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Percolation thresholds of two-dimensional continuum systems of rectangles
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The present paper introduces an efficient Monte Carlo algorithm for continuum percolation composed
of randomly oriented rectangles. By conducting extensive simulations, we report high-precision percolation
thresholds for a variety of homogeneous systems with different rectangle aspect ratios. This paper verifies and
extends the excluded area theory. It is confirmed that percolation thresholds are dominated by the average excluded
areas for both homogeneous and heterogeneous rectangle systems (except for some special heterogeneous systems
where the rectangle lengths differ too much from one another). In terms of the excluded areas, generalized formulas
are proposed to effectively predict precise percolation thresholds for all these rectangle systems. This paper is,
therefore, helpful for both practical applications and theoretical studies concerning relevant systems.
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I. INTRODUCTION

Over the past decade, layered two-dimensional (2D) nano-
materials, such as graphene, MoS2, WS2, and boron nitride
[1–5], have attracted great interest in the fields of material
science, electronics, medicine, biology, and so forth. Many
applications require these 2D materials to be integrated into
percolating systems to acquire certain functions [2,5–7]. In
general, a simple and representative model for these systems
should be a percolation system comprising randomly oriented
rectangles [8] (an example is shown in Fig. 1). As a matter
of fact, the interest in rectangle percolation is not limited
to practical applications for these emerging 2D nanomaterial
systems. It can date back to the 1980s for theoretical studies
concerning the excluded area (volume) [9,10].

Unfortunately, rectangle systems suffer from some fun-
damental problems not yet addressed. For example, the
percolation thresholds are not known even for the simplest 2D
homogeneous rectangle systems, despite the already known
thresholds in high precision for similar 2D continuum systems
composed of random disks [11,12], squares [12,13], and sticks
[12,14]. The unknown percolation threshold for rectangle
systems has also actually caused difficulty in verifying, in
these systems, the excluded area theory [9,15], which assumes
that the percolation threshold Nc is inversely proportional to
the average excluded area Ar ,

Nc ∝ A−1
r , (1)

where Nc is the critical number density of rectangles at
percolation. The excluded area (volume) is defined as the
minimum area (volume) around an object into which the center
of another similar object cannot enter in order to avoid the
overlapping of the two objects [9]. In homogeneous systems,
Ar for randomly oriented rectangles of length l and width w

(and then the aspect ratio r = l/w) is [9]

Ar = 2lw(1 + 4π−2) + 2(l2 + w2)π−1

= 2l2[(1 + 4π−2)r−1 + π−1(1 + r−2)]. (2)

In addition, practical applications may show more interest
in heterogeneous rectangle systems which comprise various
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types of rectangles of different r’s and/or different l’s. A
typical example is the composites of 2D layered materials
(low-r rectangles) and carbon nanotubes (high-r rectangles)
[3,16,17]. These systems have not even been considered in the
traditional excluded area theory [9].

In order to meet the requirements for practical applications,
to verify, and to extend the excluded area theory, in this paper,
we perform Monte Carlo simulations to explore percolation
thresholds for a variety of 2D rectangle systems.

II. SIMULATION ALGORITHM

Previously, by combining the fast Newman-Ziff algorithm
[18] with the subcell concept [19], we have developed an
efficient algorithm for stick percolation [14]. In brief, during
the simulations, each stick is registered into a subcell where
its center lies so that it is only necessary to check the
connectivity between two sticks belonging to the same and
eight neighboring subcells. And each cluster, which comprises
connecting sticks, is stored by a tree structure [18] so that the
status of a cluster can readily be updated when a new stick is
added into the system. This algorithm provides comparable
efficiency to those for lattice percolation [14,18]. In fact,
it can readily be generalized to any continuum percolation
system, including, certainly, the rectangle systems here. Like
a stick [14], a rectangle can also be stored simply through a
point (its center) and an angle (its orientation). Therefore,
the transfer from stick systems to homogeneous rectangle
systems only needs two main modifications. One is that the
subcell length should be set as the diagonal length of the
rectangles, that is,

√
l2 + w2 or l

√
1 + r−2 as shown in Fig. 1.

