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We investigate the relaxation time of magnetization or the lifetime of the metastable state for a spin S = 1
square-lattice ferromagnetic Blume-Capel model with distribution of magnetic anisotropy (with small variances),
using two different dynamics such as Glauber and phonon-assisted dynamics. At each lattice site, the Blume-Capel
model allows three spin projections (+1, 0, −1) and a site-dependent magnetic anisotropy parameter. For each
dynamic, we examine the low-temperature lifetime in two dynamic regions with different sizes of the critical
droplet and at the boundary between the regions, within the single-droplet regime. We compute the average
lifetime of the metastable state for a fixed lattice size, using both kinetic Monte Carlo simulations and the
absorbing Markov chains method in the zero-temperature limit. We find that for both dynamics the lifetime obeys
a modified Arrhenius-like law, where the energy barrier of the metastable state depends on the temperature and
standard deviation of the distribution of magnetic anisotropy for a given field and magnetic anisotropy and that
an explicit form of this dependence differs in different dynamic regions for different dynamics. Interestingly, the
phonon-assisted dynamic prevents transitions between degenerate states, which results in a large increase in the
energy barrier at the region boundary compared to that for the Glauber dynamic. However, the introduction of a
small distribution of magnetic anisotropy allows the spin system to relax via lower-energy pathways such that the
energy barrier greatly decreases. In addition, for the phonon-assisted dynamic, even the prefactor of the lifetime
is substantially reduced for a broad distribution of magnetic anisotropy in both regions considered, in contrast to
the Glauber dynamic. Our findings show that overall the phonon-assisted dynamic is more significantly affected
by the distribution of magnetic anisotropy than the Glauber dynamic.
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I. INTRODUCTION

Metastability is ubiquitous in many physical, chemical,
and biolological systems. One of the common examples is
metastability occurring in the relaxation of magnetization
of a ferromagnetic material in the presence of an external
magnetic field. Suppose that a ferromagnetic material is
initially prepared with magnetization saturated with a strong
magnetic field and that the magnetic field direction is rapidly
reversed. Then the state with the reversed magnetization is
now the ground state or the stable state. If the thermal energy
is much lower than the energy barrier against nucleation of the
stable phase, the initial state can have a long lifetime and it
becomes a metastable state.

Magnetic nanoparticles, clusters, and molecules are in-
teresting due to their utilization as a tool to explore quan-
tum properties at the nanometer scale by themselves or
when they are embedded in different types of substrates
or solutions. They also have various applications including
information storage devices [1,2], sensors, and contrast agents
in magnetic resonance imaging [3–5]. Synthesized magnetic
nanoparticles have typically large distributions of size and
shape which influence their equilibrium and nonequilibrium
properties [6–13]. For example, the size and shape dis-
tributions induce distributions in the magnetic anisotropy
barrier, magnetization switching or relaxation, and blocking
temperature.
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To understandnonequilibrium properties of collections of
magnetic nanoparticles with size and shape distributions, one
needs to go beyond the ferromagnetic Ising model in order to
include a nontrivial effect of magnetic anisotropy. The minimal
model for this purpose is a spin S = 1 ferromagnetic Blume-
Capel (BC) model [14,15], which was originally introduced to
understand features of the phase diagram of He3-He4 mixtures
and a phase transition in UO2. In the BC model, each lattice
site can take three possible spin projections (+1, 0, and −1)
and magnetic anisotropy favors spin projections of ±1. A spin
S > 1 BC model can be applied to arrays of weakly interacting
magnetic nanoparticles [16,17], of nanoscale single-molecule
magnets such as Mn12 and Fe8 [18–20], and of a Mn(III)2Ni(II)
single-chain magnet [21,22]. Distributions of size and shape
of magnetic nanoparticles can be modeled as distributions of
magnetic anisotropy at different lattice sites with the magnetic
moment at each site fixed [23].

Another crucial factor in the investigation of
nonequilibrium properties or magnetization relaxation
for magnetic nanoparticles is to select a transition rate or
dynamic relevant to the system of interest. In many cases,
relaxation of magnetization for magnetic nanoparticles or
clusters was studied using the Glauber dynamic [24] without
its justification or derivation from a microscopic model, except
for a few cases [25,26]. Other commonly used dynamics
are Metropolis [27] and soft stochastic dynamics [28]. It has
been shown that different dynamics demand even different
interpretations of the Arrhenius law [29] as well as different
nonequilibrium properties [30] in the Ising model and
nanostructures of field-driven solid-on-solid interfaces. One
of us derived a transition rate or dynamic from a microscopic
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model where a spin system (S � 1 generalized BC model) is
weakly coupled to a d-dimensional phonon bath [31]. A similar
transition rate to this was used to estimate the spin-lattice
relaxation time in quantum dots [32]. Henceforth, we refer
to this dynamic as the d-dimensional phonon-assisted (PA)
dynamic. Different dynamics may be affected differently by
the distribution of magnetic anisotropy, which could be used to
determine the underlying dynamic of the system of interest. So
far, the effect of the dynamic on magnetization relaxation with
distribution of size (or on the lifetime of the metastable state
with distribution of magnetic anisotropy) has not been studied.

In this work, we focus on two aspects of the average lifetime
of the metastable state with distribution of magnetic anisotropy
within the single-droplet regime in the zero-temperature limit:
(i) the effect of transition rate or dynamic and (ii) the effect
of dynamic region (with a different size of the critical droplet)
and of the boundaries between the regions. We consider the
spin S = 1 ferromagnetic BC model on a square lattice with
distribution of magnetic anisotropy. (In this case, we assume
that the magnetic anisotropy parameter has a small variance
compared to its mean value.) We apply both the Glauber and
the three-dimensional PA dynamics to the BC model in two
dynamic regions and at the boundary between the regions.
We perform kinetic Monte Carlo simulations (KMCSs) and
use the absorbing Markov chains (AMCs) method for a
fixed lattice size, and determine the average lifetime in the
zero-temperature limit, 〈τ 〉 (=Aeβ�), where β = 1/(kBT ),
kB is the Boltzmann constant, and T is the temperature. We
find that, for both dynamics, the energy barrier � depends on
the temperature and standard deviation of the distribution of
magnetic anisotropy for a given field and magnetic anisotropy
and that, for the PA dynamic, even the prefactor A depends
on the standard deviation of the distribution of magnetic
anisotropy as well as field and magnetic anisotropy for a
given region. At the region boundary, without distribution of
magnetic anisotropy, the energy barrier � for the PA dynamic
is much higher than that for the Glauber dynamic due to
forbidden transitions between degenerate states. However,
with distribution of magnetic anisotropy, the metastable state
can relax via low-energy pathways induced by the lowest
magnetic anisotropy within the distribution, and the barrier for
the PA dynamic is greatly reduced. Overall, the PA dynamic
is more susceptible to the distribution of magnetic anisotropy
than the Glauber dynamic in the regions and at the boundary
considered.

This work is organized as follows. In Sec. II, we discuss the
BC model and metastability, and specify two dynamic regions
of interest within the single-droplet regime. In Sec. III, we
briefly introduce the Glauber and PA dynamics and discuss
our implementation of advanced algorithms (such as the n-fold
way algorithm and the s = 2 Monte Carlo algorithm with
absorbing Markov chains (MCAMCs) [33–35]) in KMCSs
with constant magnetic anisotropy and distribution of magnetic
anisotropy. We also describe the AMC method to calculate
the lifetime analytically. In Sec. IV, we present our results
from KMCS and the AMC method using the two dynamics
for constant magnetic anisotropy and distribution of magnetic
anisotropy in the two regions and at the boundary. In Sec. V,
we report our conclusions.

