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Turbulent Prandtl number in a model of passively advected vector field:
Two-loop renormalization group result
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The turbulent Prandtl number in the model of a passive vector field advected by the turbulent environment
driven by the stochastic Navier-Stokes equation is studied by using the field theoretic renormalization group
technique in the two-loop approximation. It is shown that unlike the turbulent Prandtl number in the model of
passively advected scalar field, as well as the turbulent magnetic Prandtl number of passively advected magnetic
field in the framework of the kinematic magnetohydrodynamic turbulence, where the two-loop corrections to the
corresponding Prandtl numbers are very small (less than 2% of their one-loop values), the two-loop correction
to the turbulent Prandtl number of passively advected vector field is considerably larger; namely, it is 27% of
its one-loop value. At the same time, the calculated two-loop value of the turbulent vector Prandtl number,
Prv,t = 0.7307, is surprisingly very close to the two-loop value of the turbulent Prandtl number of passively
advected scalar field, Prt = 0.7040.
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Without doubt, one of the most important characteristics
of the diffusion processes in fluids are the so-called Prandtl
numbers, the dimensionless ratios of the coefficient of kine-
matic viscosity to the corresponding diffusion coefficients
(e.g., to the coefficient of thermal diffusivity in the temperature
diffusion problem, to the coefficient of molecular diffusivity
in the impurity concentration problem, or to the coefficient of
magnetic diffusivity (resistivity) in the diffusion problem of
magnetic field in a conductive medium) [1–4]. On the other
hand, it is well known that in the case when the fluid is in the
state of fully developed turbulence, then the corresponding
diffusion processes are rapidly accelerated. This fact is
expressed in the appearance of effective values of the diffusion
coefficients, the so-called turbulent diffusion coefficients. The
ratios of the turbulent viscosity to the various coefficients
of turbulent diffusivity are known as the turbulent Prandtl
numbers, e.g., turbulent Prandtl number Prt in the temperature
diffusion problem or turbulent magnetic Prandtl number Prm,t

in the magnetohydrodynamic (MHD) turbulence.
Recently, the turbulent Prandtl numbers have been investi-

gated by using the field theoretic renormalization group (RG)
method [5–7], which represents an effective technique for
investigating the universal properties of processes in fully
developed turbulent systems [8,9]. In Ref. [5], the two-loop
scheme independent formula for the inverse turbulent Prandtl
number in the model of passively advected scalar quantity
was derived and it was shown that the two-loop correction
to the turbulent Prandtl number is less than 2% of its one-
loop value [5,6]. Thus, it seems that the turbulent Prandtl
number demonstrates awfully strong stability with respect
to the corresponding perturbation expansion. On the other
hand, quite recently the turbulent magnetic Prandtl number
in the framework of the kinematic MHD turbulence was also
investigated within two-loop RG approximation [7], and it
was shown that the value of the turbulent magnetic Prandtl
number in the model of kinematic MHD turbulence, where
the magnetic field behaves as a kind of passively advected
vector quantity, is completely identical with the corresponding

turbulent Prandtl number of passively advected scalar field
studied in Refs. [5,6].

However, there exists another model of a passively advected
vector field, namely, the A = 0 model in which the so-called
“stretching term,” which is present in the kinematic MHD,
is omitted (see, e.g., Ref. [10] for details). This model is
completely analogical to the model of passively advected
scalar quantity and the main reason for its investigation is
related to the fact that (in some important features) the problem
of anomalous scaling in the framework of A = 0 vector models
resembles the problem of the anomalous scaling in genuine
Navier-Stokes turbulence. In this respect, the A = 0 model
of the passive vector advection was investigated in various
Gaussian turbulent velocity fields [10–16] and quite recently
also in the non-Gaussian turbulent velocity field governed by
the Navier-Stokes equation [17].

However, when investigating the problem of a passive
vector field advected by the Navier-Stokes velocity field in
the framework of the A = 0 model, the question of the value
of the corresponding turbulent Prandtl number immediately
arises. In this respect, in the present paper we shall concentrate
on the calculation of this turbulent “vector” Prandtl number
using the field theoretic RG technique in the two-loop approx-
imation. We shall find the corresponding explicit two-loop
RG expression for the inverse turbulent vector Prandtl number
and the obtained value of the turbulent vector Prandtl number
will be compared to the turbulent Prandtl number of passively
advected scalar field [5,6], which is the same as the turbulent
magnetic Prandtl number of the kinematic MHD turbulence
[7]. We shall show that, at least at the two-loop level of
approximation, the values of these turbulent Prandtl numbers
are surprisingly very close to each other. This nontrivial and
rather unexpected fact will allow us to make some interesting
conclusions.