The other is that a different technique should be employed to
check the connectivity between two rectangles in the same and
neighboring subcells [14]. In this paper, we adopt the Cohen-
Sutherland (CS) algorithm, a famous line clipping algorithm in
computer graphics [20]. It can efficiently determine whether
a line segment is visible (or partially visible) in a viewport
(a horizontally oriented rectangular window). In detail, the CS
algorithm divides the 2D space into nine regions in terms of
the viewport. Each region has a 4-bit code, and one can readily
determine the regions of a line segment’s end points by bitwise
operations. A line segment is “trivially accepted” (completely
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FIG. 1. (Color online) An example of a homogeneous FBC
rectangle percolation (produced by our simulation program). Here,
the rectangles (olive) are of length l = 1, width w = 0.25, and aspect
ratio r = 4. The system (of size L = 4) is defined by the four bold
(black) boundaries. For convenience in employing the Newman-Ziff
algorithm, each of the two opposite (left and right) boundaries is
represented by L (= 4 here) vertically oriented intersecting auxiliary
rectangles [dashed dotted (blue) rectangles]. The system spans
(percolates) if two opposite auxiliary rectangles are connected by the
edges of normal rectangles, such as the case in this figure. The whole
systems are virtually divided by a number of subcells as shown by the
dashed (red) lines. All subcells are of the same side length

√
l2 + w2,

except those in the topmost row or rightmost column. Each rectangle
belongs to a subcell in which its center lies. Each auxiliary rectangle
belongs to its nearest subcell. Note, in general, subcell side length is
larger than the rectangle length.

visible) if both of its end points are inside the viewport region
or is “trivially rejected” (completely invisible) if the two end
points are on the same side of the viewport. Otherwise, one
end point, which is outside the viewport, is replaced with
the intersection point between its nearby (extended) viewport
edge and the line segment. The process is repeated until the
line segment is trivially accepted or trivially rejected. Note the
CS algorithm [20] attempts to determine the visible portion
of a line segment, whereas rectangle percolations are only
interested in its visibility. Therefore, we can further simplify
the CS algorithm by relieving the trivially accepted conditions:
A line segment is trivially accepted if, at least, one of its end
points is inside the viewport or one end point is over and the
other is under the viewport.

In our simulations, to check the connectivity between two
rectangles, we set one as the reference rectangle and the other
as the test rectangle and translate and rotate the space so that
the reference rectangle becomes the viewport (a horizontally
oriented rectangle centered at the origin). Since the target for
the reference rectangle is always the viewport, the translation
and rotation are only necessary for the test rectangle. Then, for
each side of the test rectangle, which is a line segment, we use
the CS algorithm to check whether it is visible in the viewport
(reference rectangle). Once one side is found visible, one can

conclude that the two rectangles connect (intersect); otherwise,
if none of the four sides are visible, the two rectangles do not
connect. In order to further improve efficiency, prior to the
CS process, we carry out a screening: If the center distance
of two rectangles is larger than the sum of their half diagonal
lengths, they are impossible to intersect, and the CS process is
not needed.

For heterogeneous systems, which may comprise rectangles
of different aspect ratios r and/or different lengths l, the
algorithm works in a similar way. In principle, only three steps
need modification. First, the subcell length should be set as
the largest diagonal length among all the rectangles. Second,
during checking the connectivity between two rectangles, the
reference rectangle should be the one of larger l or of larger area
S = lw. Otherwise, if a large test rectangle encloses a small
reference rectangle (viewport), it might be trivially rejected by
mistake by the CS algorithm. Third, for every newly generated
rectangle, an additional random number x (0 � x � 1) is
allocated to determine its dimensions. A rectangle has length
li and aspect ratio ri if its x satisfies

∑i−1
j=1 xj < x �

∑i
j=1 xj ,

supposing the heterogeneous system comprises n types of
rectangles, and the j th type of rectangles have length lj , aspect
ratio rj , and number fraction xj (1 � j � n,

∑n
j=1 xj = 1).

Monte Carlo simulations (see Refs. [14,18] for the detailed
Newman-Ziff procedure), based on the algorithm above,
can produce the spanning probability for any system (either
homogeneous or heterogeneous) as a function of the number
(integers) of rectangles. Its convolution with the Poisson
distribution [14] gives the spanning probability R(N ,L) for a
system of size L at any arbitrary rectangle number density N .
In this paper, all the systems are with free boundary conditions
(FBCs), and the system size L is measured in units of lmax,
the largest rectangle length. For simplicity, we set lmax ≡ 1.
From the known universal finite-size scaling [R(Nc,∞) = 0.5]
and 1/L corrections for the spanning probability of an FBC
percolation system with square boundary [14,21,22], one can
expect

N0.5(L) − Nc ∼ L−1−1/v, (3)

where N0.5(L) is a percolation threshold estimate [14,21]
and is defined through R[N0.5(L),L] = 0.5, and v = 4/3
is the critical correlation-length exponent. From Eq. (3), a
high-precision threshold Nc, i.e., the thermodynamic limit
(L → ∞) value, can often be extracted for any percolation
system [14,21,23,24].