II. MODEL

A. Blume-Capel model

We consider the spin S = 1 BC model on a square lattice
L × L with periodic boundary conditions [14,15]:

H = −2J
∑
〈i,j〉

SizSjz − H
∑

i

Siz − D
∑

i

S2
iz, (1)

where Siz is the projection of spin at lattice site i onto
the magnetic easy axis (z axis). Siz can take three possible
eigenvalues Miz = +1, 0, and −1. The first term in the model
describes exchange interactions between the nearest-neighbor
spins at sites i and j with exchange coupling constant
J . The second term is the Zeeman energy with external
magnetic field H . The last term corresponds to the magnetic
anisotropy energy, where D(>0) is a uniaxial magnetic
anisotropy parameter. The magnetic anisotropy energy arises
from perturbative treatment of spin-orbit coupling [36], and
the magnetic anisotropy barrier for the BC model is DS2.
The S = 1 BC model is the simplest case where the magnetic
anisotropy energy nontrivially contributes to the total energy.
Equilibrium ground-state spin configurations for the BC model
(with constant D) at zero temperature were shown in Ref. [23].
For (−D − 4) < H and H > 0, the configuration of all sites
with Mz = 1 is the ground state. The critical temperature Tc of
the BC model increases with increasing D/J at H = 0 [37].
The value of Tc for D = 0 was calculated using various
methods [38–40]. To simulate the size distribution, we consider
a distribution of D over the lattice sites (Di) with a fixed spin
or magnetic moment per site. Henceforth, we use J as units of
energy.

B. Decay of the metastable state for the Blume-Capel model

For the Ising model on a square lattice, decays of the
metastable state and nucleation of droplets of the stable
phase have been extensively studied as a function of |H |,
T , and L [35,41–44]. For the BC model on a square
lattice, nucleation and metastability were studied at low
fields in a multidroplet regime using the Metropolis transition
rate [45], and nonequilibrium short-time dynamics at Tc were
investigated using the Glauber transition rate [37]. Here we
are interested in low-temperature decays of the metastable
state using both the Glauber and the PA transition rates, within
the single-droplet regime, for the BC model for a fixed lattice
size L, where the size of the critical droplet of the stable
phase is much smaller than the lattice size. The lifetime
of the metastable state is defined to be the time at which
the magnetization of the BC model becomes 0. For a fixed
lattice size and constant D, when we take a zero-temperature
limit, the single-droplet regime falls on the region defined
by |H | < (D + 4) [23]. We divide the single-droplet regime
into different regions according to the critical droplet size. For
example, for 0 < D < 1, at fields that are not too low, three
regions, labeled I, II, and III, are identified as a function of
|H | and D (Fig. 1). (Regions I-A, I-B, and I-C are considered
region I.) The critical droplet for region I is a single site of
spin projection Mz = 0. Region I has three subregions where
prefactor A in 〈τ 〉 for the Glauber dynamic (for constant D)
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FIG. 1. (Color online) Cross-over dynamic “phase” diagram for
metastable decay for the square-lattice ferromagnetic BC model with
0 < D < 1 in the zero-temperature limit (for constant D). Three
regions or dynamic phases within the single-droplet regime I, II, and
III are specified. The thick solid lines divide different regions, and
the dashed lines divide sub-regions in the region I such as I-A, I-B,
and I-C. For each region, critical droplets are illustrated. Exceptions
are the boundaries between different regions for the PA dynamic. The
three points marked as b-d are investigated in this work, while the
point a was studied in Ref. [23].

changes: A = 9/8 for region I-A (3 + D < |H | < 4 − D for
D > 0), A = 10/9 for region I-B (4 − D < |H | < 4 + D for
0 < D < 0.5 and 3 + D < |H | < 4 + D for D > 0.5), and
A = 2 for region I-C (4 − D < |H | < 3 + D for D > 0.5).
The critical droplet for region II (3 − D < |H | < 3 + D for
D < 0.5) consists of two nearest-neighbor sites with each
spin projection Mz = 0. The critical droplet for region III
(2 + D < |H | < 4 − D for D > 0.5) is a single site of spin
projection Mz = −1. For regions II and III, there are no such
subregions as in region I. Previously, we investigated the case
with H = −4 and D = 0.25 (marked as a in =region I-B in
Fig. 1), using the Glauber dynamic [23]. In the current work,
we focus on metastability in the regions I-A and II and at
the boundary (|H | = D + 3 and 0 < D < 0.5) between those
regions. More specifically, we vary D with H fixed as −3.25:
D = 0.125 for the region I-A, D = 0.375 for the region II,
and D = 0.25 for the boundary as marked b, c, and d in Fig. 1.
We do not further consider regions with lower magnetic fields
because (i) a similar rationale to our current study can be
applied to those regions, and (ii) a larger number of transient
states is required to apply the AMC method and MCAMC
to those regions, which brings complexity to analytical forms
and KMCS data and obscures our main findings. Interested
readers are referred to the Appendix, where an analytical form
of 〈τ 〉 is provided in region IV-A [(2 + D) < |H | < (3 − D)

and D > 0] using the Glauber dynamic for constant D and
distribution of D.

III. METHODS AND ALGORITHMS

We use KMCS and the AMC method to compute the
average lifetime of the metastable state. In our KMCS, we
use L = 40 and update a spin configuration via a single spin
flip at randomly selected site i with �Mz = ±1, using either
the Glauber or the PA dynamic. The spin-flip probability using
the Glauber dynamic pg is given by

pg = 1

1 + eβ�E
, (2)

where �E = Enew − Eold. Here Eold (Enew) is the total energy
of the spin system before (after) a single spin flip at site i. The
PA transition rate [31] is given by

Wpa = α

∣∣∣∣ (�E)3

1 − e−β�E

∣∣∣∣ , (3)

where α is a material-dependent parameter which does not
depend on �E. For example, for the single-molecule magnet
Mn12, α = 0.00041 s−1 [31]. In our KMCS, we set α = 1, and
the spin-flip probability for the PA dynamic is identical to Wpa.

In the standard dynamic Monte Carlo algorithm, a simulated
physical time in units of Monte Carlo steps per spin is
proportional to a CPU time for a fixed lattice size. For the
parameters of our interest, a decay of the metastable state
would take an extremely long CPU time if the standard
algorithm were used, due to the long time required to exit the
initial state at low temperatures. To circumvent this problem,
we use the following advanced algorithms, where an exit
time from the current spin configuration is calculated and the
simulation time (in units of Monte Carlo steps) is set to this
time. For constant D, we first use the s = 2 (two transient
states) MCAMC [35] until the system exits from the transient
subspace and then use the n-fold way algorithm [33,34]
for discrete time. In the s = 2 MCAMC algorithm, the first
transient state is the initial state, and the second transient
state is all N spin configurations of spin projection Mz = 0
at a single site from the initial state. With distributions of D,
we first use the n-fold way algorithm (a modified version to
accommodate different values of D at different lattice sites),
until the system exits from the initial state, and then use the
standard Monte Carlo algorithm in our KMCS. For analytic
calculations of the average lifetime, we apply the s = 3 AMC
method (three transient states) and take the zero-temperature
limit.

