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Sedimentation-induced tether on a settling vesicle
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Destabilization of soft interfaces into thin cylindrical filaments under external stresses is ubiquitous and is
generally the first step toward breakup. We show that such filaments, called tethers, emerge from a vesicle
subjected to gravity. Contrary to the pendant drop experiment, we demonstrate that the bending rigidity, a specific
membrane property of vesicles, ensures the tethers reach a stationary state. Moreover, unlike point-like force
experiments, we show that the family of shapes is continuous.
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Understanding the behavior of deformable particles such as
drops, cells, or polymers under flow is a universal problematic
arising in biological processes, fluid mechanics of suspensions,
and physics of soft matter. As in many other systems, there is a
coupling between the shape and dynamics at the microscopic
(particle) scale and the global behavior, especially nonlinear-
ities at the macroscopic (suspension) scale. A specificity of
deformable particle suspensions is that nonlinearities are also
present at the microscopic scale, resulting from the interplay
between the deformability of the particle and the characteris-
tics of the flow. These nonlinearities are even more manifest
in the large deformation regime, which can generally be easily
triggered on such particles, either by the application of focused
stresses (point-like forces) or by the application of a stress ex-
ceeding a critical value. These regimes are characterized by the
presence of multiple length scales [1] ranging from the system
size to a microscopic scale several orders of magnitude smaller,
up to geometrical singularities [2,3]. Understanding these
large deformation regimes is crucial not only for applicative
problematics where the stability of the interface controls the
size of droplets produced after breakup but also for biological
problematics such as the formation of a thin tube of membrane,
which are observed in the Golgi apparatus, in tunneling
nanotubes [4], and during the rolling motion of leukocytes
[5]. Beyond their diverse physical origins, the underlying
problematics of emerging long finger-like shapes are the same:
the real interface shape, its dynamics, and its stability. Some
remarkable features are recovered whatever the system, at
least transiently: a marked neck between the quasispherical de-
formable particle and its tail, whose evolution controls the in-
tegrity of the deformable particle, and the appearance of pearls
along the tail are common examples observed on drops or on
vesicles.

Particular difficulties in understanding such situations are
both the large range of scales involved and the fast dynamics
preceding pearl formation or breakup. Using highly viscous
fluids can lead to very long filaments [1], and the addition
of minute amounts of polymers in solution can lead to a
substantial delay of the pinch-off [6]. However, the filament
will eventually breakup. This breakup is associated with
constant evolution of the shape (thinning of the filament and
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growth of unstable perturbations), leading to a zero radius at
the point of pinch. One way to reach the shape stationarity
is a phase transition of bulk materials such as induced by the
well-known electrospinning of polymer melts [7]. In this Rapid
Communication, we demonstrate that a second way involves
only the interfacial mechanical properties while preserving
the system fluidity to obtain a thin stationary filament. We
consider a vesicle, a typical example of a deformable particle,
which is a drop of fluid enclosed by a self-organized fluid
membrane. A vesicle differs markedly from a drop by its
membrane properties: surface incompressibility (also called
fixed-area constraint) and resistance to bending instead of only
the surface tension for drops. If membrane integrity prevents
any breakup, it does not imply the shape stationarity. On
the contrary, we show that the filament stationarity is due to
bending energy and not to the fixed-area constraint, as a first
intuitive statement might conclude.

Vesicles have been extensively studied as a model system
[8,9] to understand red blood cell behavior under flow [10],
especially in shear flow [11,12] or wall-induced migration
[13,14]. They have also been used to understand the formation
of a thin tube of membranes [15-22] under the application of
point-like force. An important result is that, for a membrane
with a fixed tension o, the point-like force must exceed a
critical value f. = 2w /20« to pull a tube out of the membrane
[23,24], with « being the bending modulus of the membrane
(typical value ¥ ~ 20kpT). However, the assumption of fixed
tension necessitates the connection of the membrane to an
area reservoir, be it excess area stored in thermal fluctuations
of the membrane or area aspirated in a pipette. For freely
suspended vesicles under flow, this assumption is no longer
verified, but membrane tubes are still observed experimentally
in shear [25], acoustic-driven [26], elongational [27,28], and
settling [29] flows. Recent progress in numerical modeling of
vesicles has permitted simulations of transient tubes in shear
[12] and elongational [30] flows.