III. RESULTS AND DISCUSSION

In this section, first, the performance of our algorithm is
compared with other algorithms (Sec. III A). Then, simulation
results and verification of the excluded area theory are
presented and discussed for homogeneous rectangle systems
(Sec. III B). Finally, the traditional excluded area theory is
extended to heterogeneous rectangle systems (Sec. III C).

A. Performance of the algorithm

In order to demonstrate the efficiency of the present
algorithm (especially the integration of the CS algorithm),
we compare its performance with two other algorithms. Both
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TABLE I. Average CPU time in hours consumed for each of the
three algorithms discussed in the main text for identical homogeneous
rectangle systems of L = 128. The average is over 20 independent
batches of simulations, and the uncertainty is the standard deviation.

Algorithm r = 1,105 runs r = 10,104 runs

CS 0.796(14) 0.695(43)
Edge-traverse 0.976(12) 0.948(42)
LB 0.855(13) 0.788(38)

of these algorithms are still based on the combination of
the subcell algorithm with the Newman-Ziff procedure but
adopt different algorithms to check the connectivity between
two rectangles: (i) The first one adopts the “edge-traverse”
algorithm, which tests whether any edge of the test rectangle
intersects, at least, one edge of the reference rectangle [13].
The connectivity between two rectangle edges (actually line
segments) is checked by the Pike and Seager bonding criterion
of two sticks (also line segments) [25], i.e., two sticks overlap
if and only if, for every stick, the distance between its center
and the intersection point (of the corresponding lines for the
two sticks) is no longer than its half-length. (ii) The second
one employs another famous line clipping algorithm, the
Liang-Barsky (LB) algorithm [20,26].

For clarity, hereafter, the above three algorithms are denoted
as CS, edge traverse, and LB, respectively. Their performance
has been tested via C ++ codes on a server equipped with an
Intel(R) Xeon(R) CPU E5430 (2.66 GHz). For each algorithm,
we conducted 20 batches of Monte Carlo simulations for
homogeneous rectangle systems of L = 128 for r = 1 and r =
10, respectively. Each batch has one independent random seed
and contains 105 (for r = 1) or 104 (for r = 10) simulation
runs. The whole set of random seeds is identical for all
three algorithms. As a result, the three algorithms produce
identical simulation results (spanning probability functions)
but consume significantly different CPU times. Table I lists
the average CPU time consumed for one batch. It is clear
that the line clipping (CS and LB) algorithms are evidently
faster than the edge-traverse algorithm. In particular, the CS
algorithm is ∼20% faster than the edge-traverse algorithm
for r = 1. With increasing r to 10, the CS algorithm is even
more efficient (∼30% faster than the edge-traverse algorithm).
Since the edge-traverse algorithm has already been optimized
in this paper, the 20%–30% efficiency improvement of the CS
algorithm should be thought of as considerable progress.

It is interesting to note that, in the general case of
line clipping, the LB algorithm has proven better efficiency
than the CS algorithm [26]. For rectangle percolation,
however, the alleviation of conditions for trivial acceptance
increases the probability of a rectangle edge to be trivially
accepted at the first test so that the CS algorithm becomes
more efficient [20].

B. Homogeneous rectangle systems

The CS algorithm is, thereby, employed to explore precise
percolation thresholds for homogeneous rectangle systems.
For each class of rectangle systems with the same r , we
determine N0.5(L) for different sizes L = 48, 64, 72, 88, 128,

FIG. 2. (Color online) Plots of N0.5(L) against L−1−1/v for
homogeneous rectangle systems with (a) r = 1, (b) r = 10, (c)
r = 100, and (d) r = 1000.

and 256, each of which is based on >107 Monte Carlo samples.
It is found that, for all r studied in this paper, N0.5(L) follows
Eq. (3) quite well (adjusted R2 > 0.99 for all the fittings;
see Ref. [27] for a definition of adjusted R2). Some examples
are shown in Fig. 2. Then, from linear fitting by Eq. (3) to
these N0.5(L), we obtain high-precision values [23] for Nc for
a variety of r’s. As listed in Table II, the uncertainty for all
r’s is less than 0.0001, which is given by the half-width of
the 95% confidence interval from linear fitting (regression) by
Eq. (3). Note, for r = 1, the rectangle systems actually turn
to the square systems, and the value of Nc is consistent with
other papers [12,13]. In contrast, for r = ∞, they degrade to

TABLE II. Percolation thresholds Nc obtained from Monte Carlo
simulations, their products with the excluded areas NcAr , and the
corrected product (Nc − Nc0)Ar for rectangle systems with different
r’s. Nc0 = 0.20. For r = ∞, Nc is taken as the value of the stick
systems [14].