A. n-fold way algorithm for three-state systems with constant D

The n-fold way algorithm proposed in Refs. [33] and [34]
was successfully used for the Ising model on a square lattice.
In the algorithm, all spins on the lattice are classified into 10
classes according to spin orientation (up or down) and the
sum of the four nearest-neighbor spin orientations. To apply
this algorithm to the BC model, modifications are needed. For
the BC model, all spins are now classified into 27 classes
based on the spin projection (+1, 0, or −1) and the sum
of the four nearest-neighbor spin projections (0, ±1, ±2,
±3, or ±4). The 27 classes are listed with �E in Table I.
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TABLE I. The 27 spin classes for the BC model on a square lattice. For classes 19–27 two different values of �E are listed: the first is for
Mz = 0 → +1, and the second for Mz = 0 → −1.

Class Spin Sum of nearest-neighbor
No. projection spin projections �E = Enew − Eold

1 +1 +4 4 − |H | + D

2 +1 +3 3 − |H | + D

3 +1 +2 2 − |H | + D

4 +1 +1 1 − |H | + D

5 +1 0 −|H | + D

6 +1 −1 −1 − |H | + D

7 +1 −2 −2 − |H | + D

8 +1 −3 −3 − |H | + D

9 +1 −4 −4 − |H | + D

10 −1 +4 −4 + |H | + D

11 −1 +3 −3 + |H | + D

12 −1 +2 −2 + |H | + D

13 −1 +1 −1 + |H | + D

14 −1 0 |H | + D

15 −1 −1 1 + |H | + D

16 −1 −2 2 + |H | + D

17 −1 −3 3 + |H | + D

18 −1 −4 4 + |H | + D

19 0 +4 −4 + |H | − D or 4 − |H | − D

20 0 +3 −3 + |H | − D or 3 − |H | − D

21 0 +2 −2 + |H | − D or 2 − |H | − D

22 0 +1 −1 + |H | − D or 1 − |H | − D

23 0 0 |H | − D or −|H | − D

24 0 −1 1 + |H | − D or −1 − |H | − D

25 0 −2 2 + |H | − D or −2 − |H | − D

26 0 −3 3 + |H | − D or −3 − |H | − D

27 0 −4 4 + |H | − D or −4 − |H | − D

Another subtlety is that each of classes 19–27 (a lattice site
with Mz = 0) has two possibilities for a single spin flip, such
as either Mz = +1 or Mz = −1, each of which has a different
energy change �E. Thus, for classes 19–27, we introduce the
probability of flipping a spin in class i as pi = (p+

i + p−
i )/2,

where p+
i = pi(Mz = 0 → 1) and p−

i = pi(Mz = 0 → −1).
Similarly to the case of the Ising model [35], a quantity Qi

is defined to calculate a discrete time to exit from the current
spin configuration,

Qi = 1

N

i∑
j=1

njpj , 1 � i � 27, (4)

where Q0 = 0, nj is the number of spins or lattice sites in class
j , and N = L2. Following the scheme used in the standard
n-fold way algorithm, the exit time m from the current spin
configuration is given by

m =
⌊

ln(r̄)

ln(1 − Q27)

⌋
+ 1, (5)

where r̄ is a random number and �x� is the integer part of x.

B. n-fold way algorithm for distributions of D

With distributions of D, one must treat every lattice site
individually to reflect the randomness of D. Hence, we classify
all spins into N classes according to the lattice site rather than

the 27 spin classes. Then we define a quantity Qi as follows:

Qi = 1

N

i∑
j=1

pj , 1 � i � N, (6)

where Q0 = 0. The exit time m from the current spin
configuration is now

m =
⌊

ln(r̄)

ln(1 − QN )

⌋
+ 1. (7)

In this case, one needs to update pj due to randomness of
D in order to calculate the exit time m rather than updating
nj for constant D in Eq. (4). This algorithm is not efficient
because a memory allocation time depends on the system size
N . Therefore, we switch to the standard Monte Carlo algorithm
once the spin system exits from the initial state.

C. AMC method

To analytically calculate the average lifetime for constant
D, we use the s = 3 AMC method with three transient states.
For region I-A, the s = 2 AMC method can also be used,
but for region II, we must use the s = 3 AMC method. The
magnetization of the spin system reaches 0 shortly after a
critical droplet is formed in the single-droplet regime. Hence,
the average lifetime is approximately the exit time from the
transient subspace in the AMC. Using the transient states and
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several absorbing states, we create a transition matrix for the
AMC and find an analytic form for the exit time. For details of
the AMC method, see Ref. [35]. In the T → 0 limit, we expect
that the analytic form should be a good approximation to the
average lifetime from our KMCS. For Gaussian distributions
of D, we first calculate an average of each relevant spin-flip
probability by integrating the probability over D and then use
the averages in the analytic form of the exit time for constant D
[23]. In this case, we assume that N is so large that a summation
over the lattice sites approximates an integral. Thus, we expect
that the finite-size effect is more prominent for larger σD [23].

IV. RESULTS: CONSTANT MAGNETIC
ANISOTROPY PARAMETER

We present analytic and simulated average lifetimes 〈τ 〉
in regions I-A and II and at the boundary for constant D

(specifically the parameter values labeled b–d in Fig. 1), using
the Glauber dynamic. Then a similar analysis is carried out for
the PA dynamic. In our KMCS, 2000 escapes are simulated
for a thermal average at a given value of β.

The highlights of our results in this section are as follows.
The energy barrier � in 〈τ 〉 increases with increasing D for a
fixed |H |. The increase in region II is greater than in region
I-A for both dynamics. At the boundary, the barrier � for
the PA dynamic greatly increases compared to the Glauber
dynamic due to forbidden transitions under the PA dynamic.
The prefactor A in 〈τ 〉 for the Glauber dynamic is constant for
a given region, but it is different at the boundary. The prefactor
A for the PA dynamic, however, depends on D and |H | even
for a given region.

To calculate the analytic form of the lifetime, we use the
s = 3 AMC method with the following three transient states
(and five absorbing states): (i) the initial state, (ii) the state
of a single site with Mz = 0 from the initial state (N possible
configurations), and (iii) the state of two nearest-neighbor sites
with each spin Mz = 0 from the initial state (2N possible
configurations). The exit time from the transient subspace or
〈τ 〉 as a function of |H |, D, T , and N is given by

〈τ 〉 = F1(p1) + F2(p1) + F0 + p+
19(6p2 + p+

20 + p−
20)

p1[F3(p1) + F4(p1) + F0]
,

F0 = 48p2
2 + p−

19(p+
20 + p−

20) + p2(6p−
19 + 8p−

20),

F1(p1) = p2
1(80 − 42N + 4N2),

F2(p1) = p1[(40N − 124)p2 + (N − 8)(p+
19 + p−

19)

+ (4N − 10)(p+
20 + p−

20)], (8)

F3(p1) = 2p2
1(40 − 13N + N2),

F4(p1) = p1[(20N − 124)p2 + (N − 8)p−
19

+ (2N − 10)(p+
20 + p−

20)],

where pi is a spin-flip probability in spin class i listed in
Table I. Equation (8) is valid in regions I-A and II and the
region boundary for the Glauber dynamic and in regions I-A
and II for the PA dynamic, because the critical droplets for
regions I-A and II are included in the transient subspace for
both dynamics. However, Eq. (8) is not valid at the boundary
for the PA dynamic. Further discussion follows.