We study this effect by investigating the formation of a
membrane tube on a settling vesicle, a prototypal configuration
(no imposed external flow) where Newtonian drops undergo
large deformations, with the development of a filament at the
rear of the drop leading to breakup. In the case of a vesicle,
a tether is pulled by the settling-induced stresses (see Fig. 1),
and we show that the elongation of the tether reaches a plateau,
leading to the stationarity of the system. There are continuous
families of stationary shapes (see Figs. 2 and 3) which connect
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FIG. 1. (Color online) Formation of a tether on a settling vesicle
starting from a prolate shape (A = 0.97,Bo = 490). Time is made
dimensionless by the viscous one, nR3 /«.

quasispherical shapes to fully developed tethers, with aspect
ratios up to 200. The transient dynamics of the formation of the
tether, which can lead to the formation of pearls, observed both
in experiments [29] and in our simulations, is beyond the scope
of this Rapid Communication, but the analysis presented here
is a necessary first step toward it. In particular, the preliminary
results indicate that pearls are only transient, disappearing after
a while to reach the stationary state described here.

When no hydrodynamical stresses are present, the vesicle
shape results from the minimization of the free energy F of the
membrane, which is usually given by the energy of Helfrich
together with the constraint of fixed volume and area ensured
by the use of the Lagrange multipliers y, p:

F:Fm+/pdV:/(ZKHZ—i-)/)dS—i—/pdV (1)
\%4 N \4

with H being the surface mean curvature. At equilibrium,
the Lagrange multipliers are actually constant over the whole
membrane and thus constrain the total area and volume. For
a settling vesicle, flows will exert hydrodynamical stresses on
the membrane inducing the deformation of the vesicle. Thus, y
and p are no longer constant and ensure the local preservation
of area and volume. These geometric constraints have crucial
consequences on the dynamics of a vesicle: since both the
enclosed volume and the membrane area are fixed, a spherical
vesicle cannot deform, whatever the external stresses are. The
geometrical deformability is measured by the dimensionless
deviation A of the area A with respect to the area of the sphere
having the same volume V. With Ry = (3V /4m)!'/3, A, called
the excess area, is given by A = (47 + A)R(%.

Bo= 59 118 216 314

FIG. 2. (Color online) The shape evolves continuously from a
pear-like shape [31,32] to a tethered shape, with increasing forcing
represented by an increasing Bond number (Bo) with a fixed excess
area (A = 0.93).
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FIG. 3. (Color online) (top) Profile r(z) of the stationary shape
for (A = 0.93,Bo = 304), along with the evolution of the Lagrange
multiplier y(z). (bottom) Comparison of four different stationary
profiles for a fixed Bond number (Bo = 304) and with a varying
excess area. r and y are made dimensionless by R, and «/RZ,
respectively.

The hydrodynamical fields are described within the Stokes
approximation (nAvi+¢ — V "¢ = 0) with the continuity con-
dition (V - v¥¢ = 0), where v is the velocity, p"¢ = p"¢ +
o€ gz is the pressure modified to include the contribution of the
buoyancy, p is the fluid density, n is the dynamic viscosity, g is
gravity, and the superscripts i and e stand for the internal and
the external fluids, respectively. These hydrodynamical fields
are coupled to the membrane by the conditions of continuity of
the velocity field across the membrane [vi(x) = v°(x) = 9,x],
the constraint of surface incompressibility of the velocity
field [V, - v(x) = 0], and the mechanical equilibrium of the
membrane ([?e - ?l] -n+ f™ — (§pgz)n = 0), where x is
the position of the membrane, @ = —pI + (Vv + V') is
the modified fluid stress tensor, n is the outward pointing
normal vector to the interface, and 8p = p' — p° is the
difference of the density between the inside and outside.
J™ = —3F, /x is the density of force due to shape changes:

f™ ={2yH —k[2AH +4H(H* — K)lin + Viy, (2)

with A; being the Laplace-Beltrami operator over the surface
and K being the Gaussian curvature.

Numerics. The system is closed by requiring that the
velocity field induced by the settling and the deformation of the
vesicle vanish at infinity: v}, ., — 0. To solve this problem,
we use a numerical method [31] based on the boundary element
method for the computation of Stokes flows, modified to
deal with the computation of membrane forces as well as
with the treatment of the constraint of surface divergence
free of the velocity field. Even in the large deformation regime
studied here, our method fulfills the constraint of surface
incompressibility up to a precision of 107% and preserves
the total area and volume up to a relative precision of 107>,

Results. The dynamics of the system depends on two di-
mensionless control parameters (no viscosity contrast between
the inside and outside here): the excess area A and the Bond
number Bo = 8,ogR8'/K.

