverge, as one will not
be able to distinguish between the two modes. This kind of
behavior has been connected with classical and quantum phase
transitions [40,41]. It is interesting to note that in the context
of Markovian dynamics, this critical behavior is accompanied
by polynomial terms in the time evolution [22].

V. CONCLUSION

In this paper we showed how algebraic properties of the
Fisher matrix, in a basis of decay modes, can be useful

to tackle specific issues regarding nonequilibrium Markov
processes such as the monotonicity and the convexity of
(candidate) Lyapunov functions. In particular, we were able to
produce counterexamples to the convexity of relative entropy
with respect to the steady state in the nonequilibrium linear
regime, i.e., with initial conditions picked arbitrarily close
to a nonequilibrium steady state. From a thermodynamic
perspective, this tells us that there is no general principle
of minimum nonadiabatic entropy production, which would
represent the nonequilibrium analog of a well-known stability
criterion for close-to-equilibrium systems [3]. However, our
counterexamples display a very subtle fine-tuning of the initial
conditions and for three-state systems we argued that a large
separation of time scales has to be attained. If both these
facts could be rigorously proven and extended to more general
systems, since the nonconvex regime has the typical lifetime
of the shortest decay time, such eventual transients would be
proven to be completely irrelevant with respect to the dominant
dynamics and one would be able to argue that for all practical
purposes such generalized principles do hold.

Our discussion strongly relied on Fisher’s information, a
concept from estimation theory that has long been employed
in equilibrium statistical mechanics and is now being increas-
ingly explored with applications to nonequilibrium systems.
Our use of this interesting tool was quite restrained, but
we envisage that the techniques hereby introduced could be
useful to discuss stability and fluctuations of nonequilibrium
systems and possible relationships regarding decay modes and
eigenvalues. For example, much work on the interplay between
the imaginary and the real parts of complex eigenvalues has
yet to be addressed. As briefly described in the preceding
section, other interesting applications of Fisher’s information
might come from exploiting the full machinery of information
geometry and estimation theory, in particular as regards the
actual definition of unbiased estimators and the implications of
the Crámer-Rao bound. Finally, normal systems might deserve
further attention, as they are, in a way, the nonequilibrium
analog of detailed balance systems.
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APPENDIX A: THEORY AND RESULTS:
COMPLEX SPECTRUM

In this section we discuss the construction of the Fisher ma-
trix for systems with complex spectrum, describing conditions
for convexity violation and introducing a class of nonequilib-
rium generators (called normal) for which convexity holds.
They are peculiar with respect to time reversal, in a way
that might be considered a nonequilibrium generalization of
detailed balance.

We introduce the case of complex spectrum with the
following chain of considerations. Let a three-state system
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have two real decay modes. The Fisher matrix reads

G =
( 〈q+,q+〉 〈q+,q−〉

〈q+,q−〉 〈q−,q−〉
)

(A1)

and the square root of its determinant is the area of the
parallelogram formed by the two vectors. The area of a
parallelogram coincides with the area of the parallelogram
formed by its diagonals (q+ + q−)/2 and q− − q+. We rescale
the diagonals of factors

√
2 and 1/

√
2, respectively, while

keeping the area invariant, and define vectors q1 = (q+ +
q−)/

√
2, and p2 = (q+ − q−)/

√
2, and the tilted Fisher matrix

G̃ =
( 〈q1,q1〉 〈q1,p2〉

〈q1,p2〉 〈p2,p2〉
)

. (A2)

We have det G = det G̃. Note that G̃ is obtained from G after
a rotation of an angle π/2 of the defining vectors. In general,
when one performs a change of basis in the space of modes
qa → ∑

a Ab
aq

a , G transforms by matrix congruence G →
AT GA, which is a similarity of matrices only when A = A−T

is orthogonal. For equilibrium systems G ∝ I ; for defective
systems G is degenerate. Both these properties remain true
for all representatives under the orthogonal transformation A;
such properties are equivalently described by G or G̃.

When the generator admits a couple of complex-conjugate
eigenmodes

q± = (q1 ± iq2)/
√

2 (A3)

relative to complex-conjugate eigenvalues

λ± = −1/τ ± iω,

the matrix defined in Eq. (A1) has complex entries. It is
meaningful to perform a rotation in the complex plane.
Switching to the tilted matrix, with q2 = ip2, we have

G̃ =
(

1 0
0 i

) ( 〈q1,q1〉 〈q1,q2〉
〈q1,q2〉 〈q2,q2〉

) (
1 0
0 i

)
. (A4)

Note that det G̃ < 0. A candidate as a Fisher matrix for
systems with complex spectrum is then given by G = |G̃|.
Generalizing, when the system has both real eigenvalues
labeled by a and complex eigenvalues labeled by k, we define
the Fisher matrix

G =

⎛
⎜⎝

〈
qk

1 ,qk′
1

〉 〈
qk

1 ,qk′
2

〉 〈
qk

1 ,qa′ 〉
〈
qk

2 ,qk′
1

〉 〈
qk

2 ,qk′
2

〉 〈
qk

2 ,qa′ 〉
〈
qa,qk′

1

〉 〈
qa,qk′

2

〉 〈qa,qa′ 〉

⎞
⎟⎠

k,k′,a,a′

.

