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Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids
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Anomalous diffusion with a sublinear growth of the particles’ mean-square displacement (subdiffusion) has
been observed frequently in crowded fluids, e.g., in the cytoplasm of living cells or in artificial solutions. Based on
a recently reported set of single-particle tracking data, it is shown here that trajectories of nanoparticles immersed
in artificial crowded fluids display all signatures of anticorrelated fractional Brownian motion. Moreover, the
trajectories’ power spectrum follows a scaling that reports on the fluid’s viscoelasticity. Macromolecular crowding
therefore renders fluids viscoelastic which in turn leads to subdiffusion of immersed tracer particles with all the
characteristics of fractional Brownian motion.
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Many intracellular fluids are crowded with a plethora of
macromolecules with a total concentration of up to 400 mg/ml
[1]. Due to crowding, changes in (bio)chemical reactions are
anticipated (see [2] for a recent review). A striking example for
altered biochemical reactions is the phosphorylation pattern
of the mitogen-activated protein kinase (MAPK) that has
been shown to vary strongly with the degree of cytoplasmic
crowding [3]. Besides excluded volume effects that constrain
the available reaction space, also an altered diffusion of
macromolecules has been invoked to explain these results
[4]. Indeed, diffusion is known to be slowed down by
macromolecular crowding [5], and diffusion also has been
frequently reported to display an anomalous characteristics
(see [6] for a recent comprehensive review). In particular,
the mean-square displacement (MSD) of diffusing particles
has been shown to grow for several orders of magnitude as
〈r2

τ 〉 ∼ τα with α < 1 (“subdiffusion”). For time and length
scales beyond a few seconds and a few micrometers, normal
diffusion as an asymptotic mode of motion is restored (see,
e.g., discussion in [7,8]).

To rationalize the emergence of subdiffusion in unconfined
crowded fluids, several random-walk models have been pro-
posed. The most popular ones are obstructed diffusion (OD),
i.e., the motion of a tracer particle in a fractal, percolation-like
network of obstacles [9]; fractional Brownian motion (FBM)
with anticorrelated diffusion steps [10]; and a continuous
time random walk (CTRW) in which diffusing tracers take
power-law distributed rests between periods of free diffusion
[11,12]. While a decision in favor of one of these models for
subdiffusion in the cytoplasm of living cells is still pending,
we have recently reported strong evidence that FBM is the
mode of motion of nanometer-sized beads in artificial crowded
solutions [8]: Based on a cycling orbit strategy [13,14],
particles were tracked in concentrated sucrose or dextran
solutions over many minutes with a temporal resolution of 4
ms and a spatial accuracy of about 10 nm. While beads showed
normal diffusion in sucrose solutions, a subdiffusive behavior
〈r2

τ 〉 ∼ τα with α ≈ 0.8 was observed for dextran solutions on
time scales below ∼5 s. An evaluation of the extraordinary long
single-particle tracking data (>105 positions per trajectory) in
terms of the random walk’s asphericity revealed that the beads’
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motion in dextran solutions was most consistent with FBM.
Simulation results for OD or (truncated) CTRW models were
inconsistent with the experimentally found asphericity values.
This indicated that FBM is the best description for particle
trajectories in dextran solutions. Yet, using the asphericity
to distinguish different types of random walks is, like other
recent approaches [15], a rather indirect approach. If sufficient
statistics are available in the recorded trajectories, key features
of individual random-walk models, e.g., an anticorrelation of
successive steps, can be probed directly.

Here we revisit the single-particle tracking data reported
in Ref. [8] to probe whether the observed subdiffusion
in dextran solutions shows the major hallmarks of FBM:
Gaussian statistics of displacements (or increments) and an
anticorrelation in successive random steps. The latter is the
major reason for the emergence of subdiffusion in FBM as it
reflects a memory in the particle’s random walk. In particular,
it will be shown below that trajectories in sucrose and
dextran solutions indeed show stationary Gaussian statistics
of increments. In addition, trajectories in dextran solutions
show a pronounced anticorrelation of successive steps that
is not seen for diffusion in sucrose solutions. Subdiffusion
in crowded dextran solutions therefore has all the signatures
of fractional Brownian motion. Moreover, the power spectra
of trajectories in dextran solutions show a nontrivial scaling
S(ω) ∼ 1/ω1+α that reports on the viscoelastic character of
the fluid.