A. Glauber dynamic

For the Glauber dynamic, pi’s in Eq. (8) are written as

p1 = 1

1 + eβ(4+D−|H |) , p2 = 1

1 + eβ(3+D−|H |) , (9)

p+
19 = 1

1 + eβ(−4−D+|H |) , p+
20 = 1

1 + eβ(−3−D+|H |) , (10)

p−
19 = 1

1 + eβ(4−D−|H |) , p−
20 = 1

1 + eβ(3−D−|H |) . (11)

Let us first present our result for region I-A (3 + D <

|H | < 4 − D and D > 0). In the T → 0 limit, p1 becomes
exp[−β(4 + D − |H |)], while p2, p+

19, and p−
20 approximate

unity. In addition, p−
19 and p+

20 approximate exp[−β(4 −
D − |H |)] and exp[β(3 + D − |H |)], respectively, and so
they vanish in the zero-temperature limit. Thus, the average
lifetime, Eq. (8), in the zero-temperature limit becomes

〈τ 〉 = 8p2 + p+
19

8p1p2
= A

p1
= Aeβ�(D,H ), (12)

where �(D,H ) = 4 + D − |H | and A = 9/8 is independent
of D and |H | in region I-A. Simulations are performed using
the s = 2 MCAMC for L = 40, D = 0.125, and |H | = 3.25
in the range of β = 50–690 (Fig. 2). We use two methods to
fit the KMCS data to Eq. (12): (i) to use A and � as fitting
parameters and (ii) to use only A as a fitting parameter with �

fixed as the value from the s = 3 AMC method (� = 0.875).
The first method provides that � = 0.8750 ± 1.53 × 10−5 and
A = 1.1246 ± 0.0071, while the second method gives A =
1.1221 ± 0.0032. The fitted values agree with the analytic
values, � = 0.875 and A = 1.125, within the uncertainties.

We now present our result for region II (3 − D < |H | <

3 + D and D < 0.5). In the T → 0 limit, p1 and p2

become exp[−β(4 + D − |H |)] and exp[−β(3 + D − |H |)],
respectively. p+

19, p+
20, and p−

20 approximate to unity. p−
19

FIG. 2. (Color online) Simulated 〈τ 〉 vs β using the Glauber
dynamic for three constant values of D at |H | = 3.25 for L = 40.
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TABLE II. Fitting of our KMCS data using the Glauber dynamic for constant D at |H | = 3.25. In the first method � and A are parameters,
and in the second method only A is fitted.

Method Region I-A (D = 0.125) Boundary (D = 0.25) Region II (D = 0.375)

First � = 0.8750 ± 1.53 × 10−5 � = 1.0000 ± 1.73 × 10−5 � = 1.2500 ± 1.81 × 10−5

A = 1.1246 ± 0.0071 A = 1.2885 ± 0.0092 A = 0.2486 ± 0.0015
Second � = 0.875 (fixed) � = 1 (fixed) � = 1.25 (fixed)

A = 1.1221 ± 0.0032 A = 1.2873 ± 0.0041 A = 0.2497 ± 0.0007
AMC � = 0.875 � = 1 � = 1.25

A = 1.125 A = 1.28125 A = 0.25

approximates exp[−β(4 − D − |H |)], which vanishes as
T → 0. The lifetime, Eq. (8), in the zero-temperature limit
becomes

〈τ 〉 = p+
19(p+

20 + p−
20)

8p1p2p
−
20

= A

p1p2
= Aeβ�(D,H ), (13)

where �(D,H ) = 7 + 2D − 2|H | and A = 1/4. The barrier
� increases with increasing D more rapidly than in region I-A
for a given value of |H |. We perform KMCS at |H | = 3.25 and
D = 0.375 in the range β = 50–560 (Fig. 2). Fitting of our
simulation data to Eq. (13) shows that A = 0.2486 ± 0.0015
and � = 1.2500 ± 1.81 × 10−5 using the first method and that
A = 0.2497 ± 0.0007 using the second method. These values
agree with those from the s = 3 AMC method (� = 1.25,
A = 0.25) within the uncertainties.

Finally, we show our result for the boundary between region
I-A and region II (|H | = 3 + D and 0 < D < 0.5). In the T →
0 limit, p1 → exp[−β(4 + D − |H |)], p+

19, p−
20 → 1, p−

19 →
exp[−β(4 − D − |H |)], and p2, p+

20 → 1/2. At the boundary,
the lifetime is

〈τ 〉 = (8p2 + p+
19)(6p2 + p−

20) + p+
19p

+
20

8p1p2(6p2 + p−
20)

(14)
= Aeβ�(D,H ),

where � = 1 and A = 41/32. In this case, the barrier � does
not depend on D or |H |. The prefactor A differs from that
for region I-A or II, because in the zero-temperature limit, p2

and p+
20 differ from those for region I-A or II. Fitting of our

simulation data in the range of β = 50–690 (Fig. 2) provides
that � = 1.0000 ± 1.73 × 10−5 and A = 1.2885 ± 0.0092
using the first method and that A = 1.2873 ± 0.0041 using the
second method. These values agree with those from the AMC
method within the uncertainties. See Table II for a summary.

B. Phonon-assisted dynamic

For the PA dynamic, pi’s in Eq. (8) are given as

p1 = (4 + D − |H |)3

eβ(4+D−|H |) − 1
, p2 = (3 + D − |H |)3

eβ(3+D−|H |) − 1
, (15)

p+
19 = (−4 − D + |H |)3

eβ(−4−D+|H |) − 1
, p+

20 = (−3 − D + |H |)3

eβ(−3−D+|H |) − 1
,

(16)

p−
19 = (4 − D − |H |)3

eβ(4−D−|H |) − 1
, p−

20 = (3 − D − |H |)3

eβ(3−D−|H |) − 1
. (17)

We first present our result for region I-A. In the T → 0 limit,
p1 approximates (4 + D − |H |)3 exp[−β(4 + D − |H |)]. p2,
p+

19, and p−
20 approximate (−3 − D + |H |)3, (4 + D − |H |)3,

and (−3 + D + |H |)3, respectively. p−
19 and p+

20 approxi-
mate (4 − D − |H |)3 exp[−β(4 − D − |H |)] and (−3 − D +
|H |)3 exp[−β(−3 − D + |H |)], respectively, and they vanish
in the zero-temperature limit. Hence, the prefactor and the
barrier in Eq. (8) or Eq. (12) are given by

A = 8(−3 − D + |H |)3 + (4 + D − |H |)3

8(4 + D − |H |)3(−3 − D + |H |)3
,

� = 4 + D − |H |. (18)

The energy barrier � is the same for both dynamics, but the
prefactor A is now a function of D and |H | for region I-A,
which is not the case for the Glauber dynamic. As |H | becomes
close to 3 + D, the prefactor A dramatically increases. We
carry out KMCS at |H | = 3.25 and D = 0.125 in the range
of β = 50 − 690 (Fig. 3). Fitting of the data provides that
� = 0.8750 ± 1.63 × 10−5 and A = 65.0899 ± 0.4396 using
the first method and that A = 65.6062 ± 0.2015 using the
second method. Within the uncertainties, these values agree
with those from Eq. (18), � = 0.875 and A = 65.4927.

