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Simulation of fluid flow in a body-fitted grid system using the lattice Boltzmann method
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The ability of the interpolation supplemented lattice Boltzmann method (ISLBM) diminishes in simulation of
fluid flow around complex geometries and it is nearly impossible to use this method in body-filled grid systems.
In this paper, a developed version of the interpolation supplemented lattice Boltzmann method is proposed to
remove the limitations of the original ISLBM. Combination of the ISLBM and the Joukowski transformation is
the basis of the method. In fact, using the Joukowski transformation, the physical domain with a body-fitted grid
system is mapped to the computational domain with a uniform Cartesian grid system such that the conventional
ISLBM can be easily applied. The results are compared with those of a Navier-Stokes solver and there is good
agreement between these two results.
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I. INTRODUCTION

There has been rapid progress in developing and employ-
ing the lattice Boltzmann method (LBM) as an alternative
for the computational fluid dynamics (CFD) approach for
simulation of fluid flows [1–3]. However, because of the
essential restriction of the standard LBM in using grid systems
other than the Cartesian uniform grid system, the broad
application of the LBM in engineering problems has been
greatly hampered. It is clear that an irregular grid system is
always preferable because curved boundaries can be described
in a simple way and computational resources can be used more
efficiently. The lattice-uniformity requirement of the standard
LBM comes from its ancestor, the lattice-gas automata (LGA)
method [4]. In the LGA, all the particles with the same
mass must move to their neighboring points at one time step.
This requirement leads to the lattice uniformity. The LBM is
developed from the LGA, in which the mass of particles is
replaced by the density distribution function. In general, the
collision operator is linearized by the Bhatnagar-Gross-Krook
(BGK) approximation in the LBM [5]. The LBM enhances the
computational efficiency of the LGA method, but inherits its
feature of the lattice uniformity. Theoretically, this feature is
not necessarily to be kept for the LBM because the distribution
functions are continuous in physical space. Currently, there
are three ways to improve the standard LBM so that it can
be applied to complex problems. The first is the interpolation
supplemented LBM (ISLBM) proposed by He and co-workers
[6–8]. In this method, in order to obtain the density distribution
function at a lattice point, interpolation is applied at every
time step. So the computational effort by this method is
large in comparison with the standard LBM. The second is
based on the solution of a partial differential equation. For
simplicity, this scheme is called the differential LBM [9].
For complex problems, the differential LBM can be solved
by conventional finite difference schemes with the aid of a
coordinate transformation, by finite volume method, or by
finite element method [10–12].
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The third one is the grid refinement technique that was
first presented by Fillipova and Hänelin [13] and improved
by Yu et al. [14]. The grid refinement techniques were
extended for multiple-relaxation-time (MRT) and cascaded
lattice Boltzmann (CLB) models by Tölke and Krafczyk [15]
and also by Schönher et al. [16]. This technique works based
on the conventional adaptive mesh refinement method (i.e.,
using a coarse grid in the whole domain and a finer grid in
critical regions).

In this study, in order to simulated fluid flows in a
nonuniform body-fitted grid system using the standard LBM,
an alternative method is developed. In fact, we have used
mapping from a physical domain onto a computational domain
and an intermediate grid system is used to correlate between
the physical and computational grid systems. Using this
method makes it possible to simulate fluid flow around
complex geometries in a body-fitted grid system.

II. NUMERICAL MODEL

A. Lattice Boltzmann method

The LBM is a simulation technique in which the Boltzmann
equation is solved for the particle distribution function on a
regular, uniform Cartesian grid. The Boltzmann equation used
to model particles motion is

∂fα

∂t
+ �ϑα · �∇fα = −1

λ

(
fα − f eq

α

)
. (1)

The single relaxation time form of the BGK approximation [5]
is used for a collision operator that converts the Boltzmann
equation into a linear differential equation. In Eq. (1), f is
the distribution function, f

eq
α is the equilibrium distribution

function (Maxwell-Boltzmann distribution), �ϑ is the particle
velocity vector, and λ is the relaxation time.

In order to confine the motion of the particles in specified
directions, various models are proposed. The most popular
of them for two-dimensional flow fields is the D2Q9 model.
Figure 1 describes this model. It can be seen there are nine
directions �eα and every particle is allowed to move along only
these directions. The equilibrium distribution function for the
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FIG. 1. The D2Q9 model.