r Nc NcAr (Nc − Nc0)Ar

1 0.982 278(14) 4.011 3.195
1.5 1.425 745(29) 3.982 3.424
2 1.786 294(26) 3.932 3.492
3 2.333 491(22) 3.837 3.508
4 2.731 318(30) 3.767 3.491
5 3.036 130(28) 3.717 3.472
6 3.278 680(19) 3.681 3.457
7 3.477 211(52) 3.655 3.445
8 3.643 137(24) 3.635 3.436
9 3.784 321(41) 3.621 3.429
10 3.906 022(37) 3.609 3.425
12 4.105 670(38) 3.594 3.418
15 4.329 848(28) 3.580 3.415
18 4.495 767(41) 3.573 3.414
20 4.584 535(54) 3.570 3.414
30 4.878 091(59) 3.566 3.420
50 5.149 008(20) 3.569 3.430
100 5.378 856(60) 3.576 3.443
1000 5.609 947(60) 3.587 3.459
∞ 5.637 263(11) 3.589 3.461
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FIG. 3. (Color online) Plots of Nc against 2π−1A−1
r for

homogeneous rectangle systems with r ranging from 1 to ∞. Note
all the systems are measured by their rectangle length, i.e., l = 1.
The simulation data (open squares) are also listed in Table II. The
dashed (blue) and solid (red) curves are fittings by Eqs. (4) and (5),
respectively.

stick systems, and the value of Nc is taken from our previous
paper [14].

The product NcAr is also listed in Table II. For all r’s
ranging from 1 to ∞, this product retains within a narrow
region between 3.5 and 4.0. The region 3.5 < NcAr � 4.0 is
within, and much smaller than, the limits of 3.2 � NcAr � 4.5
predicted earlier [10]. It can, thereby, roughly be verified that
the excluded area theory [9] applies to rectangle systems.

For a precise analysis, we plot all Nc’s against the reciprocal
of the normalized excluded area A−1

r /A−1
∞ or 2π−1A−1

r [note
from Eq. (2), A∞ = 2π−1 ≈ 0.6366]. As shown in Fig. 3, the
plot exhibits excellent linearity. However, the intercept is not
at the origin, suggesting that the percolation threshold is not
inversely proportional to the excluded area but is apparently
linear with its reciprocal, that is,

Nc − Nc0 ∝ A−1
r , (4)

where Nc0 is a corrected factor (constant). From linear fitting
(adjusted R2 = 0.9995) by Eq. (4) to all Nc’s, we obtain
Nc0 = 0.20(4). Listing the corrected product (Nc − Nc0)Ar

in Table II, we find it almost retains constant at 3.4 or 3.5 for
all r > 1. The maximum uncertainty for the prediction of Nc

by Eq. (4) is ∼0.04. This uncertainty is given by the half-width
of 99% confidence interval of the predictions [28].

In order to gain a more precise analysis, we propose a
high-order polynomial [Eq. (5)] to fit the data in Fig. 3,

Nc = f (s) =
n∑

i=1

cis
i =

n∑
i=1

ci

(
2π−1A−1

r

)i
, (5)

where s = 2π−1A−1
r and ci are constants. With n = 9, a perfect

fitting (adjusted R2 > 1 − 3 × 10−10) can be obtained from
nonlinear regression [29]. The fitted coefficients ci are listed
in Table III. As an important outcome, Eq. (5) can then predict
high-precision Nc for any r . Here, n = 9 is the minimum order
number required to ensure small uncertainty of <7 × 10−5 for
all predictions, a comparable level to those of the simulation
results in Table II.

To validate Eq. (5), we investigate several more homoge-
neous rectangle systems with r other than those in Fig. 3 or

TABLE III. Coefficients ci for nonlinear regression of Eq. (5) to
the simulation data in Table II. The uncertainty is the half-width of
the 95% confidence interval. In this table, all ci’s are rounded to five
decimal places, which may be necessary for the prediction of precise
Nc by Eq. (5), although their uncertainty does not really support such
a precision.

i ci Uncertainty

1 5.829 30 0.0243
2 7.949 92 0.453
3 −47.482 82 3.44
4 132.306 51 14.0
5 −231.155 15 33.7
6 264.351 27 49.7
7 −190.880 90 44.0
8 78.922 23 21.4
9 −14.203 10 4.43

Table II. The predicted results [by Eq. (5)] are compared with
the simulation results in Table IV. Their difference is really less
than the predicted uncertainty 7 × 10−5. It is concluded that
Eq. (5) and the maximum uncertainty 7 × 10−5 can provide
high-precision percolation thresholds for rectangle systems
with any aspect ratio r . Although Eq. (5) is merely based
on our simulation results rather than physical deductions, it
makes it unnecessary for most future studies to explore the
percolation thresholds once more and should facilitate many
studies concerning continuum percolation of rectangles or the
layered 2D nanomaterials.