We now examine analytic and simulated lifetimes
for region II. In the limit of T → 0, p1 → (4 + D −
|H |)3 exp[−β(4 + D − |H |)], and p2 → (3 + D − |H |)3

FIG. 3. (Color online) Simulated 〈τ 〉 vs β using the PA dynamic
for three values of D at |H | = 3.25 for L = 40.
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FIG. 4. (Color online) Schematic of relaxation pathways at the
region boundary. Each spin configuration shows only flipped spin
projections from the initial state. The rightmost upper configuration
indicates a state of two non-nearest-neighbor spin projections with
each Mz = 0. Transitions (a) and (b) are not permitted under the PA
dynamic. Numbers next to or above the arrows represent �E values
between the states for |H | = 3.25 and D = 0.25.

exp[−β(3 + D − |H |)]. p−
19 → 0, and p+

19, p+
20, and p−

20
approximate (4 + D − |H |)3, (3 + D − |H |)3, and (−3 +
D + |H |)3, respectively. Thus, the prefactor and the barrier
in Eq. (8) or Eq. (13) are given by

A = (3 + D − |H |)3 + (−3 + D + |H |)3

8(3 + D − |H |)3(−3 + D + |H |)3
,

(19)
� = 7 + 2D − 2|H |,

where, as |H | becomes close to 3 − D or 3 + D (boundaries of
region II), A greatly increases. For |H | = 3.25 and D = 0.375,
Eq. (19) reveals that � = 1.25 and A = 64.512. Fitting our
data in the range of β = 50–550 (Fig. 3) shows that � =
1.2500 ± 2.01 × 10−5 and A = 64.2807 ± 0.4325 using the
first method and that A = 64.4455 ± 0.1894 using the second
method.

Finally, we discuss the average lifetime at the boundary.
In this case, interestingly, the transitions labeled (a) and (b)
in Fig. 4 are forbidden (p2 = 0, p+

20 = 0) because the states
involved with the transitions are degenerate. Thus, at the
boundary, the critical droplet is now a single site with spin
projection Mz = −1. This change necessitates the use of a
different set of transient states in the s = 3 AMC method. The

new set of three transient states is the first two transient states,
(i) and (ii), discussed earlier and the state of a single site with
spin projection Mz = −1 from the initial state (N possible con-
figurations). Using this new set in the s = 3 AMC method, we
find the average lifetime as a function of D, |H |, T , and N , as

〈τ 〉 = G1(p1) + G2(p1) + G0 + p+
19(4p3 + p10)

p1(G3(p1) + G0)
,

G0 = 4{2p10p2 + (8p2 + p−
19)p3},

G1(p1) = p2
1(50 − 30N + 4N2),

G2(p1) = p1[(4N − 10)p10 + (N − 5)(8p2 + p+
19)

+ (2N − 5)(8p3 + p−
19)], (20)

G3(p1) = 2p2
1(N − 5)2 + p1(N − 5)

× (8p2 + 8p3 + 2p10 + p−
19),

where p3 and p10 are given by

p3 = (2 + D − |H |)3

1 − e−β(2+D−|H |) ,
(21)

p10 = (−4 + D + |H |)3

1 − e−β(−4+D+|H |) .

In the zero-temperature limit, p1 and p−
19 are approximately

(4 + D − |H |)3 exp[−β(4 + D − |H |)] and (4 − D −
|H |)3 exp[−β(4 − D − |H |)], respectively. p3, p10, and p+

19
are close to (−2 − D + |H |)3, (4 − D − |H |)3, and (4 + D −
|H |)3, respectively. Note that p2,p+

20 → 0 as T → 0. Then
the lifetime, Eq. (20), in the zero-temperature limit becomes

〈τ 〉 = p+
19(4p3 + p10)

4p1p3p
−
19

= Aeβ�, (22)

A = 4(−2 − D + |H |)3 + (4 − D − |H |)3

4(−2 − D + |H |)3(4 − D − |H |)3
,

� = 8 − 2|H |. (23)

Fitting of our KMCS data for |H | = 3.25 and D = 0.25, in
the range of β = 50–460 (Fig. 3), shows that � = 1.5000 ±
2.74 × 10−5 and A = 8.2407 ± 0.0682 using the first method
and that A = 8.2400 ± 0.0271 using the second method. The
AMC method gives rise to � = 1.5 and A = 8.25. The sim-
ulated and analytic results agree within the uncertainties. For
a summary, see Table III. At the boundary, the energy barrier
for the PA dynamic is much higher than that for the Glauber
dynamic, due to the forbidden transitions. A similar increase
in the barrier for the PA dynamic (due to forbidden transitions)
was discussed for the boundary between region I-C and region
III, such as |H | = 4 − D (0.5 < D < 1) in Ref. [31].

TABLE III. Fitting of our KMCS data using the PA dynamic for constant D at |H | = 3.25.

Method Region I-A (D = 0.125) Boundary (D = 0.25) Region II (D = 0.375)

First � = 0.8750 ± 1.63 × 10−5 � = 1.5000 ± 2.74 × 10−5 � = 1.2500 ± 2.01 × 10−5

A = 65.0899 ± 0.4396 A = 8.2407 ± 0.0682 A = 64.2807 ± 0.4325
Second � = 0.875 (fixed) � = 1.5 (fixed) � = 1.25 (fixed)

A = 65.6062 ± 0.2015 A = 8.2400 ± 0.0271 A = 64.4455 ± 0.1894
AMC � = 0.875 � = 1.5 � = 1.25

A = 65.4927 A = 8.25 A = 64.512
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V. RESULTS: DISTRIBUTIONS OF THE MAGNETIC
ANISOTROPY PARAMETER

We consider Gaussian distributions of D centered at three
values of D0 (0.125, 0.25, and 0.375, shown in Fig. 1) with
two values of standard deviation, σD = 0.0125 and 0.025. To
generate random numbers with Gaussian distributions, the
Box-Muller transformation [46] is used. At a given β and
σD , 2000 escapes are simulated for a thermal average, and
10 Gaussian distributions are generated for an average over
distribution. The same sets of distributions are used for our
studies in regions I-A and II and at the boundary for both the
Glauber and the PA dynamics. Our results are valid in the
case of σ/D � 1. Large variances might strongly influence
the low-temperature behavior of the relaxation time [47].

We first discuss our results for the Glauber dynamic and
compare them with those for constant D. We then similarly
analyze our data for the PA dynamic. The highlights of our
results are as follows. For both dynamics, compared to the case
for constant D, the average lifetime decreases with Gaussian
distributions of D in the two regions and at the boundary,
because the barrier � decreases with increasing σD for a fixed
value of β. For a given β and σD , both dynamics show that
a decrease in the barrier or the lifetime is more apparent in
region II than in region I-A. At the boundary, with distributions
of D, the PA dynamic now finds lower-energy relaxation
pathways so that the lifetime decreases by about 10 orders
of magnitude at the low temperatures considered compared
to that for constant D (a much greater decrease than for the
Glauber dynamic). For the Glauber dynamic, the prefactor A

does not change with distribution of D compared to that for
constant D. However, for the PA dynamic, the prefactor A

depends on even σD , and it significantly decreases compared
to that for constant D except for the boundary. The decrease
is more prominent in region II than in region I-A. For the PA
dynamic, at the boundary, the prefactor A greatly increases
compared to that for constant D.

