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Fluctuation pressure of biomembranes in planar confinement
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The fluctuation pressure of a lipid-bilayer membrane is important for the stability of lamellar phases and the
adhesion of membranes to surfaces. In contrast to many theoretical studies, which predict a decrease of the
pressure with the cubed inverse distance between the membranes, Freund suggested very recently a linear inverse
distance dependence [Proc. Natl. Acad. Sci. USA 110, 2047 (2013)]. We address this discrepancy by performing
Monte Carlo simulations for a membrane model discretized on a square lattice and employ the wall theorem to
evaluate the pressure for a single membrane between parallel walls. For distances that are small compared with
the lattice constant, the pressure indeed depends on the inverse distance as predicted by Freund. For intermediate
distances, the pressure depends on the cubed inverse distance as predicted by Helfrich [Z. Naturforsch. A 33, 305
(1978)]. Here, the crossover length between the two regimes is a molecular length scale. Finally, for distances
large compared with the mean squared fluctuations of the membrane, the entire membrane acts as a soft particle
and the pressure on the walls again depends linearly on the inverse distance.
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I. INTRODUCTION

The entropic pressure of fluctuating membranes in con-
finement is the main reason for the finite distance between
membranes in a swollen lamellar phase. It plays an important
role for membrane adhesion and many other properties of
membranes in a confined geometry [1]. The prediction of
the fluctuation pressure of membranes by Helfrich [2] with
a D−3 dependence on the distance 2D between two confining
walls has been one of the important early successes for
the description of fluid membranes by curvature elasticity.
However, in a very recent theoretical and numerical study,
Freund [3] concluded that Helfrich’s analysis is incorrect, and
predicts instead a D−1 dependence of the fluctuation pressure.
In addition, Sharma [4] has suggested that this prediction
should be taken as a stimulus for a new set of experiments.

The prediction of Freund is surprising, because several
computer-simulation [5–7], theoretical [8–10], and experi-
mental studies [11,12] seem to have confirmed Helfrich’s
prediction very well. From an application point of view,
lamellar phases of lipid bilayers have been used, for example,
to measure the effect of additives, such as proteins or
polymers, on the interaction between membranes [13–15];
the interpretation of these results depends strongly on the
distance dependence of the fluctuation pressure. Therefore,
a profound understanding of lamellar membrane stacks is very
important both from a theoretical and an experimental point of
view.

II. MODEL AND METHOD

Calculations of the fluctuation pressure are based on the
curvature elastic energy for nearly planar fluid membranes in
the Monge representation,

Eb = κ

2

∫
d2r[∇2h(r)]2, (1)

where h(r) measures the vertical displacement of the mem-
brane from a planar reference state at horizontal position r.

Here, κ is the bending rigidity on the membrane. The walls
restrict the height variables within the range 0 � h(r) � 2D,
so that 2D is the wall separation and D the average distance
of the membrane from the wall.

Helfrich predicted the free energy change per unit area due
to confinement [2]

�f (D) = c1
(kBT )2

κ
D−2, (2)

which implies a fluctuation pressure

p = −
[
d�f

dD

]
= 2c1

(kBT )2

κ
D−3. (3)

The universal constant c1 was estimated by Helfrich [2] to
be c1 = 3/32 = 0.094. Subsequent Monte Carlo simulation
studies employed a discretized membrane model, in which
continuous height variables hi,j are placed on a N × N

square lattice with lattice constant a with periodic boundary
conditions, so that

Eb = κ

2a2

∑
i,j

[hi+1,j + hi−1,j + hi,j+1 + hi,j−1 − 4hi,j ]2,

(4)

with the standard discretization of the Laplacian. These
simulations gave results consistent with Eq. (2) and yielded
the more precise prediction c1 = 0.080 [5,6].