D2Q9 model can be expressed as

f eq
α = ρ · wα

[
1 + 3

c2
�eα · �u + 9

2c4
(�eα · �u)2 − 3

2c2
�u · �u

]
,

(2)

where wα is the weighting factor for discretization of the
equilibrium distribution function. Equation (1) is discretized
in time and space domains. Using the BGK model for the
collision term at time step δt and space step δx = �eαδt , the
equation is discretized as

fα(�xi + �eαδt,t + δt) − fα(�xi,t)

= − 1

τ

[
fα(�xi,t) − f eq

α (�xi,t)
]
, (3)

where τ = λ
δt

is the nondimensional relaxation time and
indicates the time it takes a particle to reach equilibrium after
collision with another particle. The equation is solved in two
steps: (i) a collision step

f̃α(�xi,t + δt) − fα(�xi,t) = − 1

τ

[
fα(�xi,t) − f eq

α (�xi,t)
]

(4)

and (ii) a streaming step

fα (�xi + �eαδt,t + δt) = f̃α(�xi,t + δt), (5)

where f̃α represents distribution after collision. After solving
the equation for fα , the macroscopic properties of the flow
field can be calculated as

ρ =
8∑

α=0

fα =
8∑

α=0

f eq
α , (6)

ρ · �u =
8∑

α=1

�eαfα =
8∑

α=1

�eαf eq
α . (7)

B. Joukowski transformation

One of the most common usage conformal mappings in
aerodynamics is the Joukowski mapping. Using this mapping,
it is possible to transform geometries such as a circular cylinder
to a straight-line segment and a symmetric or a nonsymmetric
airfoil in another complex plane [17]. For instance, let us
consider a circular cylinder in the w plane as shown in Fig. 2.
The cylinder can be expressed as w = aeiθ (a is the radius of
the cylinder). The Joukowski transformation is a correlation
that transforms the cylinder in general to an asymmetric airfoil.

FIG. 2. Joukowski transformation.

This transformation is expressed as

z = w + b2/w, (8)

where b is the parameter by which the chord of the airfoil can be
controlled in the transformed plane. By changing the position
of the center of the cylinder in the w plane, other parameters
of the airfoil such as mean camber and thickness can be
controlled. In fact, the position g of the center determines
the thickness distribution and position h of the center controls
the camber distribution along the chord of the airfoil in the
transformed plane.

III. GRID GENERATION

The Joukowski transformation is used to generate a
body-fitted grid system around a desired geometry. First, a
nonuniform grid around a circular cylinder is generated using
a mapping that transfers the uniform Cartesian grid system to
a nonuniform polar grid system. The uniform grid is shown in
Fig. 3, where the Cartesian domain is limited within [0,ξ∞]
along the ξ direction and within [ − 1, 1] along the η direction.
In this domain a Cartesian uniform grid with dimension N ×
M is generated and the coordinates of each grid are

ξ = ξ∞
i − 1

N − 1
, i = 1,2, . . . ,N,

(9)

η = −1 + 2
j − 1

M − 1
, j = 1,2, . . . ,M.

With determination of the coordinates of grid points on the
uniform Cartesian grid points, their corresponding points in
the polar grid system can be expressed as

r = aeπξ , θ = πη, (10)

where a is radius of the cylinder.
This nonuniform grid around the cylinder consists of

concentric circles (r constant) and rays (θ constant). As
stated before, the aim of this research is to resolve the
fluid flow around an airfoil in a body-fitted lattice system

FIG. 3. (Color online) Uniform rectangular grid.
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FIG. 4. Body-fitted grid generated around a flat plate and sym-
metric airfoil by using the Joukowski transformation.

using a developed version of the ISLBM (DILBM). A body-
fitted lattice system around the airfoil is generated using
the Joukowski transformation (8). In this transformation the
nonuniform grid around a circular cylinder is mapped onto an
O-type nonuniform body-fitted grid around a flat plate or an
airfoil. Figure 4 shows some samples of the generated grids
around a flat plate and symmetric airfoil. The reported data are
obtained from simulations on a 221 × 251 grid.

IV. DEVELOPED INTERPOLATION LATTICE
BOLTZMANN METHOD

The standard LBM cannot be directly implemented on a
nonuniform body-fitted grid. In order to use the LBM for
such a grid system, collision and streaming steps have to be

FIG. 5. Position of the grid points in the three domains after the
streaming step: (a) the computational domain, (b) the intermediate
domain, and (c) the physical domain.

modeled. Since the collision equation needs only the local
information, it can be directly implemented in the physical
domain on all points of the body-fitted grid.