A. Glauber dynamic

We present our result for region I-A. To find an analytic
form of 〈τ 〉 with a distribution of D, we first take the zero-
temperature limit of the spin-flip probability p1 in Eq. (9) and
then compute the average of the probability over a Gaussian
distribution of D, f (D), such as p1 = ∫

f (D) exp[−β(4 +
D − |H |)]dD. Applying this average to Eq. (12), we find the
average lifetime as

〈τ 〉 = A exp[β�(β,H,D0,σD)],

�(β,H,D0,σD) = �0(H,D0) − βσD
2

2
, (24)

where �0(H,D0) = 4 + D0 − |H | and A = 9/8. The prefac-
tor A is not affected by f (D). However, due to the correction
term in �, −βσ 2

D/2, the energy barrier � decreases with
the distribution of D. We perform KMCS in the range of
β = 50–100, with D0 = 0.125 at |H | = 3.25, and fit the data
to Eq. (24) with fitting parameters �0 and A with σD fixed
(Table IV). For σD = 0.0125, the fitted values of �0 and A

agree with Eq. (24) within σD . For σD = 0.025, the agreement
between the fitting and the AMC result is not as good as the

case of σD = 0.0125 (still agreement within 2σD). This is
because the finite-size effect is more pronounced for larger
σD [23].

The calculated average lifetime, Eq. (24), is valid only
for � > 0, that is, β < 2�0/σ

2
D . For example, for point b

in region I-A, β must be less than 2800 for D0 = 0.125,
�0 = 0.375, and σD = 0.025. (This value of β is too large
to be realized numerically or experimentally.) Otherwise, �

becomes negative and 〈τ 〉 becomes very short at an extremely
low temperature, in contradiction to common sense. This
contradiction occurs due to the approximation taken in order to
obtain the analytical expression, Eq. (24). The approximation
is that we replace a summation with an integral in calculating
the average of the spin-flip probability over the Gaussian
distribution, p1. Using the Glauber dynamic, the expression
of p1 before the approximation (and before taking the T → 0
limit) is

p1 = 1

N

N∑
i=1

1

1 + exp [β(4 + Di − |H |)] , (25)

where Di is taken from the Gaussian distribution. In region I-A,
Eq. (25) suggests that as β → ∞, p1 → 0 and so 〈τ 〉 → ∞.
Thus, there is no contradiction even at zero temperature.
Another way to view the contradiction is that the Gaussian
integral in p1 = ∫

f (D) exp[−β(4 + D − |H |)]dD is not
well defined for β → ∞. In other words, when we rewrite
p1 as

p1 =
[∫ ∞

−∞

dD

σD

√
2π

exp

(
−

{
D − (

D0 − σ 2
Dβ

)}2

2σ 2
D

)]

× [
exp

( − β�0 + β2σ 2
D/2

)]
, (26)

the first bracket in the above expression equals 0 at β = ∞,
but it equals unity otherwise. This subtlety in the analytic
expression of 〈τ 〉 is applied to all regions and dynamics
considered in Sec.V. Henceforth, all analytic forms of 〈τ 〉
shown in this paper are valid only for � > 0.

We now present our result for region II. A spin flip at site
i represented by p1 is independent of a spin flip at site j

associated with p2. Thus, as T → 0, similarly to the case in
region I-A, we can rewrite p1p2 as

p1p2 =
∫ +∞

−∞
f (D)e−β(4+D−|H |)dD

×
∫ +∞

−∞
f (D′)e−β(3+D′−|H |) dD′ (27)

= exp
(−β�0 + β2σ 2

D

)
. (28)

Hence, using Eq. (13), the lifetime is given by

〈τ 〉 = A exp[β�(β,H,D0,σD)],

�(β,H,D0,σD) = �0(H,D0) − βσD
2, (29)

where �0(H,D0) = 7 + 2D0 − 2|H | and A = 1/4. We fit
our KMCS data for D0 = 0.375 at |H | = 3.25 (Fig. 5)
to Eq. (29) with σD fixed. We find that �0 = 1.2503 ±
1.33 × 10−4 and A = 0.2490 ± 0.0021 for σD = 0.0125 and
that �0 = 1.2513 ± 2.92 × 10−4 and A = 0.2300 ± 0.0043
for σD = 0.025. For σD = 0.0125, the fitted values are in
good agreement with those using the AMC method, while
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TABLE IV. Fitted values from our KMCS data and calculated values from the AMC method, using the Glauber dynamic with distributions
of D centered at D0 with σD at |H | = 3.25. For region I-A and the boundary, � = �0 − βσ 2

D/2, and for region II, � = �0 − βσ 2
D . Note that

�0 differs from �.

Region I-A (D0 = 0.125) Boundary (D0 = 0.25) Region II (D0 = 0.375)

σD = 0.0125 �0 = 0.8751 ± 6.47 × 10−5 �0 = 1.0002 ± 6.54 × 10−5 �0 = 1.2503 ± 1.33 × 10−4

A = 1.1225 ± 0.0055 A = 1.2794 ± 0.0064 A = 0.2490 ± 0.0021
σD = 0.025 �0 = 0.8746 ± 9.15 × 10−5 �0 = 0.9996 ± 9.32 × 10−5 �0 = 1.2513 ± 2.92 × 10−4

A = 1.1119 ± 0.0078 A = 1.2688 ± 0.0090 A = 0.2300 ± 0.0043
AMC method �0 = 0.875 �0 = 1 �0 = 1.25

A = 1.125 A = 1.28125 A = 0.25

for σD = 0.025, there is a discrepancy between the fitted
values and the AMC result due to the finite-size effect. The
discrepancy for σD = 0.025 in this region is greater than that
in region I-A, because the finite-size effect is enhanced in this
region due to the use of two integrals in Eq. (27) instead of the
one integral used in region I-A.

Finally, we show our result for the boundary. In the T →
0 limit, p2 → ∫ +∞

−∞ f (D)	(D − |H | + 3))dD and p+
20 →∫ +∞

−∞ f (D)	(|H | − 3 − D)dD, where 	(x) is a Heaviside
function. Applying them and p1, discussed earlier, to Eq. (14),
we find the lifetime as

〈τ 〉 = A exp [β�(β,σD)], � = �0 − βσ 2
D

2
, (30)

where �0 = 1 and A = 41/32. Fitting of our KMCS data
(Fig. 6) provides that �0 = 1.0002 ± 6.54 × 10−5 and A =
1.2794 ± 0.0064 for σD = 0.0125 and that �0 = 0.9996 ±
9.32 × 10−5 and A = 1.2688 ± 0.0090 for σD = 0.025. Nu-
merical uncertainties are consistently greater for σD = 0.025.
For a summary, see Table IV.

FIG. 5. (Color online) Simulated 〈τ 〉 vs β using the Glauber
dynamic for distributions of D centered at D0 = 0.375 (region II)
with σD = 0.0125 and 0.025 for L = 40. Symbols indicate our data
and solid curves are from the fitting. The lifetime for constant D is
included.