We employ Metropolis Monte Carlo simulations for the
model defined by Eq. (4) with 0 � h(r) � 2D. From the
simulated membrane conformations, we evaluate the density
distribution ρ(z) of the membrane between two parallel walls.
Here, the density profile is normalized such that∫ 2D

0
dz ρ(z) = L2, (5)

where L = Na is the linear membrane size. A typical
membrane conformation obtained from a simulation with
N = 100 is shown in Fig. 1. We calculate the fluctuation
pressure directly from the membrane density profile ρ(z),
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FIG. 1. (Color online) Membrane with N = 100 fluctuating between two walls at heights z = 0 and z = 2D = 10a. The membrane is
drawn as a mesh that is colored green (light gray) on its upper and red (dark gray) on its lower side.

which are related by the wall theorem [16,17],

p = kBTρw, (6)

where ρw is the density at the wall.

III. RESULTS

In Fig. 2, the membrane density profile ρ(z) is shown for
a “small,” an “intermediate,” and a “large” distance of the
parallel walls. The boundaries between these three regimes
will be discussed and quantified below. For small distances,
the density varies only very slightly as function of the vertical
position z between the walls. For intermediate distances,
the density profile is described very well by a Gaussian
function [18,19] (see Fig. 2). The membrane that fluctuates
between hard walls can be approximated by a membrane that
fluctuates in a parabolic potential [18], where an additional
term V (h) = (K/2)h2 is added to Eq. (1). The potential
strength for the parabolic potential has been chosen to be
K = (kBT )2/(κb4D4), where b ≈ 1.14. Thus 〈h2〉 ≈ 0.16D2,
which is consistent with Ref. [19]. For large distances, the
density profile is flat in the bulk and decreases towards the
walls, as expected for a soft particle. The size of the effective
soft particle is given by the typical mean squared fluctuations
of the membrane, 〈h2〉1/2 = (4π3/2)−1L(kBT /κ)1/2, of the
membrane of linear size L.

The resulting dependence of the fluctuation pressure on the
wall distance is shown in Figs. 3–5 for various system sizes N ,
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FIG. 2. (Color online) Membrane density profile ρ(z) between
two walls at z = 0 and z = 2D. The bending rigidity is κ/kBT = 5.
The density is normalized by the number of lattice sites where the
membrane is defined and the separation of the walls is given in the
legend. The density distribution for 2D/a = 1 is compared with that
of a membrane that fluctuates in a parabolic potential.

discretization lengths a, and bending rigidities κ . Analogously
to the density distributions in Fig. 2, we find three power-law
regimes: a small-D regime with p ∼ D−1, an intermediate-
D regime with p ∼ D−3, and a large-D regime with p ∼
D−1. The fluctuation pressure for small wall distances does not
depend on the membrane size N and on the bending rigidity κ .
It is given by

p = kBT /(2Da2), (7)

which is the ideal-gas pressure of N2 independently fluctuating
height variables, in agreement with Ref. [3]. In the regime of
intermediate wall distances, the fluctuation pressure follows
the Helfrich prediction (3), as can best be seen in Fig. 3,
where the pressure dependence is shown for different system
sizes N . A fit of Eq. (3) gives the universal amplitude c1 =
0.081 ± 0.002, in agreement with previous simulation results
[5,6]. Note that in this regime the pressure is independent of
the discretization length a. For large distances, the pressure is
dominated by the translational degree of freedom of the entire
membrane, so that

p = αkBT /(2DL2), (8)

with a function α(κ) = 1 + O(
√

kBT /κ). The parameter α

depends only weakly on the bending rigidity (see Fig. 5). For
further analysis we use α = 1.

We can look at the simulation results from three different
perspectives. For fixed κ and a, the finite-size regime shifts to
larger D for increased L. The finite-size regime is reached
when the lateral correlation length ξ‖ reaches the system
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FIG. 3. (Color online) Membrane pressure p as function of the
distance 2D between the walls for fixed a, κ = 5kBT , and several
membrane sizes N . The line is a fit to Eq. (3) with the fit parameter c1.
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FIG. 4. (Color online) Membrane pressure p as function of
the distance 2D between the walls. Two systems with a smaller
discretization length are compared with a reference system with
L1 = 10a1 for fixed L and κ = 5kBT . The lines indicate the power
laws of Eqs. (7), (3), and (8), by dashed, solid, and dotted lines,
respectively.