It is worth mentioning that Eqs. (4) and (5) only provide
mathematic fittings to the simulated Nc in Fig. 3 where the
average excluded area Ar is limited within [A∞,A1]. One
may not extrapolate them for Ar outside this region. For
example, as Ar → ∞, it is reasonable to anticipate Nc → 0.
However, Eq. (4) expects that Nc converges to a finite value
Nc0. Note that, in heterogeneous systems, the effective average
excluded areas may go beyond the region [A∞,A1], although
it is not possible for homogeneous systems. Relevant issues
are discussed below in Sec. III C2.

In addition, Eq. (5) should not be the exclusive form to
describe the thresholds in rectangle percolation. Other forms
may also apply as long as their prediction uncertainty is
sufficiently small. Interestingly, Xia and Thorpe [30] proposed
a simple interpolation formula to describe the dependence of
critical remaining area fraction pc on the aspect ratios for

TABLE IV. Comparison between percolation thresholds obtained
from simulations and calculations through Eq. (5) for homogeneous
rectangle systems with r’s other than those in Table II. �Nc is
the absolute value of the percolation threshold difference between
simulations and calculations.

r Nc (simulation) Nc (calculation) �Nc

1.1 1.078 532(21) 1.078 495(58) 3.7 × 10−5

1.25 1.215 636(18) 1.215 581(66) 5.5 × 10−5

2.5 2.083 711(26) 2.083 720(60) 9.0 × 10−6

40 5.043 120(52) 5.043 080(47) 4.0 × 10−5

200 5.504 099(69) 5.504 131(56) 3.2 × 10−5
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FIG. 4. (Color online) The critical remaining area fraction pc for
homogeneous rectangle systems of various aspect ratios (listed in
Table II).

random ellipse systems as pc = (1 + 4y)/(19 + 4y), where
y = b/a + a/b with a and b being the major and minor
semiaxes, respectively, and pc = exp(−NcS) with S being the
ellipse area. We find the form of this interpolation formula
also applies to the rectangle systems in this paper, despite the
different numerical values for the coefficients, that is,

pc = exp (−NcS) = (1.28 + y)/(6.73 + y), (6)

where y = l/w + w/l = r + 1/r and for rectangles, S =
lw = l2/r . As shown in Fig. 4, Eq. (6) fits the simulation
data very well (the maximum prediction uncertainty is about
0.005). However, in this paper, we mainly discuss the relation
between Nc and Ar , i.e., Eq. (5), which is more important for
heterogeneous systems as discussed below.

C. Heterogeneous rectangle systems

In this section, we explore the relations between percolation
threshold and excluded area for heterogeneous rectangle
systems. For simplicity, we denote a rectangle of length l

and width w as (l,w). A heterogeneous rectangle system is
denoted as [(l1,w1),x1;(l2,w2),x2; . . . ; (ln,wn),xn] if it contains
n types of rectangles and the number fraction of the ith type
of rectangles (li ,wi) is xi (i = 1,2, . . . ,n and

∑n
i=1 xi = 1).

Accordingly, a group of rectangle systems is denoted as
{(l1,w1);(l2,w2); . . . ; (ln,wn)}, which includes all systems
comprising the n types of rectangles with any combinations of
the number fractions.

Some examples for the heterogeneous rectangle systems
are shown in Fig. 5. The Monte Carlo simulation results
verify that Eq. (3) still applies to these systems [Figs. 5(b)
and 5(d)], and high-precision percolation thresholds can also
be extracted. In this section, however, we normally use a
threshold estimate N0.5(L) (typically L � 64 and based on
>105 Monte Carlo simulations) as a rough estimation of
Nc, which, notwithstanding, has already provided sufficient
precision (to about three reliable significant figures) for most
discussions and has enabled us to efficiently establish the
percolation threshold-excluded area relation for the hetero-
geneous systems.

FIG. 5. (Color online) Examples of two heterogeneous sys-
tems. (a) A percolating realization (L = 10) for the binary sys-
tem of [(1,0.1),0.5;(0.5,0.5),0.5]. (b) N0.5(L) against L−1−1/v for
the binary system in (a). (c) A percolating realization (L = 10)
for the ternary system of [(1,0.02),0.3;(0.8,0.4),0.4;(0.6,0.1),0.3].
(d) N0.5(L) against L−1−1/v for the ternary system in (c).