B. Phonon-assisted dynamic

We discuss our result for region I-A. In this region, we
rewrite Eq. (12) as

〈τ 〉 = 1

p1
+ p+

19

8p1p2
. (31)

A spin flip at site i associated with p+
19 always occurs after

a spin flip related to p1 at the same site. A spin flip at site
j associated with p2 is independent of the spin slip at site i.
Thus, taking into account the energy-dependent prefactor in
the PA dynamic, we rewrite p1, p2, and p1/p

+
19 as follows:

p1 =
∫ ∞

−∞
f (D)(4 + D − |H |)3

× exp[−β(4 + D − |H |)]dD, (32)

p2 =
∫ ∞

−∞
f (D′)(−3 − D′ + |H |)3dD′, (33)

p1

p+
19

=
∫ ∞

−∞
f (D) exp[−β(4 + D − |H |)]dD. (34)

FIG. 6. (Color online) Simulated 〈τ 〉 vs β using the Glauber
dynamic for distributions of D centered at D0 = 0.25 (at the region
boundary) with σD = 0.0125 and 0.025 for L = 40. Notations are the
same as in Fig. 5.
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TABLE V. Fitting of our KMCS data and the AMC result using the PA dynamic with distributions of D at |H | = 3.25. �0 and A are fitted
with fixed σD .

Region I-A (D0 = 0.125) Boundary (D0 = 0.25) Region II (D0 = 0.375)

σD = 0.0125 �0 = 0.8752 ± 5.83 × 10−5 �0 = 1.0098 ± 2.12 × 10−4 �0 = 1.2547 ± 1.73 × 10−4

A = 62.988 ± 0.281 A = 23825 ± 386 A = 42.843 ± 0.477
σD = 0.025 �0 = 0.8747 ± 8.72 × 10−5 �0 = 1.0063 ± 8.28 × 10−5 �0 = 1.2700 ± 0.0002

A = 57.293 ± 0.382 A = 5318.3 ± 33.6 A = 33.862 ± 0.426
AMC method �0 = 0.875 �0 = 1.00 �0 ≈ 1.25

A = 63.629(σD = 0.0125) A = 80212(σD = 0.0125)
A = 58.636(σD = 0.025) A = 10027(σD = 0.025)

Using the above and keeping only leading terms, Eq. (31)
becomes

〈τ 〉 = exp

[
β

(
�E0

1 − 1

2
σ 2

Dβ

)] [
1(

�E0
1

)3 − 3
(
�E0

1

)2
σ 2

Dβ

+ 1

8
[(

�E0
2

)3 + 3�E0
2σ

2
D

]
]

, (35)

where �E0
1 = 4 + D0 − |H | and �E0

2 = −3 − D0 + |H |.
Then, expanding the terms in the bracket up to σ 2

D terms,
we find

〈τ 〉 = A(σD) exp[β�(β,H,D0,σD)]

= A(σD) exp

(
β�0 − 1

2
β2σ 2

D

)
, (36)

A(σD) = A0 − 3σ 2
D

8
(
�E0

2

)5
+ O

(
σ 4

D

)
, (37)

�0 = �E0
1 + 3σ 2

D

A
(
�E0

1

)4 + O
(
σ 4

D

) ≈ �E0
1 , (38)

where A0 is the prefactor for constant D, Eq. (18), with
D replaced by D0. Interestingly, both the prefactor A and
�0 (not �) now depend on σD , in contrast to the Glauber
dynamic. Considering that 0 < �E2 < �E1 < 1 and A0 � 1,
we expect that prefactor A has a more significant dependence
on σD than �0. Fitting of our KMCS data (not shown) to
Eq. (36) shows that �0 = 0.8752 ± 5.83 × 10−5 and A =
62.988 ± 0.281 for σD = 0.0125 and that �0 = 0.8747 ±
8.72 × 10−5 and 57.293 ± 0.382 for σD = 0.025. Our fitting
implies that the fitted value of A is indeed lower than A0

(=65.4927) and that �0 is close to that for constant D and for
the Glauber dynamic. The fitted values of �0 and A are close
to the AMC result (Table V), but the agreement is not as good
as that for the Glauber dynamic.

In region II, Eq. (13) does not provide an analytic form
of 〈τ 〉 for the PA dynamic due to the energy-dependent
prefactor in the dynamic. However, one can predict leading
terms of � from p1 and p2. They are the same as those for
the Glauber dynamic, Eq. (29). However, it is not possible
to find an approximate analytic form for prefactor A in this
case. Our fitting of the KMCS data (Fig. 7) to Eq. (29)
shows that �0 = 1.2547 ± 1.73 × 10−4 and A = 42.843 ±
0.477 for σD = 0.0125 and that �0 = 1.2700 ± 0.0002 and
A = 33.862 ± 0.426 for σD = 0.025. We also fit the data using
three fitting parameters such as �0, A, and σD (not listed). This

fitting also consistently gives a much lower value of A than the
value for constant D, A = 64.512. For σD = 0.025, the fitted
value of A is almost half that for constant D. It is apparent that
the value of A substantially decreases with increasing σD .

At the boundary, our KMCS data with distributions of D

(Fig. 8) show a lifetime that is about 10 orders of magnitude
shorter, at the low temperatures considered, than that for
constant D. This is due to the absence of forbidden transitions.
The metastable state can now relax through spin flips at sites
with smaller values of D than D0, where spin flips represented
by p2 are allowed or �E2 = 0, where �E2 = 3 + D − |H |.
Note that �E2 = 0 at D = D0. Since the energy barrier �

is determined by the smallest magnetic anisotropy parameter
within a distribution of D [23], we predict that the lifetime
in this case obeys a form similar to that for region I-A
with a distribution of D. At the boundary (|H | = D0 + 3
and 0 < D0 < 0.5), the first term in Eq. (31) is negligible
and only the second term significantly contributes to the
lifetime. Across the boundary (varying D with fixed |H |),
�E2 changes its sign. Thus, in the T → 0 limit, p2, de-
fined to be

∫ +∞
−∞ f (D)(�E2)3/(eβ�E2 − 1)dD, approximates∫ |H |−3

−∞ f (D)(3 + D − |H |)3dD = √
2/πσ 3

D . Using this and

FIG. 7. (Color online) Simulated 〈τ 〉 vs β using the PA dynamic
for Gaussian distributions of D centered at D0 = 0.375 (region II).
Notations are the same as in Fig. 5.
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FIG. 8. (Color online) Simulated 〈τ 〉 vs β using the PA dynamic
for Gaussian distributions at the boundary D0 = 0.25. Notations are
the same as in Fig. 5.

Eq. (34), we find that

〈τ 〉 = A(σD) exp

(
β�0 − 1

2
σ 2

Dβ2

)
, (39)

A(σD) =
√

π

8
√

2σ 3
D

, �0 = �E0
1 = 1, (40)

where prefactor A also depends on σD . Fitting of our data in the
range of β = 50–100 to Eq. (39) shows that �0 = 1.0098 ±
2.12 × 10−4 and A = 23825 ± 386 for σD = 0.0125 and
that �0 = 1.0063 ± 8.28 × 10−5 and A = 5318.3 ± 33.6 for
σD = 0.025. Our fitted value of �0 is close to that using the
AMC method, Eq. (39), and the fitted value of A decreases
with increasing σD as predicted (Table V). However, the fitted
value of A is much smaller than that derived from the AMC
method for a given σD value. Strictly speaking, the prefactor
A(σD) in Eq. (40) is exact at T = 0. The temperature range
in our KMCS may not be low enough to agree with A(σD) in
Eq. (40).