Thus, let us consider a solenoidal vector field w ≡ w(x)
[x ≡ (t,x)] passively advected by the fully symmetric isotropic
turbulent environment in the framework of the A = 0 model,
which is described by the following system of stochastic
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equations [20]

∂tw = ν0u0�w − (v · ∂)w − ∂Q + fw, (1)

∂tv = ν0�v − (v · ∂)v − ∂P + fv. (2)

Here, the standard notation is used: ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi ,
� ≡ ∂2 is the Laplace operator, ν0 is the viscosity coefficient,
u0 is the reciprocal “vector” Prandtl number, v ≡ v(x) is the
incompressible velocity field, and P ≡ P (x) and Q ≡ Q(x)
are the corresponding pressures. Due to the assumption of
incompressibility, the velocity field v ≡ v(x) is also solenoidal.
Thus, both v and w are divergence-free vector fields: ∂ · v =
∂ · w = 0.

In Eq. (1), the transverse random noise fw = fw(x) is taken
in the form of a Gaussian distribution with correlator

Dw
ij (x; 0) ≡ 〈

f w
i (x)f w

j (0)
〉 = δ(t)Cij (|x|/L). (3)

It represents the source of the fluctuations of the vector field,
where L is an integral scale related to the corresponding
stirring and Cij is a function finite in the limit L → ∞. Its
detailed form is not important in what follows because it does
not enter into the calculations. The only condition that must
be satisfied is that Cij decreases rapidly for |x| � L. On the
other hand, the explicit form of the transverse random force
per unit mass fv is essential. We shall assume that it also obeys
a Gaussian distribution with zero mean and correlator

Dv
ij (x; x ′) = 〈

f v
i (x)f v

j (x ′)
〉

= δ(t − t ′)D0

∫
ddk

(2π )d
Pij (k)k4−d−2εeik·(x−x′),

(4)

where d is the space dimension and Pij (k) is a transverse
projector which, in general, describes geometric properties
of the random force. In the simplest isotropic case, which is
considered in what follows, it reads Pij (k) = δij − kikj /k2. In
Eq. (4), D0 > 0 is a positive amplitude and the most realistic
value of the exponent 0 < ε � 2 is ε = 2 (see, e.g., Refs. [8,9]
for details). The correlator Eq. (4) is written in a form that
realizes a realistic, i.e., infrared, introduction of the energy (by
large-scale eddies) into the system and, at the same time, it has
the power-law asymptotic form at large k. The last condition is
necessary for application of the field theoretic RG technique.
In Eq. (4), the needed infrared regularization is given by
a restriction of the integration from below, namely, k � m,
where m corresponds to another integral scale. In what follows,
we shall suppose that L � 1/m. It is also useful to introduce
new bare coupling constant g0 by relation D0 ≡ g0ν

3
0 . Then, g0

is a formal small parameter of the ordinary perturbation theory
related to the characteristic ultraviolet (UV) momentum scale
� (or inner length l ∼ �−1) by the relation g0 	 �2ε (see,
e.g., Refs. [8,9] for details).

The stochastic problem, Eqs. (1)–(4), can be rewritten
into a field theoretic model of the double set of fields � =
{v,w,v′,w′} (see, e.g., Ref. [9] and references cited therein)
with the action functional given as follows:

S(�) = 1

2

∫
dt1 ddx1 dt2 ddx2

[
v′

i(x1)Dv
ij (x1; x2)v′

j (x2)

+ w′
i(x1)Dw

ij (x1; x2)w′
j (x2)

]

+
∫

dt ddx{v′[−∂t + ν0� − (v · ∂)]v

+ w′[−∂tw + ν0u0�w − (v · ∂)w]} , (5)

where xl = (tl,xl), l = 1,2, v′(x) and w′(x) are auxiliary
transverse fields with the same tensor properties as fields
v(x) and w(x), Dw

ij and Dv
ij are given in Eqs. (3) and (4),

respectively, and all required summations over dummy indices
are assumed.

The advantage of the formulation of the stochastic problem
given by Eqs. (1)–(4) through action functional Eq. (5) is that
it makes it possible to apply the well-defined field theoretic
means, e.g., the RG technique, to analyze the problem [8,9].