1. Generalization of the excluded area theory

First of all, the average excluded area formula [Eq. (2)]
should be generalized to heterogeneous rectangle systems.
Referring to Fig. 2 of Ref. [9], one can readily find the excluded
area between two different rectangles (li ,wi) and (lj ,wj ) is

A
ij

θ (li ,wi ; lj ,wj ) = liwi + ljwj + (li lj + wiwj ) sin θ

+ (liwj + wilj ) cos θ, (7)

where θ is the angle between the orientations of the two
rectangles. If the orientations of the rectangles are uniformly
distributed within the region [−θμ,θμ], the average excluded
area between the different two rectangles is [see Eqs. (6), (7),
and (19) in Ref. [9] for more details]

Aij (li ,wi ; lj ,wj )

= liwi + ljwj + (li lj + wiwj )(2θμ − sin 2θμ)/2θ2
μ

+ (liwj + wilj )(1 − cos 2θμ)/2θ2
μ. (8)

For isotropic (θμ = π/2) systems, Eq. (8) becomes

Aij (li ,wi ; lj ,wj ) = liwi + ljwj + 2π−1(li lj + wiwj )

+ 4π−2(liwj + wilj ). (9)

Equation (9) suggests Aij = Aji , and it degrades to
Eq. (2) when i = j . For a system [(l1,w1),x1;(l2,w2),x2; . . .;
(ln,wn),xn], the effective average excluded area Ae is

Ae =
n∑

i=1

⎛
⎝xi

n∑
j=1

xjA
ij

⎞
⎠. (10)

For simplicity, in this paper, we only explore the Nc − Ae

relations for heterogeneous systems with the number of
rectangle types n � 3, i.e., the binary (n = 2) and ternary
(n = 3) systems. Nevertheless, the generalization into systems
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FIG. 6. (Color online) Percolation thresholds obtained from
simulations (symbols) and calculations (dashed curves) from Eq. (15)
for weakly and strongly correlated binary systems. For each group
of systems, the number fractions xi vary between 0 and 1 at the
step of 0.1. For calculations, only the systems {(1,0.1);(0.5,0.5)} and
{(1,0.02);(0.5,0.5)} are with α = 2.5 in Eq. (15) and are classified
as strongly correlated systems. All the others are weakly corrected
systems with α = 1.5. Note, for efficiency, not all Nc’s in this
plot are given by the thermodynamic limit (L → ∞) values as
extrapolated from Eq. (3). For {(1,1);(1,0.01)} and {(1,0.5);(1,0.02)},
Nc is approximated by N0.5 (L = 64), whereas, for {(1,0.5);(0.5,0.5)}
and {(1,0.01);(0.6,0.6)}, Nc is approximated by N0.5 (L = 128).
Actually, however, with respect to the discussions of heterogeneous
systems in this paper, the difference between N0.5 (L � 64) and
the corresponding thermodynamic limit value is negligible [see
Figs. 2, 5(b), and 5(d)].

comprising more rectangle types (n > 3) is anticipated to be
straightforward.

2. Binary systems

We have investigated a series of binary systems as shown
in Fig. 6 where the average excluded areas are calculated from
Eq. (10). In Fig. 6, it is clear, when the excluded areas are
comparable, the systems, no matter whether heterogeneous or
homogeneous, have comparable percolation thresholds. It can,
thereby, be confirmed that percolation thresholds are dom-
inated by the average excluded areas. Rigorously, however,
a slight deviation can be seen between heterogeneous and
homogeneous systems. Fortunately, for most binary systems,
we have found a general law to describe their precise Nc − Ae

relations on the basis of Eq. (5).
First, one should note that Eq. (5) is correct only when the

rectangle systems are measured in units of the rectangle length
l. Certainly, it is possible that a rectangle system is measured
by another unit l′ (l′ 
= l). Under the new measurement, it can
be established that the values of the percolation threshold and
excluded area, denoted as Nc,l′ and A′

r , respectively, relate to
those of the old systems as

l′−2
Nc,l′ = l−2Nc,l = l−2Nc, (11)

and

l′2A′
r = l2Ar. (12)

Then, still based on Eq. (5), one can predict Nc,l′ through

Nc,l′ = (l/ l′)−2f
(
2π−1A−1

r

)

= (l/ l′)−2f
[
2π−1A′−1

r (l/l′)2
]
. (13a)

In particular, if a homogeneous system comprising rectangles
(li ,wi) is measured by l′ = 1, but li 
= l′, Eq. (13a) turns out
to be

Nc,l′ = l−2
i f

(
2π−1A−1

r

) = l−2
i f

(
2π−1A′−1

r l2
i

)
. (13b)

Equation (13b) is very useful for our discussion below about
heterogeneous systems comprising rectangles of different
lengths.