VI. CONCLUSION

We have investigated the relaxation of magnetization or the
decay of the metastable state in the zero-temperature limit for
the spin S = 1 square-lattice ferromagnetic BC model with
distribution of magnetic anisotropy, using the Glauber and
PA dynamics in two regions of different sizes of the critical
droplet and at the boundary between the regions, within the
single-droplet regime. Using the AMC method, we were able
to predict the average relaxation time of magnetization or the
average lifetime of the metastable state for both dynamics
in most cases that we considered. The predicted lifetimes
agree with those obtained from our KMCSs. We found that
the average lifetime is governed by a modified Arrhenius law,
where the energy barrier depends on the temperature, and it
decreases with increasing standard deviation of the distribution
of magnetic anisotropy. The amount of the decrease as a

function of the standard deviation differs in different regions.
At the boundary between the different regions, for the PA
dynamic, the long lifetime of the metastable state caused by
forbidden transitions (for constant magnetic anisotropy) can
be dramatically lowered by introducing a small distribution
of magnetic anisotropy. In addition, for the PA dynamic,
a significant change in the prefactor A was found as a
function of the standard deviation, in contrast to the Glauber
dynamic. Since the two dynamics are affected differently by
the distribution of magnetic anisotropy, studies of metastability
with distribution of magnetic anisotropy can be used as a way
to determine an underlying dynamic relevant to the system of
interest.
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APPENDIX: AVERAGE METASTABLE LIFETIME AT A
LOWER MAGNETIC FIELD

We calculate an analytic form of the average lifetime in
region IV-A confined by (2 + D) < |H | < (3 − D) and D >

0 in Fig. 9, with the Glauber dynamic for constant D and
distribution of D. We use the s = 4 AMC method with the

FIG. 9. (Color online) Crossover dynamic “phase” diagram for
metastable decay for the square-lattice ferromagnetic BC model with
0 < D < 1 in the zero-temperature limit (for constant D). Four
regions—I, II, III, and IV—within the single-droplet regime are
specified with illustrated critical droplets. Notation is the same as
in Fig. 1.

012110-11



YOH YAMAMOTO AND KYUNGWHA PARK PHYSICAL REVIEW E 88, 012110 (2013)

FIG. 10. Schematic of relaxation pathways for region IV-A shown
in Fig. 9. Each spin configuration shows only flipped spin projections
from the initial state (all spins with Mz = +1). Bold arrows represent
the most probable relaxation pathway. Numbers next to or above the
arrows represent �E between the corresponding states for |H | = 2.5
and D = 0.25.

following four transient states (and eight absorbing states): the
three transient states in the s = 3 AMC method (discussed in
Sec.IV) and the state of two nearest-neighbor sites with Mz =
0 and Mz = −1 [Fig. 10(d)]. The most probable relaxation
pathway in this region is shown by bold arrows in Fig. 10. The
exit time from the transient subspace or 〈τ 〉 as a function of
|H |, D, T , and N is given by

〈τ 〉 = A1 + B1 + C1 + D1

p1(A2 + B2 + C2 + D2)
,

A1
(
p3

1

) = 4p3
1(N − 8)2(2N − 5),

A2
(
p3

1

) = 4p3
1(N − 8)2(N − 5),

B1
(
p2

1

) = 2p2
1(N − 8)[2p2(13N − 77) + (2N − 5)

×{2(3p3 + p11 + p+
20 + p−

20) + p+
21 + p−

21}
+ (N − 8)(p+

19 + p−
19) + 26Np2],

B2
(
p2

1

) = 2p2
1(N − 8)[2p2(13N − 77) + (N − 5)

×{2(3p3 + p11 + p+
20 + p−

20) + p+
21 + p−

21}
+ (N − 8)p−

19],

C1(p1) = p1
[
168p2

2(2N − 9) + 2(2N − 5){2p+
20(p11 + 3p2)

+ (p+
20 + p−

20)(6p3 + p+
21 + p−

21)} + (p+
19 + p−

19)

× (N − 8){6(3p2 + p3) + 2(p11 + p+
20 + p−

20)

+p+
21 + p−

21} + 4p2{(10N − 31)

× (6p3 + 2p11 + p+
21 + p−

21) + p−
20(14N − 47)}],

C2(p1) = p1
[
216p2

2(N − 7) + 2(N − 5){2p+
20(p11 + 3p2)

+ (p+
20 + p−

20)(6p3 + p+
21 + p−

21)} + p−
19(N − 8)

×{6(3p2 + p3) + 2(p11 + p+
20 + p−

20)

+p+
21 + p−

21} + 4p2{(5N − 31)(6p3 + 2p11 + p+
21

+p−
21) + p−

20(7N − 47)}],
D1 = 2p11

{
48p2

2 + (p+
19 + p−

19)(6p2 + p+
20)

}

+ {
48p2

2 + 8p2p
−
20 + (p+

19 + p−
19)(6p2 + p+

20

+p−
20)

}
(6p2 + 6p3 + p+

21 + p−
21),

D2 = 2p11
{
48p2

2 + 2p−
19(6p2 + p+

20)
}+ {

48p2
2 + 8p2p

−
20

+p−
19(6p2 + p+

20 + p−
20)

}
(6p2 + 6p3 + p+

21 + p−
21).

(A1)

1. Constant magnetic anisotropy parameter

In the T → 0 limit, p+
21 approaches 0, and p3, p10,

p11, p+
19, p+

20, and p−
21 approach unity. p1 approaches

exp[−(4 + D − |H |)] and p2 approaches exp[−(3 + D −
|H |)]. p−

19 approaches exp[−(4 − D − |H |)] and p−
20 ap-

proaches exp[−(3 − D − |H |)]. In addition, in region IV-A,
p1 � p−

19 � p2p
−
20, and so A1, A2, B1, B2, C1, and C2

approach 0 as T → 0. Thus, Eq. (A1) is reduced to

〈τ 〉 = D1

p1D2
, (A2)

and it can be further approximated to

〈τ 〉 = 9

56
(p1p2p

−
20)−1

= 9

56
exp[β(10 + D − 3|H |)]. (A3)

2. Distribution of the magnetic anisotropy parameter

With a Gaussian distribution f (D) of D, using the same
analogy as before (Sec. V A), for T → 0, we can compute the
average of the probability p1p2p

−
20 over f (D), such as

p1p
−
20p2 =

∫ +∞

−∞
f (D)e−β(4+D−|H |) e−β(3−D−|H |) dD

×
∫ +∞

−∞
f (D′)e−β(3+D′−|H |) dD′, (A4)

where p1p
−
20 does not give a dependence on σD . We can rewrite

p1p
−
20p2 as

p1p
−
20p2 = exp

(
−β�0 + β2σ 2

D

2

)
. (A5)

Hence, using the above equation, we find that the average
lifetime is

〈τ 〉 = A exp[β�(β,H,D0,σD)],

�(β,H,D0,σD) = �0(H,D0) − βσD
2

2
, (A6)

where �0(H,D0) = 10 + D0 − 3|H | and A = 9/56. The ex-
pression of � is valid only for β < 2�0/σ

2
D , as discussed

earlier. The prefactor is the same as that for the constant
D case, and the dependence of σD on � is the same as
that for region I and the boundary discussed in the main
text.
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