For the analysis, previously published data from a single-
particle orbit tracking approach on nanometer-sized beads
are used [8]. Particles have been tracked over extended time
scales in concentrated sucrose and dextran solutions with a
time resolution of �t = 4 ms. Each of the two-dimensional
trajectories considered for the analysis below contained more
than 105 positions. For experimental details the reader is
referred to [8].

To probe whether the recorded trajectories have a stationary
Gaussian distribution of increments, the cumulative distribu-
tion of squared displacements P (r2

τ ) for different time lags τ =
k�t (k = 1,2, . . .) is considered. In contrast to a probability
distribution function (PDF), the cumulative distribution has
the advantage of not requiring any binning of the data into a
histogram. Using the cumulative distribution function has been
very beneficial when investigating diffusion in two dimensions
[16,17]. In brief, a Gaussian PDF of increments in two
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FIG. 1. Representative examples of the cumulative distribution of
squared displacements [Eq. (1)] for sucrose and dextran solutions (full
and open symbols, respectively). Data are shown as − ln[1 − P (r2

τ )]
vs r2

τ in double-logarithmic style. A linear scaling (dashed lines) is
anticipated for random walks with a Gaussian PDF of increments. All
data sets follow this scaling over several orders of magnitude (τ =
0.1,0.4,1.6 s shown as circles, diamonds, and squares, respectively).

dimensions is given by p(r)r dr = 2 exp(−r2/σ 2)/σ 2r dr .
Changing variables to squared displacements (ξ = r2) and
integrating the PDF yields the cumulative distribution function
of squared increments:

P
(
r2
τ

) =
∫ r2

τ

0
e−ξ/σ 2

/σ 2dξ = 1 − e−r2
τ /σ 2

. (1)

If the PDF of increments of the recorded random walk is
Gaussian, then plotting the cumulative distribution function as
− ln[1 − P (r2

τ )] vs r2
τ should result in a linear function with the

slope reporting on the mean-square displacement, σ 2 = 〈r2
τ 〉.

Deviations from a linear relation therefore are a clear signature
for a non-Gaussian statistics of increments.

As can be seen in Fig. 1, trajectories in sucrose and dextran
solutions show indeed a linear relation − ln[1 − P (r2

τ )] ∼ r2
τ

for various lag times τ . This result confirms the hypothesis
that trajectories in both solutions have a stationary Gaussian
distribution of increments. In addition, the mean-square
displacement σ 2 derived from P (r2

τ ) follows the previously
reported scaling [8] 〈r2

τ 〉 ∼ τα for sucrose (α ≈ 1) and dextran
(α ≈ 0.8) solutions (Fig. 2, inset). For dextran solutions, a
crossover to normal diffusion for lag times beyond τ ∼ 1s is
also visible. This confirms the long-lasting yet nonasymptotic
nature of the observed subdiffusion in crowded fluids. Please
note that the results on the time-averaged MSD (Fig. 2, inset)
have been reported already in [8].

Rescaling the squared displacements with the respective
MSD (x = r2

τ /〈r2
τ 〉) leads to a collapse of all cumulative

distributions onto a single master curve of the form P (x) =
1 − exp(−x) (see Fig. 2). This demonstrates that all trajecto-
ries are governed by Gaussian statistics of diffusion increments
irrespective of the lag time τ and the considered fluid.

A potential (anti)correlation of successive displacements
in the trajectories, as predicted by FBM, can be probed by
the average scalar product of normalized successive increment
vectors,

Cτ (t) =
〈

vτ (T )

|vτ (T )| · vτ (t + T )

|vτ (t + T )|
〉
T

, (2)

with the increment vectors vτ (t) = r(t + τ ) − r(t). Similar
correlation functions have been used already to characterize
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FIG. 2. (Color online) Rescaling the squared increments of Fig. 1
with their respective MSD, x = r2

τ /〈r2
τ 〉, leads to a collapse of all

data (colored lines) to a single, parameter-free master curve P (x) =
1 − e−x , i.e., all data follow the prediction − ln[1 − P (x)] = x over
several orders of magnitude (indicated by open circles). Thus, all
trajectories have a Gaussian PDF of increments irrespective of the
lag time τ . Inset: The MSD used for rescaling shows the previously
reported subdiffusion [8]. For sucrose solutions (open symbols),
〈r2