After the collision step, the streaming step starts. At this
step, the distribution function for each eα at its new position
x − eαδt is known. In order to determine the new coordinates
of the points in the computational domain, an intermediate
domain is required. In fact, this domain communicates the
positions of the particles in the physical domain and their
corresponding positions in the computational domain after
streaming step.

Figure 5 depicts computational, intermediate, and physical
domains. Using new positions of the points in the physical
domain after the streaming step, their corresponding positions
in the intermediate domain are determined using an inverse of
the Joukowski transformation

w = z

2
±

√
z2

4
− c2, (11)

where z = x + iy. By determining the new positions of the
points in the intermediate domain, their corresponding points
in the computational domain can be determined using η =
η(w) and ξ = ξ (w):

ξ + iη = 1

π
ln

(
g + ih

a

)
, (12)

where w = g + ih. Using this procedure, we can correlate
the body-fitted grid system and the computational grid system
(uniform grid).

The distribution functions at the grid points are obtained
using interpolation. The relative position of a grid point to its

FIG. 6. Halfway bounce back boundary condition.
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FIG. 7. (Color online) Pressure contours and streamlines around a flat plate for two different angles of attack: (a) 0◦ and (b) 10◦.

poststreaming position can be written as

dξi = ξ (w − eαδt ) − ξi, dηj = η(w − eαδt ) − ηi. (13)

These relations depict the weighting factor of the interpolation
of the distribution function.

In order to control the interpolation error in an acceptable
range, the accuracy of the interpolation method and also
appropriate discretization of the physical domain are of great
importance in the presented method. Since the LBM has
second-order accuracy, the interpolations have to be second
order as well [18]. Using a linear interpolation scheme will
inevitably generate numerical diffusivity and viscosity that
make the DILBM unable to simulate the viscous fluid flow
correctly.

Therefore, a second-order upwind approximation is im-
plemented to calculate the distribution after the streaming
step:

fα(x,t + δt) =
2∑

k=0

2∑
l=0

ai,kbj,kp(ξi+k∗id ,ηj+l∗jd ,t + dt),

(14)

id = sgn(1,dξi), jd = sgn(1,dηi), (15)

where id and jd determine the interpolation direction and a

and b are coefficients of the approximation equation and are
calculated as

ai,0 = (|dξi | − 
ξ )(|dξi | − 2
ξ )

2
ξ 2
,

ai,1 = − (|dξi |)(|dξi | − 2
ξ )


ξ 2
,

ai,2 = (|dξi |)(|dξi | − 
ξ )

2
ξ 2
,

(16)

bi,0 = (|dηi | − 
η) (|dηi | − 2
η)

2
η2
,

bi,1 = − (|dηi |)(|dηi | − 2
η)


η2
,

bi,2 = (|dηi |)(|dηi | − 2
η)

2
η2
,

where 
ξ and 
η are lattice lengths in the curvilinear
coordinate system and are calculated as


ξ = ξ∞/(NX − 1), 
η = η∞/(NY − 1). (17)
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FIG. 8. (Color online) Pressure contours and streamlines around a symmetric airfoil for two different angles of attack: (a) 0◦ and (b) 10◦.
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(a) (b)

FIG. 9. (Color online) Velocity vectors around a flat plate for two
different angles of attack: (a) 0◦ and (b) 10◦.

It should be noted that using interpolation would increase the
stability of the numerical solution. This makes it possible to
model fluid flow problems at higher Reynolds numbers.

V. BOUNDARY CONDITIONS

The LBM performance is severely dependent on boundary
conditions. In fact, the definition of a boundary condition
directly effects the accuracy and stability of the method.
Conventionally, three types of boundary conditions are defined
for various boundaries of the flow field including periodic,
nonreflecting, and bounce back.

Since we are using an O-type grid, there is a branch
cut boundary starting at the trailing edge and normally a
periodic boundary condition is applied on this boundary. For
outflow boundaries, a nonreflecting boundary condition is
used. Bounce back is employed on solid boundaries in order
to satisfy the no-slip condition [19].