Now, we consider a binary system [(l1,w1),x1;(l2,w2),x2],
which is measured by l′ (the larger one between l1 and l2).
With respect to one type of rectangle (li ,wi) (i = 1 or 2),
the effective excluded area of the binary system Ae can
be regarded as a deviation from that of the homogeneous
system Ari

(still measured by l′). Note Nc is roughly linear
with 1/Ar as described by Eq. (4). Then, one can use the
linear approximation around 2π−1A−1

ri
as one estimate for the

percolation threshold of the binary system, that is,

N (i)
c ≈ l−2

i f
(
2π−1A−1

ri
l2
i

)

+ 2π−1f ′(2π−1A−1
ri

l2
i

)(
A−1

e − A−1
ri

)
, (14)

where f (s) is given by Eq. (5) and f ′(s) is its first derivative.
Note that N (1)

c may differ significantly from N (2)
c . Then, the

actual Nc should result from the correlation between N (1)
c and

N (2)
c . Obviously, both N (1)

c and N (2)
c should contribute to Nc, but

their contributions may have unequal weight. It is reasonable to
put more weight on the dominant rectangles, which, in essence,
contribute more to the system percolation (spanning) when
the effect of the fractions (xi) is not considered. In general,
the dominant rectangles are those of larger length or of larger
width in the case of equal lengths. For convenient discussion,
we suppose the dominate rectangles in a binary system are
always (l1,w1), that is to say, either of the two conditions
should be satisfied: (1) l1 > l2 or (2) l1 = l2 and w1 > w2. It is
found that Nc of the binary system can be described as

Nc = N (1)
c

(
1 − xα

2

) + N (2)
c xα

2 , (15)

where α > 1 is the correlation exponent.
In terms of the applicability of Eq. (15), we roughly classify

the binary systems into three categories: weakly correlated
systems (roughly l1 < 2l2, Fig. 6), strongly correlated systems
(l1 ≈ 2l2 and usually r1 � 10, Fig. 6), and ultrastrongly
correlated systems (roughly l1 > 2l2 and r1 � 10, Fig. 7).
As shown in Fig. 6, Nc of the weakly and strongly correlated
systems agrees excellently with Eq. (15). The deviation
between the simulations and the fittings by Eq. (5) is far less
than 0.1. More interestingly, all weakly correlated systems
share the common correlation exponent α = 1.5, whereas, the
strongly correlated systems have the common α = 2.5. The
common exponents α make Eq. (15) nontrivial and allow
the direct calculation of percolation thresholds for any binary
systems in these two categories.

For ultrastrongly correlated systems, however, Eq. (15)
cannot provide good fitting to the simulations, and evident
deviation can be observed (Fig. 7). One important com-
mon feature of weakly and strongly correlated systems is
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FIG. 7. (Color online) Percolation thresholds obtained from sim-
ulations (open squares) and calculations (curves) from Eq. (15) for a
group of ultrastrongly correlated binary systems {(1,0.01);(0.1,0.1)}.
For the open squares, from left to right, the number fraction x1

increases from 0.1 to 0.9 at a step of 0.1. Note, for these systems,
Ae � A∞, and the predictions by Eq. (15) with all α’s deviate
significantly from the simulations. All Nc’s are approximated by N0.5

(L = 64).

that their Ae’s (measured by l′ = 1) are still within the
region [A∞,A1]. However, Ae in the ultrastrongly correlated
systems has gone beyond this region. For example, for
the system [(1,0.01),0.1;(0.1,0.1),0.9], Ae = 0.0623 � A∞ =
0.6366. Then, the employment of Eq. (15) requires the
extrapolation of Eq. (5) far beyond [A∞,A1]. This is a risk
as discussed in Sec. III B. Consequently, Eq. (15) may become
invalid for ultrastrongly correlated systems, especially when
Ae goes far beyond the region.

These ultrastrongly correlated systems are actually very
interesting for both theoretical studies and practical applica-
tions. In Table V, we compare some of these systems with
the homogenous systems which have comparable average
excluded areas. Surprisingly, these ultrastrongly correlated
systems have significantly lower Nc’s as well as significantly
lower critical coverage area NcS than the homogeneous sys-
tems. On one hand, this can be regarded as a breakdown of the
excluded area theory which, in essence, expects comparable
excluded areas lead to comparable percolation thresholds.
On the other hand, the significantly lower critical coverage
area for ultrastrongly correlated systems may explain the
experimental observation [16] that the composites of graphene
and carbon nanotubes often produce improved performance
(over pure graphene films) for transparent conductors which

TABLE V. Percolation thresholds Nc, effective average excluded
area Ae, and the critical coverage area NcS for some ultrastrongly
correlated binary systems and homogeneous systems. For ultra-
strongly binary systems, Nc is approximated by N0.5 (L = 64) from
simulations, and S = ∑n

i=1 xi liwi . For homogeneous systems, Nc and
Ae are calculated from Eqs. (11) and (12), respectively.