τ 〉/τ = const (full line); for dextran solutions (closed symbols)
〈r2

τ 〉/τ ∼ 1/τ 0.2 (dash-dotted line). Beyond τ ∼ 1 s, data for dextran
solutions converge towards normal diffusion (dashed line). Data for
dextran solutions have been shifted up by a factor 5 for better visibility.

trajectories of (anomalous) random walks [18,19]. For a
Markovian random walk, i.e., normal diffusion, this quantity
is expected to decay from unity (at t = 0) to zero for t = τ .
In contrast, FBM should show a significant anticorrelation,
i.e., Cτ < 0 for t ≈ τ . Simulations of normal diffusion and
FBM (see [8] for details on simulating FBM) confirm this
expectation (Fig. 3, insets). In line with this prediction, data
for sucrose showed a rapid decay towards zero for all tested
values of τ [Fig. 3(a)]. The beads’ random walk therefore
shows no memory and is hence a Markovian random walk.
In contrast, data for dextran solutions show a significant
anticorrelation (Cτ < 0) in the range 0 < t < τ for several τ ,
in agreement with the predictions of FBM [Fig. 3(b)]. While
an asymptotic version of FBM (which shows subdiffusion on
all time scales) should exhibit the same negative value of Cτ

for all τ [Fig. 3(b), inset], our experimental data indicate a
convergence min(Cτ ) → 0 that reflects again the crossover
towards normal Brownian motion for large time scales τ .
Thus, trajectories in crowded dextran solutions show indeed
on intermediate time scales the hallmark of FBM, namely,
anticorrelated displacements.

To confirm that dextran solutions feature FBM and not OD,
the number of distinct sites sτ visited within a period τ was
determined. A recent report [15] predicted a scaling sτ /〈r2

τ 〉 ∼
τ δ with δ = 0 for FBM with α � 1, and δ < 0 for OD. Indeed,
data for sucrose and dextran solutions agree with the prediction
δ = 0 for normal diffusion and FBM, respectively (Fig. 4).

Apart from the type of (sub)diffusion, trajectories of single-
particle tracking experiments can also be used to determine
material properties of the surrounding fluid. The Fourier-
transformed trajectory, for example, yields information about
the complex shear modulus G(ω) = G′(ω) + iG′′(ω) of the
fluid [20]. Elastic contributions are summarized in G′(ω)
whereas viscous effects are reflected in G′′(ω). Hence,
G(ω) ≈ G′(ω) for rubber and G(ω) ≈ iG′′(ω) for liquid water.
Viscoelastic fluids have real and imaginary parts of similar

010101-2



RAPID COMMUNICATIONS

SINGLE-PARTICLE TRACKING DATA REVEAL . . . PHYSICAL REVIEW E 88, 010101(R) (2013)

(a)

(b)

0 100 200 300 400 t/Δt

 0.0

 0.2

 0.4

 0.6

 0.8
Cτ(t)

0 100 200 t/Δt

 0.0
 0.2
 0.4
 0.6

Cτ(t)

0 100 200 300 400 t/Δt

 0.0

 0.2

 0.4

 0.6

 0.8
Cτ(t)

0 100 200 t/Δt
 0.0
 0.2
 0.4
 0.6

Cτ(t)

FIG. 3. (Color online) (a) The correlation function of particle
displacements, Cτ (t) [Eq. (2)], shows a rapid decay from unity
towards zero in sucrose solutions, in agreement with simulation
results on normal Brownian motion (inset). Colored lines represent
time lags τ = 0.1,0.2,0.4,0.8,1.6 s (shown left to right, respectively,
as black, green, red, blue, and grey). (b) In contrast, data for dextran
solutions show a pronounced anticorrelation [Cτ (t) < 0] after an
initial correlation decay towards zero. This result is in favorable
agreement with simulation data on FBM (inset), therefore confirming
that trajectories in dextran solutions have all the features of an
anticorrelated FBM. Here, �t = 4 ms is the trajectories’ temporal
resolution.