Now consider the state

p(t) = p∗ +
∑

h

ca(t)qa +
∑

k

[ck(t)qk + c∗
k (t)qk∗]. (A5)

Define c1
k = (ck + c∗

k )/
√

2 and c2
k = (ck − c∗

k )/i
√

2 and col-
lect the data in a vector

cT = (
ca,c

1
k,c

2
k

)
a,k

. (A6)

It is a simple exercise to prove that the relative entropy in the
linear regime reads H = cT Gc. The time derivative of c is also

easily calculated,

ċ = −(ϒ + i�)c, (A7)

where we introduced the matrix

ϒ + i� = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
τ−1
k ωk

−ωk τ−1
k

. . .
τ−1
a

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A8)

and ϒ = diag{τ−1
k ,τ−1

k ,τ−1
a }k,a . Exponentiating Eq. (A7)

gives the typical decaying-oscillating character. Finally, eval-
uating the second time derivative of the relative entropy, we
obtain K = K1 + K2, with

K1 = 2(ϒ − i�)G(ϒ + i�), (A9)

K2 = (ϒ − i�)2G + G(ϒ + i�)2. (A10)

Normal systems are those whose generators commute with
their time reversal:

WW = WW. (A11)

As already pointed out above, W and W always have the same
spectrum, but they might not have the same eigenvectors.
Normal generators do. Let q̄ k

± be the complex-conjugate
eigenvectors of W with respect to λk

±. Applying W to the
eigenequation, we obtain

WWq̄ k
± = WWq̄ k

± = λk
±q̄ k

±, (A12)

which implies that also Wq̄ k
± is an eigenvector of W , relative

to eigenvalue λk
±. Then q̄ k

± must be an eigenvector of W . Now,
since matrix WW must have a real spectrum (since it is similar
to HHT , which is symmetric hence with real spectrum), then
one necessarily has that

q̄ k
∓ = qk

±, (A13)

since λk
+λk

− are the only real products of eigenvalues.
To resume, normal systems are such that the time reversal

has the same spectrum and eigenvectors as the original
dynamics, but it inverts positive and negative frequency modes.
Time reversal inverts the oscillatory character (much like for
quantum mechanical systems), while damping occurs in the
same way.

By application of the spectral theorem to normal matrices
[21], it can be proven that for normal systems the Fisher
matrix G is diagonal or, in other words, eigenmodes can be
normalized, yielding G = I . Therefore, we obtain

K = 4ϒ2 > 0. (A14)

Hence normal systems satisfy convexity.
Moreover, for normal systems we have

K2 = 2(ϒ2 − �2), (A15)

which is positive on its own if and only if relaxation times are
smaller than the corresponding decay periods, i.e., 1/τk < ω−1

k
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∀ k. This property seems to be valid and has already been
conjectured by Maes etal.

APPENDIX B: DEFECTIVE THREE-STATE SYSTEM

The task is to express parameters α and β in terms of
the transition rates of a generic nearly defective three-state
generator. Let us introduce the quadratic oriented-spanning-
tree polynomial z [8] and the linear polynomial t , given by
minus the trace of W ,

t = w21 + w31 + w12 + w32 + w13 + w23, (B1a)

z = w12w13 + w32w13 + w12w23 + w21w13 + w21w23

+w31w23 + w31w12 + w21w32 + w31w32. (B1b)

The system has a degenerate spectrum when t2 = 4z. We
perturb to first order the eigenvalues near the degener-
ate spectrum λ± = 1

2 (−t ± √
t2 − 4z) ≈ −√

z(1 ∓ ε), from
which λ = −√

z. The steady state and the decay modes are
given by

p∗ = 1

z

⎛
⎝w12w13 + w32w13 + w12w23

w21w13 + w21w23 + w31w23

w31w12 + w21w32 + w31w32

⎞
⎠ ,

q± =

⎛
⎜⎝

(w13 + w23 + λ±)(w12 + w32 + λ±) − w23w32

w23w31 + w21(w13 + w23 + λ±)

w32w21 + w31(w12 + w32 + λ±)

⎞
⎟⎠ ,

(B2)

wherefrom we obtain explicit expressions for x and y in terms
of the transition rates:

x = q+ + q−
2

, y = q+ − q−
2ε

. (B3)

A more compact representation can be given as follows.
Letting e1 = (1,0,0) and w1 be the first column of the
generator, we can express the decay modes as q± = p ∗ − e1 +
z−1λ±w1, which can be proven by plugging this expression
into the eigenvector equation and multiplying by λ∓,

λ∓(W − λ±)(pss − ê1 + z−1λ±w1)

= (W + t)w1 + z(ê1 − p∗), (B4)

where we used λ+λ− = z and λ+ + λ− = −t . The above
expression can be shown to vanish by direct calculation. We
then obtain

x = p∗ − ê1 − w1/
√

z, y = w1/
√

z, (B5)

and similarly we can express parameters α and β in terms of
the transition rates.
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