In the limit of quasispherical shapes (A ~ 0), it has been
shown theoretically [32] that the vesicle reaches a stationary
state among several families of solutions, which is selected
by the initial shape. In particular, two distinct families of
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axisymmetric solution exist, depending on whether the initial
condition is oblate or prolate. Prolate settling vesicles can
adopt egg and pear-like shapes. These shapes have been ob-
served experimentally (Fig. 2, top, of [29]) and correspond to
the family of prolate shapes obtained in simulations (e.g., pear
shape for Bo = 59 in Fig. 2). Oblate settling vesicles develop
parachute-like shapes. Finally, nonaxisymmetric solutions also
exist, which exhibit membrane recirculations [32] due to
membrane fluidity, as in other cases [33,34]. Neither oblate
nor nonaxisymmetric families of shapes have been reported
experimentally so far. We now turn to the evolution of the
system for deflated vesicles (A ~ 0.1-1) and larger Bond
numbers (Bo ~ 100). This means that the interface has enough
geometrical freedom to deform and that the forcing is large
enough to overcome bending rigidity. In the case of an initial
oblate, the parachute-like shape becomes more pronounced,
but no tether appears. Thus we ignore this family in the fol-
lowing. In the case of an initial prolate, just after the release, the
shape evolves rapidly, leading to the formation of a protrusion
atthe rear of the vesicle (Fig. 1). This protrusion thus elongates,
and a thin tether connecting a quasispherical mother vesicle
of radius R to a quasispherical daughter vesicle of radius R,
develops (Fig. 2). The simulated shapes presented here are in
qualitative agreement with recent experimental observations
(Figs. 1(d) and 1(e) of [29]). However, the evolution of the
shape is very sensitive to initial conditions and can lead to
pearling (Fig. 1(d) of [29]), which complicates the quantitative
comparison of numerical simulations with experiments due to
the long time needed to reach the stationarity of the whole
shape (without pearls).

Vesicles versus drops. The transient deformations corre-
sponding to the extrusion of an elongated tether (Fig. 1) are
reminiscent of the nonstationary dynamics of settling drops
[35-37], yet in the case presented here, the vesicle reaches
a stationary state, instead of pinch-off for drops [1,6]. To
interpret the difference between the two situations, one can
consider the system composed of two spheres (S and S,) of
radii R and R; connected by a cylindrical tether of length L and
radius r. Since the settling velocity vg for an isolated sphere of
radius R in the Stokes regime is given by vg = 25pg R?/9n, the
quadratic dependency on the radius leads to different settling
velocities for the spheres S and S,, which elongates the tether.
The force exerted at the extremities of the tether is given by
the first variation of F with respect to the length,

oF K
[~ YA 27”(2;"2 + )/)v, 3)
where v = +e; is the unit outward pointing normal vector
to the cylinder extremities. This expression is valid both for a
drop (in which case x = 0 and y is the surface tension) and for
a vesicle (in which case y has to be determined since it is the
Lagrange multiplier enforcing the surface incompressibility
constraint). For a vesicle, neglecting the contribution of y for
the moment, the force varies as k/r, which means that the
tether is harder to stretch as it is elongated by the flow. To
determine the value of the Lagrange multiplier in the tether,
one can write the projection along the normal direction of the
mechanical equilibrium of the membrane:

P —pS+2yH —k[2AH +4H(H? — K)] =0. (4)
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FIG. 4. (Color online) Evolution of the tension in the membrane
at the junction between the tether and the mother vesicle plotted as a
function of 1/r2, with r being the radius of the tether. The points are
the values obtained with the numerical simulation, and the line is given
by (5). Each of the 83 points represents a different stationary state
corresponding to a different (A,Bo). The inset shows a comparison
of the two sides of Eq. (9). The only fitting parameter, A, sets the
slope of the straight line. Equation (9) provides an estimate of the
friction along the tether as a function of the variation of the radius of
the tether.

The jump of pressure at the connection between the tether
and the mother vesicle can be estimated by Laplace’s law,
p' — p¢ =2y/R. Thus, at leading order in /R < 1, H ~
—1/2r and Eq. (4) writes 2y H ~ 4k H3, which gives

Y ~ k/2r%. (5)

A comparison of this scaling and of the values of the numerical
simulations gives excellent agreement when the approximation
r/R <« 11is valid (Fig. 4). Using it in Eq. (3) thus gives

f~X2rx/r e, (6)

where the plus (minus) sign corresponds to the force exerted
by the tether on sphere S (5;). Thus the Lagrange multiplier
enhances the stabilizing effect of bending.