Now, using standard dimensional analysis of the canonical
dimensions [8,9], it can be shown that the model Eq. (5) is
logarithmic (i.e., the coupling constant g0 is dimensionless)
at ε = 0. In addition, for d > 2 the superficial UV diver-
gences are present only in the 1-irreducible Green’s functions
〈v′

ivj 〉1−ir and 〈w′
iwj 〉1−ir and can be removed by using the

multiplicative renormalization of bare parameters g0,u0, and
ν0 in the following form [21]:

ν0 = νZ1, g0 = gμ2εZ−3
1 , u0 = uZ2Z

−1
1 , (6)

where the dimensionless parameters g,u, and ν are the
renormalized counterparts of the bare parameters, μ is the
renormalization mass (a scale-setting parameter), an artefact
of the dimensional regularization, and Zi = Zi(g,u; d; ε),i =
1,2 are two independent renormalization constants. Their
general explicit form in the minimal subtraction (MS) scheme
is given as follows:

Zi(g,ε) = 1 +
∞∑

n=1

gn

n∑
j=1

z
(i)
nj

εj
, i = 1,2, (7)

where coefficients z
(i)
nj ,i = 1,2 are independent of g and ε.

Their explicit form is determined by the requirement that the
1-irreducible Green’s functions 〈v′

ivj 〉1−ir and 〈w′
iwj 〉1−ir are

UV finite when are written in the renormalized variables, i.e.,
they must be free of poles in ε.

The expansion of the renormalization constant Z1 to the
second order in g (two-loop approximation) has been known
for a long time [18]. On the other hand, one-loop contribution
z

(2)
11 to the renormalization constant Z2 is

z
(2)
11 = − Sd

(2π )d
(d2 − 3)

4u(1 + u)d(d + 2)
, (8)

where Sd = 2πd/2/	(d/2) denotes the surface area of the
d-dimensional unit sphere and 	(x) is Euler’s gamma function.
On the other hand, the two-loop contribution z

(2)
21 in general

d-dimensional space is complicated expression and will be
discussed elsewhere. However, for the most important three-
dimensional case at the fixed point (see below) one obtains

z
(2)
21 = −1.01914 × 10−5, (9)

where the one-loop fixed-point value for parameter u, namely,
u

(1)
∗ = 1, is already used (see below). Finally, the quantity z

(2)
22

is not important in what follows, therefore, we shall not analyze
it at all.
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The infrared (IR) asymptotic scaling behavior, i.e., the scal-
ing behavior deep inside the inertial range, of the correlation
functions of the model is driven by the IR stable fixed point of
the RG equations [8,9]. The coordinates of the fixed point are
given by the requirement of the vanishing of the so-called β

RG functions of the model, namely,

βg(g∗) = 0, βu(g∗,u∗) = 0, (10)

where fixed point values of all quantities are denoted by stars
and

βg = g(−2ε + 3γ1), βu = u(γ2 − γ1),

γi ≡ μ∂μ ln Zi, i = 1,2. (11)

Finally, the coordinates of the IR stable fixed point in the
two-loop approximation for d = 3 are

g∗ = 40π2

3
ε(1 − 1.0994ε), u∗ = 1 − 0.0270ε. (12)

It is IR stable for ε > 0.
In Ref. [5], the two-loop scheme independent RG expres-

sion was derived for the inverse turbulent (effective) Prandtl
number in the model of passively advected scalar field. The
corresponding expression for the two-loop inverse turbulent
Prandtl number in the vector model under consideration can
be derived and written in the similar form (d > 2), namely,

ueff = u(1)
∗

(
1 + ε

{
1 + u

(1)
∗

1 + 2u
(1)
∗

[
λ − 128(d + 2)2

3(d − 1)2
B(u(1)

∗ )

]

+ (2π )d

Sd

8(d + 2)

3(d − 1)
(av − aw)

})
, (13)

where u
(1)
∗ is the one-loop fixed point value of the parameter

u (it is also the one-loop value for the inverse turbulent vector
Prandtl number). The general d > 2 case is given by the
following simple equation:

u(1)
∗ [1 + u(1)

∗ ] = 2(d2 − 3)/[d(d − 1)], (14)

and for d = 3, one has u
(1)
∗ = 1. The quantity λ in Eq. (13)

is related to the coefficient z
(1)
21 in Eq. (7); i.e., it is given

by the two-loop RG analysis of the model of pure fully
developed turbulence driven by the stochastic Navier-Stokes
equation. It was analyzed in Ref. [18], and for d = 3, one
has λ = −1.0994. The quantities av and aw are given by the
corresponding expansions to the leading order in ε of the
scaling functions of response functions 〈vv′〉 and 〈ww′〉 for
the velocity field and the advected vector field, respectively
(see Ref. [5] for details). Their values for d = 3 are

av = −0.00241744, aw = −0.00402280. (15)

Finally, the quantity B(u(1)
∗ ) is related to the coefficient z

(2)
21 in

Eq. (9) by the relation (d = 3)