System Nc Ae NcS

[(1,0.01),0.05;(0.01,0.01),0.95] 107.5 0.0040 0.064
Homogeneous (0.05,0.0167) 933.4 0.0041 0.78
[(1,0.01),0.1;(0.01,0.01),0.9] 53.77 0.0107 0.059
Homogeneous (0.05,0.05) 392.9 0.0102 0.98

prefer low coverage area (to gain more transmittance) upon
percolation. Unfortunately, however, the full understanding of
these systems may have to rely on further extensive research.
We may discuss this topic separately in the future.

3. Ternary systems

We now extend our discussion to the ternary systems
without ultrastrong correlations. It is found that Eq. (15) may
be generalized to be

Nc = N (3)
c xα′

3 + (
1 − xα′

3

)[
N (2)

c x̂α
2 + (

1 − x̂α
2

)
N (1)

c

]
, (16)

where x̂2 = x2/(x1 + x2), α and α′ are appropriate correlation
exponents, and N (i)

c ’s are still defined by Eq. (14). Note, in
Eq. (16), we suppose the rectangles have already been sorted
so that if i < j , li > lj or wi > wj when li = lj . It might
be difficult to determine the exact values for α and α′ in
ternary systems because the correlations are among three

FIG. 8. (Color online) Percolation thresholds obtained from
simulations (symbols) and calculations (dashed curves) for three
groups of ternary systems: (a) {(1,0.5);(0.6,0.4);(0.5,0.5)}, (b)
{(1,0.02);(0.8,0.4);(0.6,0.6)}, and (c) {(1,0.01);(0.8,0.4);(0.5,0.5)}.
All calculations are from Eq. (16) with α = α′ = 1.5. In all the
plots, along the direction of the arrows, the number fraction x2

increases from 0.1 to 0.9 at a step of 0.1. Note, in ternary systems,
x1 = 1 − x2 − x3. All Nc’s are approximated by N0.5 (L = 64).
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types of rectangles. In most cases, however, one may simply
take α = α′ = 1.5 at the expense of, possibly, a little higher
deviation. Figure 8 compares the simulation and calculation
results for three groups of ternary rectangle systems,
{(1,0.5);(0.6,0.4);(0.5,0.5)}, {(1,0.02);(0.8,0.4);(0.6,0.6)},
and {(1,0.01);(0.8,0.4);(0.5,0.5)}. Again, calculations are
in excellent agreement with simulations. The systems
{(1,0.5);(0.6,0.4);(0.5,0.5)} and {(1,0.02);(0.8,0.4);(0.6,0.6)}
only involve weak correlations, and ideal predictions
(maximum deviation <0.05) are achieved by
Eq. (16) [Figs. 8(a) and 8(b)], whereas, the systems
{(1,0.01);(0.8,0.4);(0.5,0.5)} involve strong correlations
[possibly between the rectangles (1,0.01) and (0.5,0.5)],
and the predictions have a little higher deviation (maximum
deviation ∼0.07) from the simulations [Fig. 8(c)].

IV. CONCLUSIONS

To summarize, integrating the Cohen-Sutherland algorithm
into our previously introduced high-efficiency algorithm for
continuum percolation, we have developed an efficient Monte
Caro algorithm for both homogeneous and heterogeneous
rectangle systems. This algorithm enables us to conduct
extensive simulations and to report high-precision percolation
thresholds for a variety of rectangle systems. For homogeneous

systems, in terms of the excluded area reciprocals, this
paper produces a high-order polynomial [Eq. (5)] which
can predict high-precision percolation thresholds (uncer-
tainty <7 × 10−5) for any rectangle aspect ratios. On the
basis of this polynomial, a general and simple relation
[Eqs. (15) and (16)] is discovered, which can, thereby, be
used to predict precise percolation thresholds for hetero-
geneous rectangle systems without ultrastrong correlations.
Therefore, this paper verifies the traditional excluded area
theory and extends it into heterogeneous systems. We ex-
pect our algorithm and the attained results are useful for
many practical applications and theoretical studies concerning
2D layered nanomaterials and various rectangle continuum
percolations.
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