size L. Here, ξ‖ is defined by decay of the height-height
correlation function 〈h(r)h(r′)〉 ∼ exp(−|r − r′|/ξ‖), and can
be interpreted as the average size of the largest membrane
humps (see Fig. 1). It has been shown that ξ‖ ∼ (κ/kBT )1/2D

[1,18]. The crossover system size can also be obtained by
equating Eqs. (3) and (8), which gives the more precise
estimate

Dfs = (2c1/α)1/2L(kBT /κ)1/2, (9)

with prefactor (2c1/α)1/2 ≈ 0.4. Alternatively, we can con-
sider a system of fixed lateral size L = Na and fixed bending
rigidity κ , and vary the discretization length a (and accordingly
the number of N2 height variables). This implies that the
prefactor κ/a2 in the discretized curvature energy in Eq. (4)
also varies. The results are shown in Fig. 4. In this case,
the finite-size and the Helfrich regime are unaffected by
decreasing a, but the small-D regime moves to smaller and
smaller values of D. This implies that the small-D regime
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FIG. 5. (Color online) Membrane pressure p as function of the
distance 2D between the walls for a membrane with N = 10, fixed
a, and various bending rigidities κ . Lines are guides to the eye.

vanishes in the continuum limit. The regime of independently
fluctuating height variables is entered with decreasing D

when the lateral correlation length ξ‖ ∼ (κ/kBT )1/2D of
the continuum model drops below the lattice constant a,
so that Dmol ∼ (kBT /κ)1/2a. A more precise estimate can
again be obtained by equating Eqs. (3) and (7), which
yields

Dmol = (2c1)1/2a(kBT /κ)1/2, (10)

with prefactor (2c1)1/2 ≈ 0.4. This result also shows that the
discretization crossover shifts to smaller values of D with
increasing κ , as shown explicitly in Fig. 5.

IV. SUMMARY AND CONCLUSIONS

We have performed large-scale Monte Carlo simulations
with up to 1 000 000 lattice sites to clarify the discrepancy
between the predictions of Freund [3] and Helfrich [2] for the
fluctuation pressure of membranes. We employ a discretized
version of the membrane curvature energy with short-distance
cutoff a. This length scale is not an artifact of the simulation
approach, but can be seen as a way to mimic the breakdown
of the continuum description on a molecular level, where
the motion of individual lipid molecules becomes important
[20,21]. These molecular motions have often been denoted as
“protrusion modes.” We want to emphasize that the discretized
curvature model is not a very good model for the protrusion
regime, but should still capture the crossover between the two
regimes.

The main result of our simulations is that although the
fluctuation pressure of a membrane indeed follows a D−1

behavior for very small D, the curvature elasticity of the
membrane plays no role in this regime and the pressure is
generated by independent motion of individual “molecules.”
The small-D regime occurs when the height differences of
neighboring lattice sites are too small to be controlled by
the bending rigidity. The wall distance 2Dmol, below which
the pressure shows a D−1 behavior, is always smaller than
the cutoff length a (for κ/kBT � 1) and decreases with
increasing κ . For wall distances larger than the molecular
length scale, we confirm the D−3 distance dependance of the
pressure predicted by Helfrich, with the universal amplitude
c1 = 0.080. This curvature-elasticity controlled behavior is
seen in the regime a < ξ‖ < L.

Interestingly, when the data in Fig. 4 of Ref. [3] is replotted
in a double-logarithmic presentation, a crossover becomes
visible from p ∼ D−1 to a faster decay. The value of the
crossover distance should depend on the number of fluctuation
modes employed in the analysis. We find that the length scale λ

in the model proposed by Freund corresponds to our molecular
cutoff length a. In contrast, Sharma [4] claims that λ is large
compared with the molecular size and therefore the use of the
continuum model is justified.

In conclusion, the analysis of previous experiments on the
basis of the theoretical expression for the fluctuation pressure
with an inverse cubic dependence on the confinement remains
valid—for wall distances corresponding to parallel correlation
lengths in the range a < ξ‖ < L. For smaller D (with ξ‖ < a),
we confirm an inverse linear dependence of the fluctuation
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pressure. Therefore, it would be very interesting to perform
new experiments and molecular simulations to investigate the
crossover from the undulation- to the protrusion-dominated
regime.
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