Halfway bounce back is a modified version of the full
bounce back boundary condition that is applied with the
definition of the virtual boundary inside the wall. We have
employed this boundary condition on solid boundaries. To
apply this condition, the solid boundaries are positioned
between two series of points including inner points and outer
points as shown in Fig. 6. The particles at inner points move
toward the solid boundary and are reflected by the outer
points. In fact, the no-slip boundary condition is imposed
on the location between the outer and inner points and has
second-order accuracy [20].

(a)   (b)

FIG. 10. (Color online) Velocity vectors around a symmetric
airfoil for two different angles of attack: (a) 0◦ and (b) 10◦.

VI. RESULTS AND DISCUSSION

The performance of the proposed method was evaluated by
doing several test cases including flow around a flat pate and
an airfoil. For all of these test cases the Reynolds number was
500 and the free stream velocity was 0.1 m/s. The far field
pressure was set equal to 1/3, and the ratio of the streaming
length to the radius of a cylinder dx/a was 0.01. The time
step, in units of a/U , was 0.001.

The results were compared with those of conventional CFD
calculations, which were done by the authors using an in-house
developed computer code. Some of the results of the code were
reported in [21]. The CFD calculations were performed on a
grid size of 125 × 90 with a time step size of 0.001 s for the
flat plate problem; for the airfoil problem we used 150 × 100
and a time step size of 0.001 s.
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FIG. 11. (Color online) Variations of pressure coefficient along
the flat plate surface for two different angles of attack: (a) 0◦ and
(b) 10◦.
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FIG. 12. (Color online) Variations of pressure coefficient along
the symmetric airfoil surface for two different angles of attack: (a) 0◦

and (b) 10◦.

Figures 7 and 8 show pressure contours and streamlines
around a flat plate and symmetric airfoil at two different angles
of attack. It can be seen that the method can easily predict the
vortices at the trailing edge region. Figures 9 and 10 depict
velocity vectors around the flat plate and the airfoil at 0◦ and

TABLE I. Aerodynamic coefficients of the flat plate and the airfoil
at zero angle of attack and Re = 500.

Geometry Method CD CPS

flat plate present work 0.139 –
CFD 0.145 –

airfoil present work 0.173 1.213
CFD 0.170 1.152
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FIG. 13. (Color online) Variations of friction factor along the flat
plate surface for two different angles of attack: (a) 0◦ and (b) 10◦.

10◦ angles of attack. The ability of the method in capturing the
viscous boundary layer adjacent to the solid boundaries can be
seen in these figures.

The pressure coefficient and fiction factor are defined as

Cp = p − p∞
1
2ρ∞U 2∞

, (18)

Cf = τ
1
2ρ∞U 2∞

, (19)

TABLE II. Aerodynamic coefficients of the flat plate and the
airfoil at 10◦ angle of attack and Re = 500.

Geometry Method CD CL CPS

flat plate present work 0.204 0.695 –
CFD 0.197 0.687 –

airfoil present work 0.215 0.436 1.194
CFD 0.212 0.441 1.146
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FIG. 14. (Color online) Variations of friction factor along the
symmetric airfoil surface for two different angles of attack: (a) 0◦ and
(b) 10◦.

where p and τ are the static pressure and shear stress,
respectively, and the subscript ∞ denotes the free stream
conditions. The pressure coefficient along the suction and
pressure sides of the flat plate and the airfoil are shown in
Figs. 11 and 12, where the present results are compared with
those of a conventional Navier-Stokes solver. There is very
good agreement between the present results and those of the
CFD calculations.

TABLE III. Grid convergence study of the airfoil.

Grid Resolution 
xmin Grid size ratio CPS

A 161 × 191 6.6 × 10−4 0.68 1.237
B 181 × 211 5.4 × 10−4 0.83 1.227
C 201 × 231 4.5 × 10−4 1.00 1.219
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220000

230000
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n 

Grid Resolution 

FIG. 15. Number of iterations to achieve convergence versus grid
size.

Figures 13 and 14 give the friction factor along the pressure
and suction sides of the airfoil and the flat plate at 0◦ and
10◦ angles of attack. Excellent agreement between the results
of the present method and the CFD calculations is promising
for application of the method for real engineering problems.
Since the trailing edge of the Joukowski airfoil is a cusp,
discontinuities appear in pressure coefficient and friction factor
distributions at the trailing edge of the airfoil.

Tables I and II give the lift and the drag coefficients of the
flat plate and airfoil and also the stagnation pressure coefficient
Cps of the airfoil. These results are compared with the results
of the conventional CFD solver.