magnitude. Moreover, viscoelastic fluids are characterized by
a scaling |G(ω)| ∼ ωα which is also reflected in the power
spectrum of single-particle trajectories in these environments:
S(ω) ∼ 1/ω1+α . For purely viscous fluids, normal Brownian
motion is anticipated, and a scaling S(ω) ∼ 1/ω2 is predicted.
Indeed, our trajectories in sucrose solutions follow this
prediction over several orders of magnitude [see example in
Fig. 5(a)]. In contrast, the power spectrum of trajectories in
crowded dextran fluids show a scaling S(ω) ∼ 1/ω1+α with
0.7 � α � 0.9 for high frequencies while the trivial scaling
S(ω) ∼ 1/ω2 is seen for low frequencies. This corresponds
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FIG. 4. (Color online) The number of distinct sites visited within a
period τ divided by the MSD (averaged over three trajectories) shows
a scaling sτ /〈r2

τ 〉 ∼ τ δ with δ = 0 for both sets of experimental data,
hence confirming FBM in dextran solutions. In contrast, simulations
of OD show δ < 0 as expected [15].
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FIG. 5. (Color online) (a) The power spectrum S(ω) (averaged
over three individual trajectories) in sucrose (blue) agrees well with
the prediction for purely viscous fluids, S(ω) ∼ 1/ω2 (dashed line).
In contrast, data for dextran solutions show a clear indication for
fractional Gaussian noise and viscoelasticity in the high-frequency
regime [dash-dotted line; S(ω) ∼ 1/ω1.7]. For better visibility, ω

has been normalized by the smallest possible frequency ω0, and
S(ω0) has been set to unity. (b) The power spectrum of simulated
CTRW trajectories (blue) follow the scaling of a normal random walk,
whereas obstructed diffusion at the percolation threshold (black) also
yields a nontrivial scaling S(ω) ∼ 1/ω1.7.

nicely to our observation of subdiffusion on small time scales
(high frequencies) and an asymptotic convergence towards
normal diffusion for large times (low frequencies). Hence,
sucrose solutions are purely viscous fluids whereas dextran
solutions appear viscoelastic on certain frequency scales.

Interestingly, simulated trajectories for CTRW (α = 0.7)
and obstructed diffusion at the percolation threshold (α ≈ 0.7)
show a scaling S(ω) ∼ 1/ω2 and S(ω) ∼ 1/ω1.7, respectively
[Fig. 5(b)]. Simulations were performed as described previ-
ously [8]. This numerical result reveals that the scaling of S(ω)
is sufficient to distinguish CTRW from FBM and obstructed
diffusion. The latter two, however, have a similar nontrivial
scaling of the power spectrum. Identifying FBM as the mode of
motion as compared to OD therefore requires knowledge about
the correlation of successive steps (see above). Moreover,
arguing in favor of viscoelastic characteristics of a fluid on the
basis of S(ω) may be an oversimplification since obstructed
diffusion of tracers in (static) fractal structures yields the same
scaling.

One may wonder why dextran-crowded fluids and sucrose
solutions induce such different diffusion characteristics of
tracer particles. While a full understanding of the phenomenon
is not yet at hand, the following points may yield a basic
rationale. Hard spheres with a mere excluded volume interac-
tion do not show subdiffusion with a power law in the MSD
over extended time scales. Hence, tracer particles that have
similar sizes as solvent molecules (e.g., organic dyes in water)
should not show subdiffusion. Large tracers in fluids with small
solutes (e.g., sucrose) will experience a multitude of kicks
from solvent and solute molecules that can be summarized
again as a Markovian random impact, hence leading to normal
diffusion with a certain diffusion constant. Yet, if crowders
have similar sizes as the trace particle and also have, for
example, internal degrees of freedom, a nontrivial behavior
in the MSD may emerge. To this end, one may consider
a tracer particle trying to move in a semidilute solution of
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polymers (e.g., dextran). If the tracer performs a diffusive
step, neighboring polymers will get squeezed which induces
an elastic restoring force (polymers acting as entropic springs).
This yields an anticorrelation of successive diffusion steps as
anticipated in FBM. On larger time scales, the polymers will
also move and a Markovian random walk of the tracer (and
the neighboring crowders) is observed. This example may be
taken as a simplified realization of FBM, linking the diffusion
of tracer particles and the crowded fluid’s viscoelasticity.

In summary, crowding renders dextran fluids viscoelastic
on certain frequency scales which enforces subdiffusion of
nanoparticles on corresponding time scales. As a consequence,
the particles’ random walk has all the features of FBM,
namely, Gaussian statistics of increments and anticorrelated
displacements.
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