In contrast, the expression of the force exerted by a fluid
cylinder in the case of constant surface tension (drop) is

f~X2myre,. 7

Thus, for a drop, f diminishes as the cylinder is elongated,
while the situation is the opposite for a vesicle where the
force grows when the radius decreases. This is the crucial
stabilizing ingredient which allows for the stationarity of
a tether on a vesicle while a tether on a drop is easier
to stretch as it is elongated. Indeed, the first step of the
dynamics is governed by bending, which stabilizes the pinch-
off at the mother-tube location on a short time scale (see
Fig. 1) compared to tether elongation time. Without bending
energy and with membrane incompressibility, the tether length
(radius) elongates (decreases) endlessly. This is surprising as
a first intuitive statement would attribute the tether stationarity
only to the fixed-area constraint. But, in fact, zero bending
modulus corresponds to an infinite Bond number and there
is no other dimensionless number in Stokes flow to balance
gravity. The fixed-area constraint establishes a relationship
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between the various length scales (R, R,,L,r) while bending
governs the minimal radius.

Using the conservation of excess area of the cylinder
yields the force f roughly proportional to x L/ AR%. Thus, the
cylinder acts as a spring with a stiffness given by «/A. This
is directly visible on Fig. 3, where the excess area is varied
while the Bond number is kept constant (omitting the small
variations of R and R, this corresponds to a constant forcing
on a spring with a varying stiffness). This singular variation of
the stiffness with respect to the excess area differs markedly
from experiments and theory with a fixed tension X, in which
case the area is free. In this case, an important theoretical result
is that a critical force is required to pull a tether, and this force
can be linked [23,24] to the fixed tension X by f, = 27+/2%k.
The radius of the tether is also completely determined by X
as r = /k/2X. This corresponds to the same relation as (5)
since both result from the equilibrium between tension and
bending forces in the tether. However, in the case presented
here, neither y nor r is fixed as they result from the interplay
between the conservation of excess area and the equilibrium
of settling-induced stresses.

Role of friction. This description omits the friction forces
on the tether due to hydrodynamical fields. These forces
modify the tension y on the tether (Fig. 3) and thus lead
to an increase of the tether radius with a minimum at the
connection to the mother vesicle, contrary to the point-like
force configuration for which the minimum is at the end of
the tether [19,22]. Writing the mechanical equilibrium of the
tether, —(2wk /r)e; + f, — AnLv = 0, where we assume that
the friction force on the tether per unit length is given by Anv,
with A being a numerical prefactor, and f', is the force exerted
by the upper half sphere S,. This force is estimated as the sum
of the membrane and pressure contributions:

f2=27Ry <)/2+L2> ez—/ p'nds. 3
2R2 $2
Using Laplace’s law and Eq. (4) at the upper junction gives
¥» & —k/2R?, a negative value obtained also in numerical
computation. Using Fig. 3 (top panel), R,/ Ry =~ 0.10, which
provides a dimensionless y» &~ —(Ry/ Ry)? /2 ~ —50, a good
order of magnitude compared to the numerical result. The
membrane contribution in Eq. (8) vanishes, and the force
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exerted on the tether by S, is due solely to the pressure.
The global equilibrium of the upper half sphere leads to
f2 ~ mKk/Rye;. Thus the mechanical equilibrium of the tether

writes
Ry Ry 2 L
2n | — - — | =~ =A—Bo. 9)

This equation is plotted in the inset of Fig. 4 and shows very
good agreement with a numerical prefactor given by the best
fit of A = 0.684. This has direct interest for experiments since
it could allow for computation of the minimal radius using
measures of the upper radius as well as the length and velocity
of the tether. Experimentally, the Bond number can easily
span the [0, 5 x 10°] range, corresponding to a 10 m radius
vesicle with velocities in the 1 zm s~ range. In the simulations
reported here, a tether radius as low as 200 nm with a 45 um
length has been simulated.

To conclude, we have shown that a buoyant deflated vesicle
settling in a viscous flow will develop a stationary tether
at the rear of the vesicle, provided the excess area and the
Bond number are large enough and the initial shape is prolate.
Contrary to the point-like force configuration, this is a situation
where the area of application of the external force has no
meaning and the tension of the membrane is free, selected
by the system. The evolution to this tethered shape from the
pear-like shapes which exist at lower (A,Bo) is continuous
(no first-order shape transition). The pulling force is due to
the settling flow and can be understood as being due to a
difference of settling velocities of spheres with different radii.
The stationarity is due to the resistance of the tether to bending,
which opposes the radius reduction due to tether stretching.
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