Table I shows the results at zero angle of attack and the
results of 10◦ are shown in Table II. There is considerably
good agreement with the results of the CFD.

The accuracy of the presented scheme and also the
interpolation used in the method was tested for the airfoil
problem. The problem was solved in eight different grid sizes.
Figure 15 shows the effect of grid size on the number of
iterations to reach the steady-state conditions. It can be seen
that the number of iterations increases with increasing grid
size.

In order to validate the accuracy of the scheme, three
additional computations are performed [22]. We chose the
highest-resolution grid (the 201 × 231grid) as a reference grid
and made two grids A and B with different resolutions, which

0.001
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1

Grid Resolu
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g 1

0 ε

tion 

FIG. 16. A log10 plot of error versus grid size.
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FIG. 17. (Color online) Convergence rate of the DILBM.

are listed in Table III. The minimum grid size normal to the
wall boundary is defined by 0.01/

√
Re = 4.5 × 10−4 in order

to clarify the effect of the minimum grid size. The ratio of
the grid size between the different grids is not 2 due to the
restriction in computational resources as it is usually required
in the accuracy estimation [22]. Thus the evaluation method
proposed by Roache [23] when the ratio of the grid size is not
2 is used here.

If we assume the exact solution as � and the solution on a
grid size of r as �r , � = �r + αrn should be satisfied, where
α is a constant and n is the order of the scheme. By comparing
the results by three different grid resolutions, the exact solution
can be eliminated as

�rA + αrn
A = �rB + αrn

B, �rB + αrn
B = �rC + αrn

C,

(20)

where �rA, �rB , �rC and rA, rB , rC are the solution and the
grid size for grids A, B, and C, respectively. Since the ratio of
the grid size between the different grids is not 2, the accuracy
n is calculated recursively by

�rA − �rB

�rB − �rC

= rn
B − rn

A

rN
C − rn

B

. (21)

The pressure at the stagnation point Cps is compared to
calculate the accuracy of the scheme; the effect of the
additional interpolation does not appear when comparing the
different grids.

From this analysis, the accuracy of the current code is n =
1.95, which is nearly 2. This shows that current scheme has
second order of accuracy.

Figure 16 shows the accuracy of the method in prediction
of the drag coefficient and the error in prediction of the

coefficient. The error is calculated as

ε = Cd − CdE

CdE

, (22)

where CdE
and Cd show exact and used method results,

respectively. Note that the developed lattice Boltzmann code
is fully explicit and the solution process is continued to reach
steady-state conditions.

The convergence criterion is considered as

δ = max
|u(t − 
t) − u(t)|

|u(t)| � 1.0 × 10−7. (23)

Figure 17 shows the convergence rate of the method for
three different grid sizes. Every calculation is performed
until Eq. (23) is satisfied and Cd converges to a constant
value.

VII. CONCLUSION

In this study the ISLBM was developed for fluid flow
simulation around complex geometries using the body-fitted
coordinate system. The method contains the inherent ad-
vantages of the standard LBM such as local calculations
and consequently adaptively with parallel processing. The
developed method is efficient and easily applicable for fluid
flow problems with a curved boundary and nonuniform grid.
Moreover, the method has embedded artificial viscosity, which
leads to better stability. Since in the presented method the
physical domain is independent of discretization of the velocity
space, interpolation is mandatory and the accuracy of the
results strongly depend on the type of approximation used
for interpolation. Moreover, the interpolation coefficients are
independent of the flow field and the interpolation step does
not increase the computational time significantly.

The DILBM suppresses the pressure and friction factor
oscillations because the grid points are located on the bound-
aries. The method can resolve the flow fields with higher
Reynolds numbers and higher angles of attack and a camber
airfoil in which the vortex shedding phenomenon occurs. Grid
generation for transformable geometries is simple and there
is no need to use traditional complex and time-consuming
grid generation methods. The method can be used for resolv-
ing flow fields in a Cartesian grid system with clustering
in high gradient regions. Therein the algebraic equations
are replaced by the Joukowski transformation to make the
connection between grid points in the computational domain
and the physical domain in the algebraic grid generation
methods.

Moreover, the presented idea gives promising results for the
combination of the LBM with other aerodynamic mappings
such as those by Eppler, von Kármán and Trefftz, Theodorsen,
and van de Vooren. Using these combinations gives the ability
to solve fluid flow around various types of airfoils.
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