B(u(1)
∗ ) = (2π )6

S2
3

z
(2)
21 = −0.00397094. (16)

Thus, using all these facts, one comes to the final two-loop
value for the inverse turbulent vector Prandtl number in three
dimensions, namely,

ueff = 1 + 0.18426ε + O(ε2), (17)

and for physical value ε = 2, one finally obtains the two-loop
value of the turbulent vector Prandtl number

Prv,t = u−1
eff = 0.7307. (18)

Result for the two-loop turbulent vector Prandtl number
given in Eq. (18) is instructive at least from two points
of view. First, in contrast to the two-loop correction to the
turbulent Prandtl number in the model of passively advected
scalar field [5,6] (as well as to the turbulent magnetic Prandtl
number in the kinematic MHD turbulence [7]), which is
only 2% of its one-loop value, the two-loop correction to
the turbulent vector Prandtl number in the present model is
essentially larger, namely, it is 27% of its one-loop value.
However, more interesting is the fact that the rather large
relative difference between the one-loop values of the turbulent
Prandtl number in the scalar model Pr(1)

t = 0.7179 [5] and
the turbulent vector Prandtl number Pr(1)

v,t = 1 [see Eq. (14)],
namely, (Pr(1)

v,t − Pr(1)
t )/Pr(1)

t 	 0.39, i.e., which is 39% in
respect to the one-loop turbulent Prandtl number of the
model of the passive scalar advection, is radically reduced
when two-loop corrections are taken into account, namely,
(Prv,t − Prt )/Prt 	 0.038, i.e., the relative difference is only
3.8% in respect to the two-loop value of the turbulent Prandtl
number of the model of the passive scalar advection. Here,
Prv,t = 0.7307 as it is given in Eq. (18) and Prt = 0.7040 was
found in Refs. [6] and [22]. This result is rather surprising and
instructive. Namely, it seems that the turbulent environments
do not feel essential difference between the internal tensor
structure of passively advected scalar and vector fields and, as
a result, the properties of the corresponding diffusion processes
are very similar.

Here, a few questions for further investigation immediately
arises. For example, it would be interesting to analyze in more
details the source of rather large two-loop correction to the
turbulent vector Prandtl number compared with the small two-
loop corrections to the turbulent Prandtl number of passively
advected scalar field [5,6] and the turbulent magnetic Prandtl
number in the kinematic MHD turbulence [7]. However,
to answer this question it is necessary to investigate the
problem in general d-dimensional case. Another open question
is the behavior of the turbulent vector Prandtl number in
turbulent environments with some symmetry breaking (spatial
parity violation, anisotropy) compared with the corresponding
behaviors of the turbulent Prandtl number and the turbulent
magnetic Prandtl number. But maybe the most interesting
open question is whether the closeness of the turbulent vector
Prandtl number to the turbulent Prandtl number of scalar field,
which is seen at two-loop level of approximation studied
in this paper, is perturbatively stable. Here, at least, the
corresponding three-loop calculations are needed. However,
all these questions are open for now.

In conclusion, in this paper we have used the field
theoretic RG technique within the two-loop approximation
for investigation of the turbulent vector Prandtl number in the
model of passive vector quantity advected by the turbulent
velocity field driven by the stochastic Navier-Stokes equation.
It is shown that the two-loop correction essentially decreases
the one-loop value of the turbulent vector Prandtl number.
On the other hand, the value of the turbulent vector Prandtl
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number at the two-loop approximation is very close to the
corresponding two-loop values of the turbulent Prandtl number
in the model of passively advected scalar field [5,6] and the
turbulent magnetic Prandtl number in the framework of the
kinematic MHD turbulence [7]. It seems that the properties
of diffusion processes in turbulent environments only slightly
depend on the internal tensor structure of the advected fields
as well as on the form of their interactions with the velocity
field, at least, in fully symmetric isotropic turbulent systems.
In the end, we can conclude that now the turbulent Prandtl
numbers are known at the two-loop RG approximation for

all relevant and usually studied models of passive scalar and
vector quantities advected by the Navier-Stokes turbulence.
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[7] E. Jurčišinová, M. Jurčišin, and R. Remecký, Phys. Rev. E 84,
046311 (2011).

[8] L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, The
Field Theoretic Renormalization Group in Fully Developed
Turbulence (Gordon & Breach, London, 1999).

[9] A. N. Vasil’ev, The Field Theoretic Renormalization Group
in Critical Behavior Theory and Stochastic Dynamics
(Chapman & Hall/CRC, London, 2004).

[10] N. V. Antonov, M. Hnatich, J. Honkonen, and M. Jurčišin, Phys.
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